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In this supplementary material, Section 1 details our sampler and demonstrate its properties. We first define useful concepts: (q1, ...,qs)-
equidistributed sets (which are the basis for (t,k,s)-nets) and the relationship between equidistribution and discrepancy (Section 1.1). We also
present the Sobol sequence (since our sampler relies on its properties), and look at the binary representation of points. Once those concepts
are detailed, we define the notations used in this document and present our sampler in finer details (Section 1.2). Finally, from this fine
understanding of our method, we demonstrate that our 2-D permutation preserves the equidistribution of the samples in Lemmas 2 , 3 and 4
(Section 1.3). Section 2 details theoretical rationale behind the LD perserving set of admissible permutations Π. Then, Section 3.2 compares
classical Owen’s scrambling to our minor modification of it (to create a hierarchical Owen’s scrambling). Finally, Section 4 presents our
adaptivity, and Section 5 presents the pseudo code for direct generation of the ith sample.
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s the number of dimensions
K the subdivision factor
λ the level of subdivision
x a s-D point
xd the dth coordinate of x
xi

d the ith bit in binary representation of the xd

T λ
r A tile at a level λ and with corner r

Sλ := {{so(i)}λ
r} A set of first Ksλ Sobol samples, indexed from 0 to Ksλ−1

{so}λ
r The set of Sobol samples in the tile T λ

r
Pλ The permuted set obtained from Sλ

Vλ The set of all the shift vectors
Qλ the union of all the sets obtained by shifting

Table 1: Notations. Note that contrary to the notations used in the paper, the tiles are here indiced using the coordinate of their lower corner
instead of the index of the tile in the set of tiles at level λ.

1. Low discrepancy properties of our scrambling

1.1. Preliminaries

1.1.1. Equidistribution

We start by defining what it means for a set of samples to be a (t,k,s)-net in base b. and a (t,s)-sequence in base b.

Definition 1 (Lemieux, p156) A set of bk samples is said to be (q1, ...,qs)-equidistributed if for q =
s
∑

i=1
qi, 0≤ q≤ k, the series of elementary

intervals J q1,...,qs with

J q1,...,qs :=
s

∏
i=1

[
ri

bqi
,

ri +1
bqi

)
,

for 0≤ ri < bqi contain bk−q−t samples.

An example of such intervals is given in Figure 1.

q1 = 0,q2 = 4 q1 = 1,q2 = 3 q1 = 2,q2 = 2

q1 = 3,q2 = 1 q1 = 4,q2 = 0

Figure 1: This set is a (t,k,s)-net in base b, with t = 0,k = 4,s = 2, and b = 2. It contains 24 = 16 samples. If we list all the possible
elementary intervals J q1,q2 for q1 +q2 = k, each of them contains 2k−q = 20 samples.

We note that if a set is (q1, . . . ,qs)-equidistributed, each elementary interval J q1,...,qs contains bk−q−t samples and each J q1,...,qs interval

is of area
(

1
bq

)s
.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



H. Perrier et al. / Sequences with Low-Discrepancy Blue-Noise 2-D Projections

We now take a set (q1, . . . ,qs)-equidistributed, with q′ = ∑
s
i=1 q′i and q′ > q. The new J q′1,...,q

′
s are of size ( 1

bq′ )
s and(

1
bq′

)s

=

(
1

bq+(q′−q)

)s

=

(
1
bq

1
bq′−q

)s

=

(
1
bq

)s( 1
bq′−q

)s

This means that each intervalJ q′1,...,q
′
s covers bq′−qs

intervalsJ q1,...,qs . Therefore, eachJ q′1,...,q
′
s contains bk−q−t ·bq′−q = bk−q′−t , meaning

that if a set is (q1, . . . ,qs)-equidistributed for q, it is also (q′1, ...,q
′
s)-equidistributed for ∀q′ > q. This leads to the following property

Property 1 If a point set is (q1, . . . ,qs)-equidistributed in base b for q = ∑
s
i=1 qi and q < q′, then it is also (q′1, . . . ,q

′
s)-equidistributed in base

b.

This is illustrated Figure 2

Definition 2 (Lemieux, p156) A point set P with bk samples is a (t,k,s)-net iff it is (q1, . . . ,qs)-equidistributed in base b whenever q≤ k− t.

Definition 3 (Lemieux, p156) A point set P with bk samples is a (t,s)-sequence iff within each b-ary segment of the form xlbk , . . . ,x(l+1)bk−1
with k ≥ t and l ≥ 0 is a (t,k,s)-net in base b.

If a sequence is a (t,s)-sequence, it is a low discrepancy sequence ([Nie88], Eq 3, p 53).

Here, our scrambling applies on sets and therefore cannot be qualified as a low discrepancy sequence using this definition. However, this
illustrates the correlation between the discrepancy of a point set and the fact that it is a (t,k,s)-net.

1.1.2. Binary representation

Understanding what is a (t,k,s)-net is necessary to understand the Lemmas 3 and 2. However, another requirement is to understand the binary
representation of points in [0,1)s.

Any s-D sample x ∈ [0,1)s can be expressed as (x1,x2, . . . ,xs) with

xd =
∞
∑
i=1

xi
d2−1−i

xd = .x1
dx2

dx3
d . . .

where xi
d is the ith bit of xd .

Note that the samples are defined in [0,1)s, therefore, x1
d is the most significant bit, meaning x1

d corresponds to 0.5, x2
d to 0.25, . . .

1.1.3. Sobol Sequence

The Sobol sequence [Sob67] is a (t,s)-sequence in base 2, created by performing bitwise operation on samples. More precisely, it generates
samples from a set of s generative matrices G1,G2, . . . ,G

s, one for each dimension.

To generate the nth sample, we create the vector a = (a0,a1, . . . ,aN) with ai the ith bit of n and N = dlog2(n)e. We can then compute the
matrix-vector products between a and each Gd in F2. If we denote so(n) the nth sample of the Sobol sequence,

so = (a⊗G1, . . . ,a⊗Gs).

Since the generative matrices Gd are created from primitive polynomials in F2, the Sobol sequence is a (t,s)-sequence with

t =
s

∑
d=1

(nd−1)

where nd is the degree of the primitive polynomial for the dimension d [Lem09].

By definition of the Sobol sequence, our set Sλ (defined in the paper as the set containing the first Ks(λ+1) samples of the sobol sequence
with K := 2n, see below), is a (t,ns(λ+1),s)-net in base b = 2. Since Sobol is a (t,k,s)-net in base b = 2, it is equidistributed for all intervals
of size [ 1

2q1 , . . . ,
1

2qs ] with q1 + . . .+qs ≤ k.

We note that the family of all intervals of size
(

1
2nsq′1
× . . .× 1

2nsq′s

)
is a subset of the family of intervals that are equidistributed for Sobol,

with qi = nsq′i . Therefore
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q0 +q1 = 4, 24−4 = 1 sample per box

q1 = 0,q2 = 4 q1 = 1,q2 = 3 q1 = 2,q2 = 2 q1 = 3,q2 = 1

q1 = 4,q2 = 0

q0 +q1 = 3, 24−3 = 2 samples per box

q1 = 3,q2 = 0 q1 = 2,q2 = 1 q1 = 1,q2 = 2 q1 = 0,q2 = 3

q0 +q1 = 2, 24−2 = 4 samples per box

q1 = 2,q2 = 0 q1 = 1,q2 = 1 q1 = 0,q2 = 2

q0 +q1 = 1, 24−1 = 8 samples per box

q1 = 2,q2 = 0 q1 = 0,q2 = 1

q0 +q1 = 0, 24−0 = 16 samples per box

q1 = 0,q2 = 0

Figure 2: This set is a (t,k,s)-net in base b, with t = 0,k = 4,s = 2, and b = 2. It contains 24 = 16 samples. It can be seen that all intervals
such that q1 +q2 < 4 are a union of intervals where q1 +q2 = 4.
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Lemma 1 ∀λ ∈ N, if Sλ is a (t,ns(λ+1),s)-net in base b = 2, Sλ is a ( t
ns ,λ+1,s)-net in base Ks, with K := 2n.

1.1.4. Domain subdivision

Our scrambling considers a regular subdivision of the domain [0,1)s with a subdivision factor K := 2n, with n ∈ N∗. We denote λ the level
of subdivision of the domain (Fig 3).

K = 2,λ = 0 K = 2,λ = 1 K = 2,λ = 2

Figure 3: We subdivide the domain [0,1)s while increasing λ

This subdivision leads to square tiles. Each time we subdivide the domain, we subdivide the tiles at level λ by the factor K, creating new

tiles at level λ+1. A tile T λ
r is an s-D interval of space defined at a level λ spanning over

[
rd
Kλ

, rd+1
Kλ

)s
. The union of all the tiles at a level λ

forms a partition of the domain [0,1)s (Fig 4).

T λ
r{1

Kλ

r

Figure 4: λ = 2,K = 2,s = 2. Each interval T λ
r will contain Ks samples.

To sample the domain subdivided at a level λ, we will generate the first Ks(λ+1) = 2ns(λ+1) samples from the Sobol sequence [Sob67] (Fig
5).

By definition of the Sobol sequence, Sλ is a (t,k,s)-net in base b = 2. Since Sλ contains 2ns(λ+1) samples, we have bk = 2ns(λ+1) and
therefore Sλ is a (t,ns(λ+1),s)-net in base b = 2.

From Lemma 1, we have that if the t value for the Sobol sequence verifies t ≤ ns, we are guaranteed to have Ks samples inside each tile
T λ

r . Note that if t > ns, we can still have Ks samples in each tile, there is just no guarantee for it. In our paper, we use pairs of indices for the
Sobol sequences that do not ensure t > ns but that where found valid empirically.

T 0
r {

T 1
r { T 2

r {
S0, 4 samples S1, 16 samples S2, 64 samples

Figure 5: s = 2,K = 2. Generating the first Ks(λ+1) samples of the Sobol sequence with t = 0 fills each tile T λ
r with Ks samples.
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We now define {so}λ
r := Sλ ∩T λ

r the set of samples from Sλ that belong to the tile T λ
r . We also define {so}λ0,λ1

r := Sλ0 ∩T λ1
r the set of

sample from Sλ0 that belong to the tile T λ1
r (see Figure 6).

Sλ−1

T λ−1
r {

r
{so}λ−1,λ

r

T λ
r {

Sλ

T λ
r {

r
{so}λ

r

T λ
r {

Figure 6: s = 2,K = 2,λ = 2. {so}λ
r is the intersection between Sλ and the tile T λ

r . Similarly, {so}λ−1,λ
r is the intersection between Sλ−1

and the tile T λ
r

It is important to note that since the samples of Sλ come from the Sobol sequence, they are indexed [Sob67]. We will denote so(i) the ith

sample of the sequence Sλ. A reader familiar with the Sobol sequence may note that the samples of {so}λ
r are also indexed but their indexes

i are not consecutive (Fig 7).

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

3

5

9

15r

Sλ {so}λ
r

Figure 7: s = 2,K = 2,λ = 1. Indexes of the samples in Sλ and of the samples in {so}λ
r

1.2. Our scrambling

We then permute the samples from Sλ, where Sλ is a set containing the first Ks(λ+1) samples of the Sobol sequence, to generate a new set
Pλ of samples in [0,1)s with the following properties:

• If s = 2, ∀λ, if Sλ is a (t,λ+1,s)-net in base Ks, Pλ is a (t,λ+1,s)-net in base Ks (Lemma 4).
• ∀λ, Pλ presents a user defined Fourier spectrum.
• ∀λ > 0, Pλ−1 ⊂ Pλ (otherwise P wouldn’t be a sequence), and the samples in Pλ are indexed (Lemma 5).

Our algorithm creates a set Pλ by permuting the set Sλ while taking as input the two sets, Pλ−1 and Sλ−1. Note that we define P−1 as
the point set containing a single sample so = 0, and S−1 = P−1. The sets Sλ and Sλ−1 are coming from the same specific Sobol sequence
such that Sλ is stratified ∀λ and so that Sλ−1 ⊂ Sλ

Then, our permutation is done in two steps;

c© 2018 The Author(s)
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• The first permutation, denoted Ψ, applies local digital shifts on Sλ to create a new point setQλ such that Pλ−1 ⊂Qλ.
• The second permutation, denoted Π, applies a local permutation π

λ
r on the Ks samples of each tile T λ

r of Qλ, spatially rearranging the
samples, so that the final set Pλ locally presents the targeted Fourier spectrum. We achieve this by optimizing this second permutation in
order to control the spatial organisation of samples, and therefore, their Fourier spectrum.

1.2.1. CreatingQλ from Sλ and Pλ−1

The aim of our first permutation is to create a set Qλ from Sλ, so that Pλ−1 ⊂Qλ. To achieve this, we first compute a set of vectors, such
that each vector will represent the displacement between each sample of Sλ−1 and Pλ−1. We do this by xoring each sample of Sλ−1 with its
corresponding sample in Pλ−1. Since the samples are indexed, two samples are corresponding if they have the same index. Therefore, our
new vector set, denoted Vλ−1 is also ordered, and its ith vector, denoted v(i) is formally defined as

v(i) := so(i)⊕p(i), (1)

where so(i) is the ith sample of Sλ−1 and p(i) is the ith sample of Pλ−1.

Sλ−1 is stratified with a single sample inside each tile T λ
r . Thus, each vector v(i) is associated with one and only one tile T λ

r , with
so(i) ∈ {so}λ

r . We denote vλ
r the vector v(i) associated with the tile T λ

r . We can now define formally Vλ−1 as

Vλ−1 :=
⋃
r

[
vλ

r

]
(2)

which is illustrated Figure 8.

This leads to the formal definition ofQλ as

Qλ :=
⋃
r
{{so}λ

r ⊕vλ
r} (3)

where we define the ⊕ operation between a sample X and a single vector v as X ⊕v = x(i)⊕v where x ∈ X . This is illustrated Figure 9.

0
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0

1

2

3

4

5
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7

8
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10

11

12

13

14

15 T λ
r {

Sλ−1 Pλ−1 {v(i)}

Figure 8: s = 2,K = 2,λ = 2. Each vector v(i) is made by xoring the samples so(i) ∈ Sλ−1 and p(i) ∈ Pλ−1

Sλ, Pλ−1 Vλ−1 Qλ, Pλ−1

Figure 9: s = 2,K = 2,λ = 2. The setQλ is made by xoring each samples of each set {so}λ
r with the vector vλ

r associated to the tile T λ
r

We also note that each pattern {so}λ
r is xored with a single vector to create {q}λ

r , thus, as the xor operator is net preserving [Lem09], we
have the following property forQλ

Property 2 If ∀T λ
r , N({so}λ

r ), is a (t,ns,s)-net in base 2, then ∀T λ
r , N({q}λ

r ), is a (t,ns,s)-net in base 2.

c© 2018 The Author(s)
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1.2.2. Creating Pλ fromQλ

Then, we permute the samples inside each tile T λ
r of Qλ to create Pλ. Note that there are Ks samples of Qλ inside T λ

r , denoted {q}λ
r . Each

set {q}λ
r contains a unique sample p such that p ∈ Pλ−1.

Note that each set {q}λ
r is defined in the domain of its tile. We denote N({q}λ

r ) the operation that scale this set to the domain [0,1)s, with
N−1(N({q}λ

r )) = {q}λ
r

We associate with each tile T λ
r a permutation π

λ
r , with π

λ
r ∈ Π, where the set Π contains all the permutations π

λ
r that have the following

properties

Definition 4 If N({q}λ
r ), is a (t,k,s)-net in base 2, N(πλ

r ({q}λ
r )) is also a (t,k,s)-net in base 2.

Definition 5 If p ∈ {q}λ
r and p ∈ Pλ−1, p ∈ π

λ
r ({q}λ

r ).

Definition 6 π
λ
r preserves the 1-D projections of {q}λ

r .

We can now formally define Pλ with

Pλ :=
⋃
r

N−1(Πλ
r (N({q}λ

r ))) (4)

{q}λ
r N({q}λ

r ) π
λ
r (N({q}λ

r )) {p}λ
r :=

N−1(πλ
r (N({q}λ

r )))

Figure 10: s = 2,K = 2,λ = 2. We permute each tile T λ
r from Qλ to create a new arrangement of samples within each tile with the desired

spectral properties.

An example of an admissible set Π is given in the paper, and will be redefined in Section 2.

1.3. Proofs

We will now prove that our scrambling preserves the net properties of Sλ. We will first define some notations, and then we will prove that
both Ψ and Π are (t,λ+1,2)-net preserving in base Ks. Finally, we will prove thatPλ does contain the samples ofPλ−1, identically indexed.

1.3.1. Notations

In this section we will present all the notations that we will use in the following proofs. Please note that even though our permutation is valid
in s-D, it only preserves the net properties in 2-D. Therefore all those notations consider a 2-D domain.

Each 2-D sample (x,y) in a point set X , where all the samples in X are defined on ns(λ+1) bits, and where X is a (t,λ+1,2)-net, can be
expressed in binary as

x =
ns(λ+1)

∑
i=0

xi2−1−i,

y =
ns(λ+1)

∑
i=0

yi2−1−i,

where xi is the ith bit of x and yi is the ith bit of y.

We define x|a (resp. y|a) as a binary truncating of the x (resp. y) coordinate of a sample (x,y) where

x|a =
a

∑
i=0

xi2−1−i,

c© 2018 The Author(s)
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x =
ns(λ+ 1)

x0

{

xi

{

y =
ns(λ+ 1)

y0

{

yi

{

Figure 11: Binary representation of a sample (x,y) ∈ [0,1)s

x|a =
ns(λ+ 1)

xa

{

Figure 12: Binary representation of x|a

We extend this definition to (x,y)|a, for (x,y) ∈ X in a specific way. We thus define (x,y)|a as

(x,y)|a = (x|a,y|ns(λ+1−t)−a)

This means that we truncate a total of ns(λ+1− t) bits from (x,y), truncating a bits from x and ns(λ+1− t)−a bits from y.

Finally, we define X|a as {(x,y)|a,∀(x,y) ∈ X}, meaning that X|a contains truncated samples from X .

xa

{

yns(λ+1)−a

{

(x,y)|a =

ns(λ+ 1)

{
Figure 13: Binary representation of (x,y)|a

Each elementary interval J q0 of X , is of size 1
Ksq0 , 1

Ks(λ+1−t−q0)
, with 0≤ q0 ≤ λ+1− t,

q0 +q1 = λ+1− t

⇔ q1 = λ+1− t−q0.

It can thus be encoded in binary with nsq0 bits for x and ns(λ+1− t−q0) = ns(λ+1− t)−nsq0 for y. Therefore, for all sample (x,y) ∈ X ,
their truncated version (x,y)|nsq0 is equivalent to the minimal corner of the elementary interval J nsq0 that contains it.

Following this, a point set X is a (t,k,2)-net in base Ks if each sample (x,y)|nsi is present Kst times in the set X|nsi, with 0≤ i < k− t.

(x, y)

(x
,y
)|

ns
q 0

(x, y)

(x, y)|nsq0

q0 = 0 q0 = 1

Figure 14: K = 2,n = 1. Q0 is a (0,1,s)-net in base 22 iff ∀q0 ∈ N with 0≤ q0 ≤ 1, each sample (x,y)|2∗2∗q0 ,(x,y) ∈ Q
0 appears exactly

one time inQλ|2·2·q0 .
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The direct corollary is that a permutation Π is (t,k,2)-net preserving if ∀a ∈ N,a≤ k− t,

Π(X )|a = X|a. (5)

Finally, we have one last major property, illustrated Figure 15.

Property 3 ∀(x,y) ∈ [0,1)2, if (x|a,y|a′) = (x′|a,y′|a′) then ∀b≤ a and ∀b′ ≤ a′, (x|b,y|b′) = (x′|b,y′|b′)

This property means that if we truncate the x coordinate (resp. y) of the samples of a set to a (resp. b) digits, and if this truncated set is equal
to the truncated set from another point set, then the subsets of those sets that are more truncated, with a′ < a (resp. b′ < b), are also equal.

{x|a,y|a′} {x|b,y|b′}

Figure 15: Geometric illustration of Property 3

1.3.2. The permutation Π is (t,λ+1,2) preserving in base K2

Lemma 2 For s = 2, ifQλ is a (t,λ+1,2)-net in base K2, Pλ is a (t,λ+1,2)-net in base K2.

Proof The point set Pλ is defined as Π(Qλ), where Π applies an scrambling π
λ
r over each set N({q}λ

r ) from Qλ (Equation 4). The operator
N removes the first nλ bits of the samples in {q}λ

r . Therefore, those first nλ bits will be unaffected by the permutation. We apply N−1 by
re-adding the first nλ bits of {q}λ

r .
In our particular case, π

λ
r is not any random permutation but is part of a set of admissible permutations Π (see Section 2 and Section 1.2.2 for

details). Each permutation π
λ
r ∈Π has two important properties.

First, π
λ
r preserves the net properties of N({q}λ

r ), and second, each set N({q}λ
r ) is a (t′,ns,2)- net in base 2 as it comes from the Sobol

sequence. From here, we can translate property 4 in binary as

(x|nλ+q′0 ,y|nλ+ns−t′−q′0) = Π

(
(x|nλ+q′0 ,y|nλ+ns−t′−q′0)

)
(6)

∀q′0,q
′
0 ∈ N,0≤ q′0 ≤ ns− t′,q′0 +q′1 = ns− t′⇔ q′1 = ns− t′−q′0.

Furthermore, since Π preserves the 1-D projections of samples we have for q′0 = 0,

(x|ns(λ+1),y|nλ+ns−t′−q′0) = Π

(
(x|ns(λ+1),y|nλ+ns−t′−q′0)

)
(7)

and

(x|nλ,y|ns(λ+1)) = Π

(
(x|nλ,y|ns(λ+1))

)
(8)

In 2-D, the elementary intervals in Qλ for q0 + q1 = λ + 1− t are of size 1
2nsq0 × 1

2nsq1 with q1 = λ + 1− t − q0. This means that each
elementary interval can be encoded using nsq0 bits for x and ns(λ+1− t−q0) bits for y. AsQλ is a (t,λ+1,s)-net in base Ks, each sample
(x,y)|nsq0 ,(x,y) ∈ Qλ appears exactly Kst times in Qλ|nsq0 . Therefore, ∀q0 ∈ N with 0 ≤ q0 ≤ λ+ 1− t, each sample from the set Qλ|nsq0

stands for an elementary interval.
From here, we have 3 possibilities

• Either nsq0 ≤ nλ, in which case from 3 and equation 8, we haveQλ|nsq0 = Pλ|nsq0

• Either ns(λ+1− t−q0)≤ nλ, in which case from 3 and equation 7, we also haveQλ|nsq0 = Pλ|nsq0

• Or nsq0 ≥ nλ and ns(λ+ 1− t− q0) ≥ nλ. In which case, we seek if there is a q′0 such that Qλ|nsq0 = Qλ|nλ+q′0 , meaning such that
nsq0 = nλ+q′0 and ns(λ+1− t−q0) = n(λ+ s)− t′−q′0

nsq0 = nλ+q′0
⇔q′0 = n(sq0−λ)
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then

n(λ+ s)− t′−q′0 = n(λ+ s)− t′−n(sq0−λ)

= n(λ+ s− sq0 +λ)− t′

= n(2λ+ s− sq0)− t′

= ns(λ+1− t′

ns
−q0)

which means that for t′ = nst, from equation 6 and property 3,Qλ|nsq0 = Pλ|nsq0 . Note that as t′′ is the minimal value such that N({q}λ
r )

is a (t′′,ns,2)-net, if t′′ ≤ nst, we have that N({q}λ
r ) is a (t′,ns,2) with t′ = nst.

Therefore from Eq (5), Π preserves the net properties ofQλ and thus ifQλ is a (t,λ+1,2)-net in base Ks, Π(Qλ) = Pλ is a (t,λ+1,2)-net
in base K2.

1.3.3. The permutation Ψ is (t,λ+1,2) preserving in base K2

Lemma 3 For s = 2, if Sλ is a (t,λ+1,2)-net in base K2,Qλ is a (t,λ+1,2)-net in base K2.

Proof
Qλ is a (t,λ+1,s) if ∀(x,y) ∈ Sλ and ∀(x′,y′) ∈Qλ we have

(x|nsa0 ,y|ns(λ+1−t−q0)) = (x′|nsa0 ,y
′|ns(λ+1−t−q0)), (9)

∀q0 ∈ N and 0≤ q0 ≤ λ+1.
From Eq (3), we have

Qλ :=
⋃
r
({so}λ

r ⊕vλ
r ) (10)

For simplicity, we will extend the xor operator ⊕ to indexed sets, by defining that for two indexed sets P,P′, defined at a subdivision level λ,
with p ∈ P, and p′ ∈ P′ with Card(P) =Card(P′),

P⊕P′ =
⋃

p(i)⊕p′(i)

where p(i) and p′(i) belong to the same tile T λ
r .

Furthermore, we will define the operator φ
λ

λ′ . This operator takes as input a stratified point set at a level λ
′ ≤ λ, and duplicates the vector

inside each tile T λ
′

r , in order to repeat this vector inside all the subtiles T λ
r of T λ

′
r .

More formally, we define φ
λ

λ′ so that for two ordered sets, Sλ,Sλ
′
, where Card(Sλ) = KxsCard(Sλ

′
), x ∈N, and with so ∈ Sλ, so′ ∈ Sλ−1,

Sλ⊕φ
λ(Sλ−1) =

⋃
r
({so}λ

r ⊕{so′}λ
r ) (11)

where as Sλ−1 is stratified at level λ−1, {so′}λ
r is a singleton.

This operator will let us denote easily the xoring between two point sets defined at different subdivision level (thus with different cardinalities).
From here, we can rewrite Equation 10 as

Qλ := Sλ⊕φ
λ

λ−1V
λ−1, (12)

since the set Sλ contains Ks(λ+1) samples. From Equation 2, the set Vλ−1 contains Ksλ elements, one for each tile T λ
r .

With those new definitions, we denote

π
λ−1 = Vλ−1⊕φ(Vλ−2)

, we can thus derive from Vλ−1:

π
λ−1 = Vλ−1⊕φ

λ−1
λ−2(V

λ−2)

⇔Vλ−1 = π
λ−1⊕φ

λ−1
λ−2(V

λ−2)

⇔Vλ−1 = π
λ−1⊕φ

λ−1
λ−2(π

λ−2)⊕φ
λ−1
λ−3(V

λ−3)

⇔Vλ−1 =⊕λ−1
i=0 φ

λ−1
i (πi)

with V−1 = 0.
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Therefore,Qλ is made from the set Sλ through successive ⊕ with φ(πi). From here, we derive ∀λ
′,0 < λ

′ ≤ λ,

Sλ
′−1⊕Pλ

′−1 = Vλ
′−1

⇔Sλ
′−1⊕φ

λ
′−1

λ′−2(V
λ
′−2)⊕Pλ

′−1 = Vλ
′−1⊕φ

λ
′−1

λ′−2(V
λ
′−2)

⇔Qλ
′−1⊕Pλ

′−1 = π
λ
′−1

⇔Pλ
′−1 = π

λ
′−1⊕Qλ

′−1

⇔Π(Qλ
′−1) = π

λ
′−1⊕Qλ

′−1

Therefore, xoringQλ
′

with π
λ
′

is similar to applying the permutation Π that created Pλ
′

fromQλ
′
.

From Lemma 2, if (x,y) ∈ Sλ and (x′,y′) ∈ Sλ⊕φ(πλ
′
),

(x|nsq′0 ,y|ns(λ′+1−t′−q′0)) = (x′|nsq′0 ,y
′|ns(λ′+1−t′−q′0)) (13)

Furthermore, since π
λ
′
=Qλ

′
⊕φ(Pλ

′
), when written in binary we have for p ∈ π

λ
′−1

pd =
ns(λ′+1)

∑
i=0

pi
d2−1−i

where pd is the dth coordinate of p and pi
d is the ith bit of pd . We note that ∀i > ns(λ′), pi

d = 0.
Geometrically, xoring with π

λ
′

means that we move all samples that belong to an elementary interval J q′0 to another J q′0 . However, since
all digits of p ∈ π

λ
′

are 0 when i > ns(λ′), all samples in intervals that are smaller than 1
2ns(λ′) on every dimension, meaning all samples from

intervals such that nsq0 > nsq′0 and ns(λ+1−q0)> ns(λ′+1−q′0), are preserved.

(x|nsq0 ,y|ns(λ+1−t−q0)) = (x′|nsq0 ,y
′|ns(λ+1−t−q0)) (14)

Furthermore, since we xor with 0 for every digit > ns(λ′), similarly to the previous proof, we can always reduce the size of the interval on a
single dimension, leading to the following equations

(x|nsq′0 ,y|ns(λ+1)) = (x′|nsq′0 ,y
′|ns(λ+1)) (15)

(x|ns(λ+1),y|ns(λ′+1−t′−q′0)) = (x′|ns(λ+1),y
′|ns(λ′+1−t′−q′0)) (16)

∀q0 ∈ N,0≤ q0 ≤ ns(lvl +1)−n(λ′+1).
From here we have several possibilities for q0

• q0 = q′0, then equation 13 equals equation 9.
• nsq′0 > nsq0 and ns(λ′+1− t′−q′0)> ns(λ+1− t−q0) then from property 3, equation 9 is implied by 13.
• nsq′0 < nsq0 and ns(λ′+1− t′−q′0)< ns(λ+1− t−q0) then 14 applies.
• nsq′0 > nsq0 and ns(λ′+1− t′−q′0) < ns(λ+1− t−q0) (or the opposite), equation 15 (or 16) can be used jointly with Property 3 to

imply 9

1.3.4. Pλ is a (t,λ+1,s)-net in base Ks

Lemma 4 For s = 2, if Sλ is a (t,λ+1,2)-net in base K2, Pλ is a (t,λ+1,2)-net in base K2.

Proof Pλ is made from Sλ by successively applying two permutations. First, the Ψ permutation is applied, creating a point setQλ, which is
a (t,λ+1,2)-net in base K2 from Lemma 3. Then, we create Pλ by applying Π toQλ, and as from Lemma 2, Π preserves the net properties
ofQλ, Pλ is a (t,λ+1,2)-net in base K2.

1.3.5. The samples from Pλ−1 are also into Pλ

Lemma 5 Pλ−1 ⊂ Pλ

Proof
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Since Sλ−1 is a (t,λ+ 1,s)-net in base Ks from property 1 with t < ns and both Qλ−1 and Pλ−1 are (t,λ+ 1,s)-nets in base Ks from
Lemmas 3 and 2, for t = 0, each of those sets contains one and only one sample inside each tile T λ

r .

Sλ−1 =
⋃
r
{so}λ−1,λ

r (17)

Qλ−1 =
⋃
r
{q}λ−1,λ

r (18)

Pλ−1 =
⋃
r
{p}λ−1,λ

r (19)

For the same reason, we have that Sλ contains Ks samples inside each tile T λ
r . As Sλ−1 ⊂ Sλ from [Sob67], we have that {so}λ−1,λ

r ∈ Sλ.
From Eq (3), we have

Qλ =
⋃
r
{so}λ

r ⊕vλ
r (20)

where vλ
r is a singleton defined as

vλ
r = {so}λ−1,λ

r ⊕{p}λ−1,λ
r′ (21)

with {so}λ−1,λ
r the ith sample in Sλ−1 and {p}λ−1,λ

r′ the ith sample in Pλ−1.
Therefore

{so}λ
r ⊕vλ

r = ({{so}λ
r/{so}λ−1,λ

r }⊕vλ
r )∪ ({so}λ−1,λ

r ⊕vλ
r )

= ({{so}λ
r/{so}λ−1,λ

r }⊕vλ
r )∪ ({so}λ−1,λ

r ⊕{so}λ−1,λ
r ⊕{p}λ−1,λ

r′ )

= ({{so}λ
r/{so}λ−1,λ

r }⊕vλ
r )∪ ({p}λ−1,λ

r′ )

Therefore, Pλ−1 ⊂Qλ.
Then, from equation 4 we have

Pλ :=
⋃
r

N−1(Πλ
r (N({q}λ

r ))) (22)

and by property 5, we know that Π preserves the position of the samples from Pλ−1. Therefore, is Pλ−1 ⊂Qλ, Pλ−1 ⊂ Pλ.

2. Our local permutations are admissible permutations

In this section, we demonstrate that the set of permutation {πλ
r } built by our method (See main article Section 4) is a subset of the admissible

set of permutation Π.

Lemma 6 The local permutations {πλ
r } as defined in Section 4.1 of the main article define an admissible Π.

Proof We already showed in the main article how our permutation can preserve the position of a given marked sample (constraint (i) leading
to Lemma 5). We give here more details on how we exchange the trailing bits, to demonstrate that we preserve the net properties of the initial
set and its 1-D projections.

A

B C

D

Initial set Our permutation

When we remove the trailing bits of a sample, i.e. when we quantize this sample to the corner of its elementary interval T λ
r (gray cells in

above figure), we do not change the LD net properties at level λ. We then apply Owen’s scrambling on this quantized set, which is also
net-preserving ([Owe95], Proposition 1). And finally, when we reapply the trailing bits, even if we exchange those bits between the samples,
those bits are not significant enough to take a sample out of its elementary interval. As an example, if Owen’s scrambling at level λ swaps
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rows containing A :=(x,y) and B :=(x,y), we construct the points C :=(x,y) and D :=(x,y). This exchange of trailing bits is then net-preserving,
and therefore our permutation is net-preserving.
Finally, if the initial set is a (t,k,s)-net, when we quantize it on k digits, all combinations of bits are present. Since Owen’s scrambling is
net-preserving, after scrambling, all combination of bits will still be represented. Then, simply by reapplying the trailing bits with the proper
initial bits, we are guaranteed to preserve the 1-D projections of samples.
So our set {πλ

r } is a subset of the admissible set of permutation Π.

3. Higher dimensional sampler construction

In this section, we detail the generalization of our sampler to generate sequences in higher dimension with optimized 2-D projections.

3.1. Constraints induced on the factor K

In order to have the (t,λ+ 1,2)-net in base K2 property on the optimized pair of dimensions, we need each set {so}λ
r := Sλ ∪T λ

i to be a
(t,ns,2)-net in base 2 in these dimensions (see Prop. 3). In our implementation, we have used certain combinations of primitive polynomials’
indices, found empirically. When K=4, we used for our 4 dimensions the indices (1,2) and the indices (3,7). When K=8, we used for our 6
dimensions the indices the indices (1,4), (2,3) and the indices (5,7). Note that as K increases, more and more dimensions can be optimized.

For the remaining dimensions, when the number of samples is fixed, one can use a classical Owen’s scrambling of the point coordinates
with a tree of fixed depth (please refer to [GRK12b] for efficient implementation). In our hierarchical setting when the number of points
is unknown and increases on the fly, we simulate a tree of infinite depth by iteratively expanding a tree of fixed depth. In this process, we
ensure that the expansions are consistent with previous trees (in the sense that Pλ−1 remains in Pλ) by enforcing some flags of the expanded
tree to zero. In terms of spectral content, this process is barely distinguishable from the original Owen’s scrambling and does not affect the
discrepancy. The next section details this construction.

3.2. Hierarchical Owen’s scrambling

Owen’s scrambling [Owe95] relies on a tree of depth d to generate up to 2d samples. A key feature of our sampler is its adaptive capability
and the Pλ−1 ⊂ Pλ property. For the first property, we simulate this infinite depth by iteratively expanding a tree of depth d. To do so, we
concatenate to each leaf node two new trees of depth d to create a final tree of depth 2d, that can be used to generate up to 22d samples.
However, when expanding this tree, we need to ensure that we are consistent with the previous tree. Meaning that the expanded tree should
lead to the same first 2d samples than the short tree. To ensure this, we need to enforce the flags applying to the first 2d samples to 0 in
the concatenated trees. This means that each new concatenated subtree must bear 0 flags onto its leftmost branch. This whole process is
illustrated Figure 16.

The choice of the parameter d is crucial in this adaptation, if d is too low, there will be too many 0 flags in the tree to improve the spectrum.
Figure 17 illustrates this. We note that in practice, for d = 8, we no longer see any visible artefacts compared to the original Owen.

4. Adaptive sampling

Since our sampler is adaptive, we can locally change the density of samples. Figure 18 illustrates this with a quadratic ramp function and 19
shows some adaptive results on the Julia set. Our sampler is clearly not as performant as stippling oriented samplers such as [dGBOD12]
due to its square tiles and naive ranking. However, it is worth pointing that classical low discrepancy sequences are not natively adaptive.
Adaptive variants exist, e.g. [GRK12a], but are difficult to implement efficiently. On the contrary our construction is natively adaptive as it is
tiled based.

5. Direct access to the ith sample

Directly accessing the ith sample generated by our sampler can be achieved through the following algorithm. We compute the level λ of this
sample as

λ = blogKs(i)c.

We remind the reader that the level 0 is composed of a single tile containing Ks samples, hence the floor function. Note that the ith sample in
our sequence, denoted p(i), can be analytically defined as

p(i) := Π
λ
r

(
Sλ

(i)
⊕Qλ

(i)
)

where r is the tile at level λ that contains p(i), and Qλ
(i)

is the xoring vector that, once applied on the sample Sλ
(i)

, moves it to the proper
tile r.
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Figure 16: Extension of an Owen’s tree of depth d into a consistent new Owen’s tree of depth 2d. Each time we need to generate more than
2d samples, we increase the depth of the tree by concatenating to each leaf node two new subtrees with the right flags at 0. All other flags are
random.

To solve this equation, we need to compute firstQλ
(i)

, and then we need to retrieve the permutation Π
λ
r . This vector is roughly defined as

Qλ
(i)

= Sλ
(i)
⊕Vλ−1(i)

where Vλ−1(i) is the displacement vector computed from Sλ−1 and Pλ−1, leading to,

Vλ−1(i) = Sλ−1(i
′)
⊕Pλ−1(i

′)
.

This index i′ here, corresponds to the first Sobol index that falls into the tile r′ to which the ith Sobol sample so(i) belongs. This index can

be retrieved through methods as described in [GRK12a]. Then, we will repeat the process all over again to find Pλ−1(i
′)

. The process stops

when λ = 0, as V0(i) = 0.

From here, all we have left is to find for all the Pλ
′ (i′)

their corresponding permutations Π
λ
r . This can be done very easily by generating

all the samples of Pλ
′

that belong to the tile r, which can be done as we now know the value of Vλ−1(i). Then, a simple peek in the look up

table gives us the permutation Π
λ
r . Now, we can retrieve all the samples Pλ+1(i) from the samples Pλ

(i′)
, until we reach the sample p(i) that

we wanted in the first place.

The pseudo-code of this algorithm is given in Algorithm 1 and has a complexity in

O(logKs(i)Ks)

which is the same complexity as finding all the samples in a given tile r. Therefore, even though contrary to Sobol, we do not generate a
point set by generating the samples one by one, we can still retrieve the ith sample more efficiently than by generating n samples and taking
the ith one.
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Figure 17: Spectral comparison between Owen’s scrambling, and our adaptation. We can see that for small d values, artefacts still appear
but as d increases, there is no longer any visible difference between our set and the original Owen.
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Figure 18: Adaptive sampling of a quadratic density ramp with 2000 points for various sampling algorithms.

Algorithm 1: directAccess(i,LUT )

input : An index i and the lookup table LUT (·).
output: The sample Pλ

(i)
.

1 so(i)←Sλ
(i)

p(i′)← Re f erent(Sλ
(i)
) Vλ−1(i)← p(i′)⊕directAccess(i′,LUT ) Retreive the tile r′ from Vλ−1(i) and p(i′) Retreive the

set {q}λ
r′ of the samples in the tile r′ as forall points so ∈ {so}λ

r do

2 {q}λ
r′ ←{q}

λ
r′ ∪ (so⊕Vλ−1(i)

3 Π
λr′← LUT ({q}λ

r′) P
λ
(i)
←Π

λr′({q}λ
r′
(i)

return Pλ
(i)
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Adaptive sampling obtained with our sampler

Adaptive sampling obtained with BNOT [dGBOD12]

Figure 19: Julia set adaptively sampled using our method and BNOT with 16464 samples.
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