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Many applications ranging from quasi-Monte Carlo integration over op-

timal control to neural networks bene�t from high-dimensional, highly

uniform samples. In the case of computer graphics, and more particularly in

rendering, despite the need for uniformity, several sub-problems expose a

low-dimensional structure. In this context, mastering sampling uniformity

over projections while preserving high-dimensional uniformity has been

intrinsically challenging. This di�culty may explain the relatively small

number of mathematical constructions for such samplers. We propose a

novel approach by showing that uniformity constraints can be expressed

as an integer linear program that results in a sampler with the desired

properties. As it turns out, complex constraints are easy to describe by

means of strati�cation and sequence properties of digital nets. Formalized

using generator matrix determinants, our new MatBuilder software solves

the set of constraints by iterating the linear integer program solver in a

greedy fashion to compute a problem-speci�c set of generator matrices that

can be used as a drop-in replacement in the popular digital net samplers.

The samplers created by MatBuilder achieve the uniformity of classic low

discrepancy sequences. More importantly, we demonstrate the bene�t of

the unprecedented versatility of our constraint approach with respect to

low-dimensional problem structure for several applications.

CCS Concepts: • Computing methodologies → Rendering; • Math-

ematics of computing → Permutations and combinations; Quadrature;

Number-theoretic computations.
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1 INTRODUCTION

Generating samples covering a domain as uniformly as possible

is core to many scienti�c domains including computer graphics.

It is well known that simple Monte Carlo integration converges

faster when using well-spaced samples than using random sampling,
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which is particularly useful in physically based rendering [Pharr et al.

2016]. Strati�ed sampling of a population improves the precision of

statistical surveys [Kish 1965]. Generating highly uniform samples is

also important in Deep Learning [Keller and Van keirsbilck 2022] and

strati�cation can be used to prevent class imbalance during learning

[Yuan et al. 2018]. Qualifying and quantifying this uniformity is a

challenge in itself and has been the scope of decades of research,

involving tools such as discrepancy [Hickernell 1998] and optimal

transport [Paulin et al. 2020].

Applications may require uniformity, not only in the possibly

high-dimensional space of samples, but also for particular lower-

dimensional projections. This is notably the case for rendering [Per-

rier et al. 2018], where integration is performed over a path space

consisting of the union of domains of increasing dimensions as light

bounces – uniformity is then desired for each integration subdo-

main. While generating a speci�c set of samples satisfying complex

combinations of constraints may be performed via energy optimiza-

tion, certain applications require the ability to generate sequences

of points instead of a single point set, that is, the ability of adding

more samples without touching the existing ones, while preserving

uniformity constraints. For instance, rendering applications may

progressively show the rendered image being re�ned or adaptively

terminate rendering based on image quality. In addition, the e�-

ciency of sample generation is crucial and it may not be acceptable

for point set optimization time to exceed theMonte Carlo simulation

itself.

Such constraints are dictated by the user and are application

speci�c. While low-discrepancy sequences have been designed and

used as general-purpose samplers – this is the case of the popular

family of Sobol’ sequences – they may not be adapted to the end-

user’s requirements.

In this paper, we introduce the mathematical tools and a de-

scription language that allow one to de�ne sample point sets and

sequences that satisfy complex uniformity constraints. We achieve

this feat with two key ideas. First, we we show that these constraints

can be written in the form of constraints on matrix determinants.

This formalization allows us to represent the constraints as an integer

linear program [Wolsey 2020]. Second, we show that higher-order �-

nite �elds o�er many more degrees of freedom to satisfy constraints,

overcoming restrictions of classic algebraic constructions. Solving

the integer linear program lets us create application-speci�c sam-

plers. We demonstrate the superior performance of the resulting

samplers for rendering, texture exploration, and optimal control

applications. The source code of the proposed MatBuilder system

has been released to facilitate further research [Paulin et al. 2022].
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2 RELATED WORK

In numerical integration, quasi-Monte Carlo methods can outper-

form Monte Carlo methods by using correlated samples that are

more uniformly distributed than independent uniformly distributed

random samples. Quasi-Monte Carlo methods have profoundly im-

pacted computer graphics and are now standard in rendering tech-

nologies [Pharr et al. 2016]. We will review the work most relevant

to our new construction.

Low-discrepancy sequences. Deterministic number-theoretic con-

structions of highly uniform point sets and sequences form the

foundation of quasi-Monte Carlo methods [Halton 1964; Nieder-

reiter 1992; Sobol’ 1967]. Their uniformity is measured by discrep-

ancy [Hickernell 1998] that is de�ned as the supremum of the ab-

solute di�erence between the relative number of samples that fall

into an arbitrary convex subset of the unit cube and the volume

of the subset. Point sequences that achieve a discrepancy of order

O(log# /# ) are called low-discrepancy sequences. The classic the-

ory and constructions of low discrepancy sequences are extensively

covered in reference text books by Niederreiter [1992], Lemieux

[2009], and Dick and Pillichshammer [2010].

Our contribution draws from the algorithmic framework for the

generation of low-discrepancy sequences and hence can be a drop-in

replacement for the improvement of existing codes.

Projective samplers. Already Sobol’ [1967] recognized that there

are combinatorial lower bounds on the achievable uniformity of

low-dimensional projections of his algebraic high-dimensional con-

struction. Later Sobol’ et al. [2011] introduced the concept of con-

straints to improve the uniformity of low-dimensional projections at

the cost of relaxed high-dimensional uniformity. Similarly, improve-

ments to the low dimensional projections of the Sobol’ sequence

have been identi�ed by computer search [Joe and Kuo 2008]. More

recently, computer search has been key to improving the quality

parameter C of a generalization of Sobol’ construction [Faure and

Lemieux 2016, 2019].

Recognizing the particular structure of physically-based render-

ing integration domains, for example obtained by repeated scat-

tering in path tracing algorithms, computer graphics has been at

the forefront of improving the uniformity of point sets in low di-

mensional projections using both computer search [Ahmed et al.

2016; Marques et al. 2020; Paulin et al. 2020; Perrier et al. 2018] and

mathematical constructions [Paulin et al. 2021].

As compared to the aforementioned speci�c approaches, we come

up with a general formulation of constraints and a system to solve

them in an e�cient way.

Orthogonal Arrays. Orthogonal Arrays (OA) are widely used in

engineering and the statistical design of scienti�c experiments [Bose

and Bush 1952; Bush 1952; Plackett and Burman 1946]. Given a set

of values in {0, . . . , 1 − 1}, an OA in dimension B of strength C ≤ B is

set of = points seen as an array� of size = × B where each submatrix

of size = × C (i.e. C dimensional projection) contains all 1C possible

distinct rows [Owen 2013].

As introduced to computer graphics [Jarosz et al. 2019], OAs gen-

eralize the notion of Latin hypercube and (multi-)jittered sampling,

focusing on strati�cation properties on some C−dimensional pro-

jections of the samples. So-called strong OAs �ll the gap between

orthogonal arrays and low discrepancy nets [He and Tang 2013].

The constraints implied by orthogonal arrays are a special case

of our general approach to designing generator matrices.

Randomization. Low-discrepancy sequences may be randomized

to allow for variance estimation and unbiased Monte Carlo integra-

tion [Owen 1998]. The underlying principles are recursive random

scrambling and random shifting on the unit torus. These techniques

may also be used for the optimization of sampling points accord-

ing to various criteria: besides minimizing discrepancy, the mutual

minimum distance of the points may be maximized and the spectral

properties may be tweaked to approximate blue noise characteristics

in low dimensions [Ahmed et al. 2016; Ahmed and Wonka 2020,

2021; Heitz et al. 2019].

While many improvements of scrambled algebraic samplers are

intrinsic to our constraint-based approach, our samplers are com-

patible with the aforementioned randomization techniques.

3 PRELIMINARIES

Our new method is based on the classic algorithms (reviewed

in Section 3.1) to generate digital nets and sequences [Dick and

Pillichshammer 2010; Lemieux 2009; Niederreiter 1992] in the B-

dimensional unit cube [0, 1)B , where a set of generator matrices

�0, . . . ,�B−1 ∈ F<×<
p de�nes an B-dimensional point set of size p< .

Rather than constructing such matrices using number theory, we

aim to design the generator matrices �0, . . . ,�B−1 by specifying

constraints that we introduce in Section 4 as design principles de-

rived from the algebraic properties of the classic constructions (see

Section 3.2).

3.1 Digital Nets and Sequences from Generator Matrices

To compute the 8-th component G0,8 of the 0-th point x0 , the index

(or its ordinal number) 0 ∈ N0 is represented in base p as the vector

(00, . . . , 0<−1) of < digits, where 00 is the least-signi�cant digit.

Given the 8-th generator matrix �8 , the vector

©«
1<−1

...

10

ª®®¬
:= �8 ·

©«
00
...

0<−1

ª®®¬
(1)

is mapped to the unit interval by

G0,8 :=
1

p<

<−1∑
9=0

1 9 · p
9 ∈ [0, 1) . (2)

The matrix multiplication is performed in the �nite (Galois) �eld Fp
(sometimes denoted GF(p)). Using a �nite �eld with a base p that

is a prime power rather than a prime would involve mapping the

digits 0: to the �nite �eld and mapping the digits 1: back into the

integers [Niederreiter 1992, Section 4.3]. Applying only prime bases

in this article, these mappings are not required and operations are

simply performed modulo p.

The above algorithm has become extremely popular, as in base p =

2, the vector operations on F<2 can be e�ciently implemented as bit-

vector ‘xor’ and ‘and’ operations for addition and multiplication,
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Fig. 1. Generator matrix structure: (0) The first row of the generator matrix�8 acts on the most significant digit of 1<−1 selecting one two intervals of size
2<−1 in base 2, the first two rows of�8 determine one intervals of size 2<−2 and so on. (1 ) When coupling the matrices to design a 2D sampler, the first rows
of�0 select intervals along the G-axis, while the first rows of the�1 select intervals along the ~-dimension. If" is of full rank, samples generated by�0 and
�1 will be stratified in the cells induced by selected rows of the two matrices.

respectively. For higher bases, e�cient implementations process

multiple digits simultaneously using lookup tables [Keller et al.

2012].

3.2 Stratification of Digital Nets and Sequences

Digital nets and sequences generated by matrices imply a strati�-

cation of the unit cube as illustrated in Figure 3. These strata are

speci�ed by

De�nition 3.1 (see [Niederreiter 1992, p.48]). For a �xed dimension

B ≥ 1 and an integer base 1 ≥ 2 the subinterval

� =

B∏
9=1

[
0 9 · 1

−3 9 , (0 9 + 1) · 1−3 9
)
⊆ [0, 1)B

with 0 ≤ 0 9 < 1
3 9 , 0 9 , 3 9 ∈ N0, is called an elementary interval in

base p.

The strati�cation and hence uniformity constraints given by all

the elementary intervals can be used to characterize the uniformity

of point sets and sequences:

De�nition 3.2 (see [Niederreiter 1992, Def. 4.1]). For integers 0 ≤

C ≤ <, a (C,<, B)-net in base 1 is a point set of 1< points in [0, 1)B

such that there are exactly 1C points in each 1-adic elementary

interval � with volume 1C−< .

De�nition 3.3 (see [Niederreiter 1992, Def. 4.2]). For an integer

C ≥ 0, a sequence x0, x1, . . . of points in [0, 1)B is a (C, B)-sequence in

base 1 if, for all integers : ≥ 0 and< > C , the point set x:1< , . . . ,

x(:+1)1<−1 is a (C,<, B)-net in base 1.

Revisiting the point set in Figure 3, we see a realization of a

(0, 4, 2)-net in base p = 2 that is an B = 2-dimensional point set with

24 = 16 points, where C = 0, i.e. exactly one point is in each possible

elementary interval. A smaller quality parameter C implies a lower

discrepancy and hence better uniformity of a point set or sequence.

Historically, Sobol’s construction [Sobol’ 1967] has led to the

above de�nitions and in fact, the Sobol’ low discrepancy sequence

is a (C, B)-sequence in base 2. Its generator matrices �8 are con-

structed from the 8-th primitive polynomial over F2. Joe and Kuo

[2008] have published Sobol’ generator matrices with optimized

low-dimensional projections up to dimension B = 21201 that are

widely used in computer graphics and numerical simulation in gen-

eral. Grünschloß et al. [2008] have performed an exhaustive search

on the binary matrix �1 such that starting from the identity ma-

trix �0 = � , the point sets generated by (�0,�1) are (0,<, 2)-nets

maximizing the minimal distance between the samples. More re-

cently, Paulin et al. [2021] have proposed a cascaded construction

of the �8 matrices in base 2 in a way that any pair of consecutive

matrices (�8 ,�8+1) de�nes a (0,<, 2)-net in base 2, with optimized

discrepancy on the remaining two-dimensional projections. Ahmed

and Wonka [2021] further explore all possible dyadic nets in base

2 but only for 2 dimensions. Still in base 2, L’Ecuyer and Munger

[2016] propose a generic tool, LatNetBuilder, for constructing

matrices in higher dimensions optimizing a given �gure of merit

(e.g. full-space or projective discrepancy), using either an exhaustive

or a randomized exploration.

There remain severe limitations to a low base. For example, achiev-

ing the best quality parameter C = 0 is impossible for B > p. While

there exist constructions with C = 0 in higher bases, a higher base

results in a higher discrepancy and hence reduced uniformity. In gen-

eral, it is considered hard to construct algebraic low-discrepancy se-

quences. Since we aim to improve the uniformity of low-dimensional

projections, too, the problem becomes even harder. Therefore, we

propose a novel, constraint-based approach to digital nets and se-

quences.

4 GENERATOR MATRIX CONSTRAINTS

In this section we show how classic uniformity constraints translate

into determinant inequalities that can be used as design constraints.
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4.1 How Generator Matrices Act

The algorithm of Equation (1) is illustrated in Figure 1: the 9-th row

of a generator matrix �8 determines the 9-th digit 1<− 9 . The �rst :

rows of �8 determine the : most signi�cant digits of the vector 1.

They in turn determine in which of the p: uniformly sized intervals[
; · p<−: , (; + 1) · p<−:

)
, 0 ≤ ; < p: the sample will be placed.

If the generator matrix is of full rank, that is its determinant is

non-zero, the matrix multiplication in Equation (1) will be bijective

and thus corresponds to permuting the set {0, . . . , p<}. Hence a

set of generator matrices with non-zero determinants generates a

point set by Equation (2) that is perfectly strati�ed in each single

dimension 8 and thus a Latin hypercube sample. Themost prominent

example of this property is the Sobol’ sequence.

As a generator matrix with non-zero determinant implies perfect

strati�cation, we conclude that non-zero determinants may be used

to express uniformity constraints.

4.2 Design Constraint: Stratification and Net Properties

The intuition developed in Section 4.1 may be used to de�ne uni-

formity constraints across dimensions. Let  = (:0, . . . , :B−1) ∈ N
B

be a set of non-negative integers such that
∑B−1
8=0 :8 =<. Then, for

each :8 the �rst rows of �8 map the index 0 to one of the intervals[
; · p<−:8 , (; + 1) · p<−:8

)
, 0 ≤ ; < p:8 . Compositing all :8 �rst

rows of the corresponding generator matrix �8 results in an< ×<

matrix" that maps the index 0 to one of p< elementary intervals

of size p<−:0 × · · · × p<−:B−1 as illustrated for two dimensions in

Figure 1.

By analogy with Section 4.1, a composite matrix" with a non-

zero determinant is a bijection between the index 0 and the elemen-

tary intervals speci�ed by  . In case the dimension B divides the

number< of digits, the generator matrices �0, . . . ,�B−1 generate a

strati�ed point set if the determinant

det
(
"(</B,...,</B )

)
≠ 0 ,

because each stratum of volume ?</B × · · · × ?</B contains exactly

one point. In case B does not divide<, the property can be general-

ized to elementary intervals with a ratio of at most p between the

longest and shortest dimensions. This leads to

Design Constraint 1 (Generalized Stratification). A point

set of size p< is said to be strati�ed if

∀ = (:0, . . . , :B−1) ∈
{⌊<
B

⌋
,
⌈<
B

⌉}B
with

B−1∑
8=0

:8 =< ,

all cells of size p<−:0 × · · · × p<−:B−1 contain exactly 1 point. Thus

�0, . . . ,�B−1 generate a strati�ed point set if and only if

det (" ) ≠ 0 . (3)

Classic strati�cation along the canonical axes is a special case of

the more general concept of strati�cation by elementary intervals.

The constraint resulting from the de�nition of (0,<, B)-nets [Nieder-

reiter 1992] is:

Design Constraint 2 ((0,m,s)-net). An B-dimensional point set

of size p< is said to be a (0,<, B)-net if

∀ = (:0, . . . , :B−1) ∈ N
B with

B−1∑
8=0

:8 =< ,

all cells of size p<−:0 × · · · × p<−:B−1 contain exactly one point. Thus

�0, . . . ,�B−1 generate a (0,<, B)-net if and only if

det (" ) ≠ 0 . (4)

We conclude that strati�cation and (0,<, B)−net constraints of

digital nets and sequences can be veri�ed by computing determi-

nants of matrices that are composited from sets of �rst rows of

generator matrices {�0, . . . ,�B−1} in Fp.

4.3 Design Constraint: Sequences

Many applications use adaptive sampling, where the number of

samples is controlled by a termination criterion, e.g. a threshold

on the variance in Monte Carlo integration. Progressive random

sampling is straightforward, as it just requires to drawmore random

samples. In the case of our digital construction, points have to

respect uniformity constraints that are only satis�ed for sample

counts of powers of p, see Section 3.2.

In theory a sequence property shall be valid for an in�nite number

of samples. In practice the number of samples is bounded due to

�nite �oating point precision and �nite computation time. Given

the base p, this allows us to select a suitable< determining an upper

bound of p< samples that covers the range of samples representable

in �oating point arithmetic. As a consequence, one can select a

point set of maximum size p< and consider it to be sequential if, for

1 ≤ 8 ≤ <, all subsets of the �rst p8 points satisfy the

Design Constraint 3 (Seqential property). �0, . . . ,�B−1
have a sequence property if the property is valid for all 9 × 9 subma-

trices �
9
0, . . . ,�

9
B−1 of �0, . . . ,�B−1 anchored at the most signi�cant

digit, 1 ≤ 9 ≤ <.

4.4 Design Constraint: The Prime Base p

The base p in which one decomposes the index 0 in Equation (1) is

an important choice to consider in the design of generator matrices.

It is a known result [Niederreiter 1992] that in base p it is neither

possible to construct a (0,m,s)-net for B > p + 1 nor a (0,s)-sequence

for B > p. The base may also have an impact on the satis�ability

of the entire set of other constraints. It determines the number of

values any speci�c matrix entry can take. In turn, each constraint

det(·) ≠ 0 may reduce the range of possible matrix entries.

As an example, given a matrix�0, we search for a matrix�1 such

that both generate a (0, 2)-sequence in base p = 2. By induction, one

can show that there is only one possible value for each entry of �1
and thus there exists exactly one�1 that results in a (0, 2)-sequence

given�0. In particular, if�0 is the identity matrix,�1 corresponds to

the Pascal triangle, and (�0,�1) forms the �rst two dimensions of the

Sobol sequence. This restriction due to the small base can be severely

limiting. For instance, we show in Figure 2 the samples obtained by

generalizing the construction of Cascaded Sobol’ Sampling [Paulin

et al. 2021] where all consecutive pairs of dimensions form (0,<, 2)-

nets, to instead impose the constraint that all consecutive pairs

ACM Trans. Graph., Vol. 41, No. 4, Article 84. Publication date: July 2022.

Lowres version



MatBuilder: Mastering Sampling Uniformity Over Projections • 84:5

dim 0 1 2 3 4

1

2

3

4

5

Fig. 2. The base p constrains the space of cascaded sequences: Complying
with a (0,<, 2)-net constraint in base p = 2 for all pairs of subsequent
dimensions, there exist exactly two 2-dimensional projections.

of dimensions form (0, 2)-sequences, using base p = 2. Although

consecutive pairs of this construction are (0, 2)-sequences, half of

the 2-dimensional projections have extremely poor uniformity that

can be detrimental in many applications such as rendering. This is

due to the fact that since satisfying the (0, 2)-sequence constraint

has only one solution in base p = 2, all matrices with even indices

equal �0 and others equal �1.

Selecting a higher base comes at the price of a larger distance

between sample counts at which design constraints derived in the

previous sections can be veri�ed. We further discuss changing the

base in Section 6.2.

5 SOLVING THE CONSTRAINTS

Given a problem dimension B , a base p, and set of uniformity con-

straints as discussed in the previous section, the goal is to determine

B generator matrices �8 with entries in {0, . . . , p − 1} that satisfy

the constraints. In this section, we prove that these constraints are

equivalent to an integer linear program [Wolsey 2020], whose so-

lution – if existent – yields a set of generator matrices with the

desired uniformity properties.

Our approach is motivated by De�nition 3.3 stating that (C, B)-

sequences are sequences of (C,<, B)-nets for< > C . We hence imple-

ment matrix construction as a greedy algorithm that iterates over

the number of digits< starting with 1 × 1 matrices until the target

size is reached. To grow the matrices, we only need to consider

triangular matrices, see the proof in Appendix A:

Theorem 5.1. If a set of constraints can be satis�ed by square

matrices, it will equivalently be satis�able by triangular matrices up

to an Owen scrambling step.

All the aforementioned uniformity constraints have the common

form of

det(") ≠ 0 . (5)

Using the recursive determinant formula yields a polynomial of

degree < with the <2 matrix entries as variables in Fp for each

constraint. Already solving for polynomials on integers is a NP-

hard problem with few e�cient approximations [Belotti et al. 2013].

However, we can transform the Inequality (5) into a set of linear

constraints to be solved in Z instead of Fp: For p a prime number,

the �rst linear constraint amounts to

0 < det(") − :p < p (6)

with : ∈ Z an additional variable representing the modulo arith-

metic of Fp. As we no longer operate in Fp, the matrix elements

need to be constrained to {0, . . . , p − 1} ⊂ Z that is

∀0 ≤ 9 ≤ < − 1, 0 ≤ "9,<−1 < p. (7)

Note that since we want to iteratively grow the matrices, the< −

1×< − 1 triangular matrix is already known. Hence only the newly

added last column of matrix entries"9,<−1 adds to the constraints.

The key observation is that these<+1 constraints form an integer

linear program that can be used to determine the next larger set

of generator matrices - much in the reverse spirit of the recursive

determinant formula. The resulting sequence of linear integer pro-

gramming problems remains NP-hard but is much easier to solve.

We formalize this in

Theorem 5.2. For given< ×< generator matrices �0, . . . ,�B−1,

adding a column of variables 28
;,<+1

to the right and adding a row

of< zeros at the bottom yields a set of (< + 1) × (< + 1) matrices

�′
0, . . . ,�

′
B−1, i.e.

�′
8 =

©
«

281,<+1

�8 282,<+1
.
.
.

0 · · · 0 28<+1,<+1

ª®®®®®
¬
,

satisfying a set of properties that is an integer linear program.

Proof. Let ! be the set of constraints we wish to satisfy. Each

constraint is in the form of det(") ≠ 0 for a given matrix " . Ac-

cording to our design principles " is an (< + 1) × (< + 1) matrix

composed of lines from multiple�′
9 . Thus all cells are known except

for the last column. Since the determinant is linear by columns, it

is linear for all variables 28
;,<+1

in the new column, leading to the

fact that Equation (6) and (7) correspond to a pair of integer linear

constraints. Packing all determinants together, ! de�nes an integer

linear program. □

When the constraints are transformed into an integer linear pro-

gram they can be prioritized by assigning a weight F 9 . This is

implemented by extending the hard constraint of Equation (6) to

G 9 ≤ det(") − :p < p, where G8 ∈ {0, 1} , (8)

and addingF 9G 9 to the objective function to be maximized. Unless

det(") = 0, in which case the constraint cannot be satis�ed and

hence G 9 = 0 must follow, G 9 will be set to 1 and F 9G 9 will count

towards the objective function.
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u2

Det = 1Det = 1

Det = -1Det = 1

Det = -1

" 

= �0 = �1

Fig. 3. Modifiers u<m’> illustrated for the relaxed (0,<, B )-net constraint
in 2 dimensions, base 2, and for 24 samples: u0 corresponds to a stratification
test enforcing one sample per

(
1
4 × 1

4

)
strata, u4 amounts to a complete

(0,<, 2)-net check, and u2 leads to intermediate constraints. Such prop-
erties can be assessed by checking the determinant of the " matrices:
2 rows from �0 and �1 (u0), 1 row from �0, three from �1 and conversly
(u2), or the full �0 and �1 matrices (u4). The strata depicted in the unit
squares on the right are the elementary intervals underlying the displayed
(0, 4, 2)-net.

In summary, we implement matrix construction as a greedy algo-

rithm that iterates over< and digit by digit determines the columns

of all �8 by solving the set of linear constraints derived in Equa-

tions (6) and (7) while maximizing a target objective function that

is the weighted sum of satis�ed weak constraints (see Figure 4). As

solving this problem remains NP-hard, we rely on e�cient heuris-

tics as implemented in the CPLEX [IBM 2022] library in order to

�nd instances that satisfy the constraints.

With our greedy approach it may happen, especially for restrictive

sets of constraints, that choices made for a previous column may

render �nding the next column unsatis�able. To tackle this issue we

add a backtracking feature that when faced with an unsatis�able

set of constraints drops the most recently added column and tries

again with di�erent choices. When this strategy fails again, the

algorithm starts from scratch with empty matrices. This behavior

can be observed in the timings of the mixed pro�le in Figure 5.

If even after backtracking the linear integer programs remain

infeasible, our algorithmwill signal that the chosen set of constraints

does not admit a solution. In this case, the user needs to consider a

higher prime base or turning some of the hard constraints into weak

ones. We also provide a timeout parameter that limits the maximum

time spent on maximizing the number of satis�ed weak constraints.

Uniformity beyond Generator Matrices. Up to this point both con-

straints and solver are deterministic. In order to optimize with re-

spect to uniformity metrics that cannot be expressed by generator

matrices alone, we extend the objective function by a stochastic

-

.
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.
.
.
.
.

.
.
.

.
.
.

.
.
.

Maximize Stochastic regularization
∑
F9G 9

such that
H
ard
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n
strain

ts
W
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n
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ts
R
an
g
es

0 < det(" ) − :p < p

G 9 ≤ det(" ) − :p < p

0 ≤ G 9 ≤ 1

0 ≤ 28
;,<+1

< p

Fig. 4. Anatomy of an Integer Linear Program (ILP): To grow the matri-
ces�8 according to Theorem 5.2, the values of the 28

;,<+1
in the last column

of their respective �′
8 are determined by solving an ILP, which consists

of an objective function to maximize subject to a set of constraints. The
range constraints enforce that 28

;,<+1
∈ {0, . . . , p − 1} and the hard unifor-

mity constraints enforce a non-zero determinant to guarantee the design
constraints of stratification, net, and sequence properties as introduced in
Section 4. Remember that matrices " are constructed from first rows of
the�′

8 matrices and hence include some of the 28
;,<+1

. Indicated by G 9 = 1,

a satisfied weak constraint adds its weight F9 to the objective function.
Otherwise, a zero determinant comes along with G 9 = 0. The stochastic
regularization term is detailed in Equation (9).

regularization term:

max
28
;,<+1

,G 9

+∑
9=1

F 9G 9 −

(
min
9∈1..+

F 9

)
·

∑B−1
8=0

∑<+1
;=1

���28
;,<+1

− A 8
;

���
B ·< · (p − 1)

(9)

Besides maximizing the objective function by satisfying a maximum

number of the + weak constraints, we generate random numbers

A 8
;
∈ {0, . . . , p − 1} and subtract the normalized ℓ1-distance between

them and the matrix elements of the new columns. The normaliza-

tion accounts for the maximum distance, which is the product of the

largest possible number p− 1 and the number B ·< of variables to be

determined by Theorem 5.2. In order not to override the weak con-

straints, the normalized di�erence is scaled by the smallest weight

of the weak constraints. As a result, the solution of the ILP will be as

close as possible to the random choice A 8
;
, which allows us to sample

a large diversity of solutions satisfying all strong constraints, while

optimizing the weak ones.

Given such a set of solutions, any application speci�c selection

may be exercised. Options are uniformity metrics that cannot be

expressed as generator matrix properties such as maximized mini-

mum distance [Grünschloß et al. 2008], spectral analysis [Pilleboue

et al. 2015], or Optimal Transport [Paulin et al. 2020].

For the example of our rendering application in Section 7.1, we

generate 64 sets of matrices and select the best candidate with re-

spect to lowest !2 discrepancy. Usually, the quality of the generated

matrices exposes low variance as can be seen Figure 6-top.

6 THE MATBUILDER SOLVER

The input to the MatBuilder program is a text �le that speci�es the

constraints imposed on the desired point set as introduced in the
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next section. The solver returns the B generator matrices�8 ∈ F
<×<
p

that are used to generate up to p< samples in [0, 1)B according

to Equation (2). The performance of the algorithm is explored in

Section 6.2.

6.1 Constraint Specification Language

The header of the constraint text �le speci�es the dimension B , the

�nite �eld Fp, and the number of uniformly distributed points p<

to generate:

s=<dimension s of point set >

p=<base p>

m=<matrix dimension m>

Hard constraints on selected dimensions are added using the key-

words

net <i_1 > <i_2 > ... <i_s '> #(0,m,s')-net constraint

where the dimension B′ amounts to the number of dimensions enu-

merated after the keyword and

stratified <i_1 > <i_2 > ... <i_s '>

By default, the net and stratified constraints are enforced for

submatrices, i.e. all<′
< <, which allows for progressive sampling

with the selected constraints guaranteed. As for example, it does

not make sense to check the strati�cation for less than p2 points in

dimension B = 2, using the from and to keywords, constraints can

be restricted to sample indices between p<1 and p<2 :

from <m_1 > to <m_2 > net <i_1 > <i_2 > ... <i_s '>

from <m'> stratified <i_1 > <i_2 > ... <i_s '>

We have added a modi�er to the net keyword, denoted u<m’>

for 0 ≤ <′
< < to de�ne relaxed versions of the net property:

we only keep constraints that rely on an " matrix (see design

constraint 2) with a maximum di�erence of<′ between the number

of rows taken from the�8 . This way u0 corresponds to the Property

A of [Sobol’ 1967] (contiguous blocks of pB samples are strati�ed),

u1 corresponds to design constraint 1, u<m> would correspond to

the original net constraint (see Figure 3). This modi�er allows for

a control of both the positively correlated uniformity strength and

computational cost of the problem. The e�ciency of di�erent values

<′ with respect to discrepancy is shown in Figure 6.

When hard constraints cannot be satis�ed, the weak keyword

allows one to attach a weight resulting in a weak constraint:

weak <w> from <m_1 > to <m_2 > net <i_1 > <i_2 > ... <i_s '>

weak <w> from <m'> stratified <i_1 > <i_2 > ... <i_s '>

6.2 Numerical Evidence

To evaluate the performances of the MatBuilder program, we con-

sider several generic scenarios: �rst, a low discrepancy sequence in

base 3 with up to 310 samples in dimension 8, with as low discrep-

ancy as possible for the full dimension (net):

#Generic -full -space -LDS

s=8

p=3

m=10

weak 1 net 0 1 2 3 4 5 6 7

Solutions to this pro�le will be as close as possible to (0, 8)-

sequences up to 310 samples (note that exact (0, B)−sequences do

not exist for B > p in base p [Niederreiter 1992]).

Second, we consider a perfect projective pro�le in dimension 6,

where each consecutive pair of dimensions is a (0, 2)−sequences up

to 310 in base 3, and all remaining pairs must be as close as possible

to a generalized strati�cation (see Figure 7 for a comparison to the

Sobol’ sequence, and the net obtained by LatNetBuilder [L’Ecuyer

and Munger 2016], when optimizing the same pairs of projection):

#Generic -proj -LDS

s=6

p=3

m=10

net 0 1

net 1 2

net 2 3

net 3 4

net 4 5

weak 1 net 0 2

weak 1 net 0 3

weak 1 net 0 4

weak 1 net 0 5

weak 1 net 1 3

weak 1 net 1 4

weak 1 net 1 5

weak 1 net 2 4

weak 1 net 2 5

weak 1 net 3 5

Third, we take a look at an Orthogonal Array pro�le in dimension

9: we search for a sequential sampler in base 3 with OA strength 3

(each triplet of dimension are strati�ed starting from 33 samples),

and a �nal weak strati�cation constraint in 9 dimensions:

#Generic -OA

s=9

p=3

m=10

from 3 stratified 0 1 2

from 3 stratified 1 2 3

from 3 stratified 2 3 4

from 3 stratified 3 4 5

from 3 stratified 4 5 6

from 3 stratified 5 6 7

from 3 stratified 6 7 8

from 5 weak 1 stratified 0 1 2 3 4 5 6 7 8

Finally, a more complex scenario combines stratified and net

properties in dimension 10 for p = 3:

#Mixed

s=10

p=3

m=10

net 0 1

net 1 2

net 2 3

net 3 4

net 4 5

from 3 stratified 0 1 2

from 4 stratified 1 2 3
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from 3 stratified 2 3 4

from 4 stratified 3 4 5

from 4 to 6 stratified 0 1 2 3 4

from 4 to 6 stratified 1 2 3 4 5

In Figure 5, we evaluate the performance of the solver for all

pro�les as < increases (2 x Intel(R) Xeon(R) CPU E5-2650 v2 @

2.60GHz, 32 cores, 64Gbmemory, the solver has been given a timeout

of 120 seconds per solution). In less than 13 minutes, the solver

outputs the generator matrices for all pro�les. Note that for the

mixed problem, the solver has to backtrack many times for< ≤ 4

before being able to complete the matrices. For the generic-OA and

the mixed pro�les, the largest the integer linear programs to solve

has 321 rows, 371 columns, and 1426 nonzero entries (resp. 117×228

with 713 nonzero entries), which is a relatively small problem. The

generic-full-space-LDS pro�le induces larger problems as <

increases (see Figure 5). The problem size is not strictly monotonous

in<, but increases with the matrix size. For this pro�le, 12871 out of

19448 weak constraints have been satis�ed. For the generic-OA, all

weak constraints (9/9) have been satis�ed. Note that once matrices

have been produced our sampler performs with the same e�ciency

as Halton or Sobol’ sequences as they rely on the same kind of

matrix vector multiplication.

To evaluate the quality of the MatBuilder outputs, we compare

the samples generated by the generic-LDS pro�le to a random uni-

form sampler and a Sobol’ sampler [Sobol’ 1967] in base 2, using

the !2 discrepancy. We have considered 64 realizations of the sam-

plers, i.e. 64 runs of the solver for the generic-full-space-LDS

pro�le). As illustrated in Figure 6-(top), we generate samples with a

discrepancy comparable to the classic Sobol’ sequence with Owen

scrambling, while preserving the (0, 2)−sequence property on each

pair of dimensions (contrary to Sobol’). Note that our solver gen-

erates randomized solutions with very low variance with respect

to the !2 discrepancy. In Figure 6-(bottom), we evaluate the impact

of the u<m’> modi�er on the net property: we have considered in-

creasing modi�er values {u0, u1, u2, u3, u4, u5, u6 ,u7} and evaluate

the associated discrepancy. When relaxing the constraints using

a u<m’> modi�er, problems are easier to solve (see the timings in

Figure 5), but it comes with a trade-o� between the e�ciency and

the quality of the produced generator matrices.

In the supplementary material (Section 1), we further eval-

uate the impact of timeout constraints and overall quality of the

matrices. We also experiment with various prime bases for the

Generic-full-space-LDS pro�le showing both the e�ciency of

the solver and the uniformity quality of the samples (Section 2).

7 APPLICATIONS

We demonstrate the advantages of samplers generated from appli-

cation speci�c constraints to master uniformity over projections for

path tracing, texture exploration, and optimal control.

7.1 Path Tracing

In rendering, the path space exposes a clear nested structure: each

high-dimensional light transport path is built from low-dimensional

events: sampling a pixel footprint (2D), sampling the lens aperture

(2D), sampling the time (1D), sampling a point on a light source
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Fig. 5. Performance: On the top we show the timings of the MatBuilder
solver as a function of thematrix size<. For the mixed profile, the plots show
several backtracks for small< before being able to expand the matrices
(u4 and u7 have the same timings). At the bo�om, the size of the reduced
integer linear programs are shown during execution (number of rows and
number of nonzero entries) for the generic-full-space-LDS profile (most
di�icult one in our tests). For this profile, up to 60 calls to the internal integer
linear program simplification procedure have been performed.

(3D, usually 1D to select a light source and another 2D to sample

a point on this light source), sampling a direction scattered from a

material (3D, usually 1D to select a layer and another 2D to sample

a direction from this layer), and so on. Previous work [Kollig and

Keller 2002; Schlick 1991] has composited high-dimensional path

space samples from low-dimensional samplers connected by some

form of randomization.

We design a path-tracing pro�le PT-Profile to leverage perfect

low dimensional strati�cation and good strati�cation over increas-

ing dimensions to replicate the path space structure:

#PT-Profile

p=3

s=6

m=12

net 0 1

net 1 2

net 2 3

net 3 4

net 4 5

weak 1 net u4 0 1 2
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Fig. 6. Discrepancy test for the generic-full-space-LDS profile: At
the top, we compare the generalized !2 discrepancy the solver outputs to
the Sobol’ sampler in base 2 as well as random sampling, ji�ered sampling,
a Rank-1 la�ice [Keller 2004] with generators obtained from [L’Ecuyer and
Munger 2016], and Orthogonal Arrays (CMJND) [Jarosz et al. 2019]. At the
bo�om, we evaluate the impact of the u<m’> modifiers on the discrepancy:
the higher u, the be�er the discrepancy as compared to Sobol’, of course at
the cost of higher timings, see Figure 5).

weak 1 net u4 1 2 3

weak 1 net u4 2 3 4

weak 1 net u4 3 4 5

weak 1 net u2 0 1 2 3

weak 1 net u2 1 2 3 4

weak 1 net u2 2 3 4 5

weak 1 net u2 0 1 2 3 4

weak 1 net u2 1 2 3 4 5

weak 1 net u4 0 1 2 3 4 5

We compare our pro�le to a commonly used randomization of

Sobol’01 (ZeroTwo [Pharr et al. 2016]) with perfect 2D dyadic strati�-

cation, to the Sobol’ sequence with Owen scrambling, and Cascaded

Sobol’ points [Paulin et al. 2021]. PT-Profileworks well for smooth

components such as depth of �eld, motion blur, and direct lighting

as showcased in Figure 8. A base ? = 3 sampler behaves di�erently

when selecting 2 light sources or 3, as an odd number of samples

cannot be split equally into two. These di�erences are further illus-

trated in the �rst three rows of the same Figure 8 with 2, 3, and 5

light sources. Two light sources have bene�t from common base 2

samplers, whereas 5 light sources are a more di�cult case for all

samplers. The last row depicts a more typical scene setup with 3

light sources.

The performance of the samplers generated by MatBuilder is

quite remarkable: It widely matches and outperforms the classic

constructions, although it is automatically generated by constraints

only.

Correlating the base with the number of light sources leads to

an interesting improvement in quality as shown in �gure 8. This

stems from the fact that the partitioning of points that happens

when selecting a light source happens along the border of strata

from the net property and thus guarantees the high uniformity of

samples used on each di�erent light source. When there is no way

to reach such a correlation, the remedy is to use one area sampler

per light source in combination with one sampler constraint to the

paths [Kollig and Keller 2002].

The supplementary material includes many more renderings

and more comparisons.

7.2 Exploring Parametric Materials

In this scenario, the objective is to sample the space of a parametric

material with explicit correlation between some parameters. This is

an initial step in (semi-)procedural texture exploration or texture

space analysis [Guehl et al. 2020; Lasram et al. 2012a,b]. As an

example, we consider a procedural texture with seven dimensions

to de�ne brick pattern, window brace, and lintel. The structure of

the parameters leads to the following pro�le:

s=7

p=2

m=5

# (Brick -Amount -X, Brick -Amount -Y)

net 0 1

# (Window -Brace -Amount -X, Window -Brace -Width -X,

# Window -Brace -Amount -Y, Window -Brace -Width -Y)

weak 1 net 3 4 5 6

# Overall uniformity , including Brick -Lintel -Width

weak 2 net 0 1 2 3 4 5 6

The constraints ensure the (0,<, 2)-net strati�cation of the �rst

pair of dimensions, a weak 4-dimensional net property of the last

four dimensions, and an overall net property across all seven dimen-

sions. Figure 9 illustrates the �rst 16 realizations as compared to a

uniform random sampling of each parameter, exhibiting a more uni-

form exploration of the parameter space. For this pro�le, matrices

are generated in 3.7 seconds by our MatBuilder software.

7.3 Optimal Control

Reinforcement learning can be used to control a robot, a virtual

character, or a dynamic system. This amounts to discretizing the

states of the system as well as possible actions applied to it, de�ning

a reward for achieving particular states, and iteratively solving

Bellman equation through value iterations. This results in a value

function and optimal control policy at each state, which can then be

interpolated during the simulation in real-time to control the system.

We apply the technique described by Coros et al. [2009] to control a

simple inverted pendulum on a chart to reach an upward orientation,

a speci�c position, and a near zero velocity and angular velocity.

The state space is 4-dimensional (position G , velocity ¤G , angle \ ,
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(d) discrepancy of 2D projections

Fig. 7. Projective LDS profile: (0) Projection of the first 2048 Sobol’ samples in dimension 6; (1 ) projections obtained from optimized LatNetBuilder

matrices using a projective profile (see Appendix B); (2 ) the first 37 = 2187 samples for the matrices obtained with the generic-proj-LDS profile exhibiting
be�er uniformity in the 2D projections. In (3 ) , we quantify our benefit through a 2D discrepancy comparison for all projections. The lower is discrepancy, the
be�er is uniformity.

and angular velocity ¤\ ), and the action space is 1-dimensional (a

horizontal force D). The action space is uniformly discretized. We

compare state-of-the-art samplings of the state space with samples

created by MatBuilder with the following pro�le that seeks 4-d

uniformity:

s=4

p=3

m=17

# particular stratifications were skipped due to

# lack of solutions

from 3 to 5 stratified 0 1 2 3

from 7 to 9 stratified 0 1 2 3

from 11 to 13 stratified 0 1 2 3

from 15 stratified 0 1 2 3

weak 1 net 0 1 2 3

The state-of-the-art samplers we experimented with are random

sampling, a Sobol’ sequence [Joe and Kuo 2008; Sobol’ 1967], and

a rank-1 lattice produced by LatNetBuilder [L’Ecuyer and Munger

2016]. In all cases, we bias these samples so that they follow the

same Gaussian distribution around the target state and get a �ner

discretization near the solution. In practice, we used the inverse

cumulative density function of the Gaussian distribution to generate

312 = 531, 441 samples (or 219 = 524, 288 for Sobol in base 2), plus an

additional sample placed at the exact desired state. To compare these

discretizations, we simulate 200 trajectories for 2000 time steps each

and compute the average number of time steps U the pendulum is

within an area of non-zero reward (i.e., within the area considered

as success), the number of trajectories V which succeed at least in

one time step to get a non-zero reward, and the average value W of

the value function (higher values mean that more time is spent near

the desired state). For all these metrics, higher values indicate better

behavior. For our strati�ed sampling, U = 170, V = 200 and W = 530

(the reward for achieving success is 1000, and the maximum value

of the optimized value function is near 2500). For 200 trajectories

with a single realization of a random sampling, U = 12, V = 141 and

W = 349. For this setup, the Sobol’ sequence yields U = 7, V = 44, and

W = 611while the rank-1 lattice yields U = 1, V = 20,W = 189. For 200

trajectories consisting in one (di�erent) trajectory for 200 random

sampling realizations, U = 30, V = 121 and W = 594. Figure 10 shows

a (G, \ ) slice of 3369 samples of our 312 samples within a small ( ¤G, ¤\ )

interval, as well as 3 representative trajectories. Clearly, the sampler

generated by MatBuilder excels.

8 DISCUSSION AND PERSPECTIVES

Our algorithm is greedy with respect to the size of matrices and

uniformity properties consider whole matrix rows at a time (and

not just the last column). Consequently, some solution may be ex-

ponentially hard to �nd as they may require a speci�c succession

of choices among a wide set of locally satisfactory ones. It is inter-

esting to search for a solution generating lines of a matrix at a time.

Furthermore, rather than using a greedy algorithm iterating integer

linear programs, one may opt for an algorithm generating matrices

one at a time through a non-linear integer program solver, which

may work better in this aspect.

The design of the objective function of our integer linear pro-

grams implies a relatively small control over the way how weak

sub-properties of net constraints are distributed. The solver may

�nd the most optimal solution to be satisfying many of the con-

straints for a single group of dimensions while leaving a pair of

dimensions entirely correlated. In perspective, this may be solved

using a non-linear convex objective that is only be slightly slower

to solve.

In our paper we only deal with prime Galois �elds, since it relies

on modular arithmetic that can easily be translated into linear con-

straints in N0. This technique cannot be performed for powers of

prime bases as they de�ne a speci�c set of arithmetic operators. To

extend prime Galois �elds to power bases would require a solver

that is able to process addition and multiplication tables speci�c to

the individual Galois �elds over prime power bases.

In our rendering section we discuss the fact that the base of the

generator matrices sometimes have a huge impact on the quality of

integration. The reason for this is that our selectors split the point

set at separations of strata considered by the net property and we
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Fig. 8. Rendering results: In 6 dimensions, the dimensions are used to sample the lens (2D), the time (1D), and the light sources (3D). For light sources, the
first dimension is used to select a light source (2, 3, or 5 light sources for rows 1, 2, and 3), the remaining 2D coordinates sample a point in the selected light
quad. In 8 dimensions, we sample the pixel (2D), the direct lighting (3D) and the indirect lighting (3D). For sampling indirect bounce directions, the first
dimension is used to select a material component, and the remaining 2D coordinates importance sample a direction. The first column shows the ground-truth
images, the second one a per pixel labelling according to the sampler (Random, ZeroTwo, Sobol’, Cascaded, and our PT-Profile) with lowest error at 243spp
for our sampler in base 3 or 256spp for others. Finally the last column presents the mean squared error (MSE) for various sample counts.
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Fig. 9. Exploring parametric texture space: the first 16 realizations of the parameter space sampling using a random sampling strategy (first row) and using
samples constraint such that the space of variations is explored more uniformly in accordance with the structure of parameters of the texture description
(second row). In this example, we can see that the brick pa�ern is more uniformly sampled using our approach, the Brick-Lintel-Width is sequentially
sampled in a low-discrepancy manner (values between adjacent instances are maximized). For the window brace, all possible variations in 4D are more
captured using our profile (parametric material courtesy Adobe Substance 3D Asset).
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Fig. 10. Optimal control: We perform value iterations to solve the Bellman equation for the problem of balancing an inverted pendulum on a chart, upward,
centered, with low velocity (le�). We discretize the 4-dimensional state space (position G , velocity ¤G , angle \ , and angular velocity ¤\ ) and give rewards only
for vertical positions (rectangle in light gray). We display a 2-d slice (G, \ ) for values of ( ¤G, ¤\ ) near the target state and three sample trajectories; the value
function is color coded on each sample. Middle: We use a random discretization, biased towards the target (see Section 7.3). Right: We use a stratified
sampling generated with MatBuilder, using the same bias. The space is explored much more uniformly.

thus guarantee that the points sampling each light source have an

optimal distribution. That is true for selectors that split points in

a power of p subsets of equal size. We indicated a solution of how

more attention could be given as to how to use that fact to improve

rendering.

It is noteworthy that the results achieved by the novel constraint-

based approach already are competitive or outperform classic con-

structions of low-discrepancy sequences while providing improved

sampling uniformity over projections. We are con�dent that the

evolving the constraint-based approach will allow for more explo-

ration and novel approaches to low-discrepancy sequences in the

future.

9 CONCLUSION

Highly uniform point sets can be tailored speci�c to the structure of

an application as a set of constraints that can be transformed into

an integer linear program. Solving such an integer linear program

yields a construction for samples that in speci�c applications have

been demonstrated to outperform classic constructions. We hence

introduced a new and powerful way for the computer-aided design

of generator matrices for digital nets and sequences.
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A PROOF OF THEOREM 5.1

Proof. Owen scrambling [Owen 1998] is a randomization tech-

nique that does not alter the structure of the elementary intervals

and hence preserves all properties of a digital net. To do so, it applies

a bijective function 510,...,18−1 : Fp → Fp to digit 18 of the vector

1 in Equation (1). Given factors F8, 9 ∈ Fp, bijective functions of

the form 510,...,18−1 (18 ) =
∑8−1
9=0F8, 91 9 + 18 are a realization of Owen

scrambling.

Let � be the generator matrix of size < that generated 1 and

denote its rows by �8 . Row �8 encodes the digit 18 . Hence one

realization of Owen scrambling is the application of the function

5�0,...,�8−1 (�
8 ) =

∑8−1
9=0F8, 9�

9 +�8 that acts on rows the same way

as 510,...,18−1 acts on digits.

We apply < such linear functions to each row of � . By de�ni-

tion, Gaussian elimination can be written as such a set of linear

transformations, de�ning the factors F8, 9 . Thus for any � we can

�nd a realization of Owen scrambling that transforms it into an

upper triangular matrix �′. Since all these functions 5 are bijective,

their inverse de�nes one realization of an Owen scrambling that

transforms �′ into � .

It follows that all nets generated by any generator matrices can

also be generated by upper triangular matrices with an additional

scrambling step in the sense of Owen. It is therefore su�cient to

only consider triangular matrices. □

B LATNETBUILDER PROJECTIVE PROFILE

For Figure 7, we have used the following con�guration for LatNet-

Builder to generate optimized matrices:

latnetbuilder -o projnet --set -type net \

--construction explicit -s 2^16 \

--dimension 6 --norm -type 1 \

--exploration -method random -CBC :100000 \

--figure -of-merit projdep:t-value \

--weights order -dependent :0:1,1 \

--multilevel true --combiner sum
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