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Abstract (English)

When displaying a 3-D object on a computer screen, this 3-D scene is turned into a 2-D image,

which is a set of organized colored pixels. We call Rendering the process that aims at finding

the correct color to give those pixels. This is done by simulating and integrating all the light

rays coming from every direction that the object’s surface reflects back to a given pixel. Unfor-

tunately, a computer cannot compute an integrand directly. We therefore have two possibilities

to solve this issue:

1. We find an analytical expression to remove the integrand (statistic based strategy).

2. We numerically approximate the equation by taking random samples in the integration

domain and approximating the integrand value using Monte Carlo methods.

Here, we focused on numerical integration and sampling theory. Sampling is a fundamental

part of numerical integration. A good sampler should generate points that cover the domain

uniformly to prevent bias in the integration and, when used in Computer Graphics, the point

set should not present any visible structure, otherwise this structure will appear as artefacts

in the resulting image. Furthermore, a stochastic sampler should minimize the variance in

integration to converge to a correct approximation using as few samples as possible. Many

different samplers exist that we roughly regroup into two families:

• Blue Noise samplers, that have a low integration variance while generating unstructured

point sets. The issue with those samplers is that they are often slow to generate a point

set.

• Low Discrepancy samplers, that minimize the variance in integration and are able to

generate and enrich a point set very quickly. However, they present a lot of structural

artefacts when used in Rendering.

The goal of this PhD was the study of the theoretical characteristics and practical impact of

samplers combining both the Blue Noise and Low Discrepancy properties.
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Abstract (French)

0.1 Problème

Lorsque l’on affiche un objet 3-D sur un écran d’ordinateur, on transforme cet objet en une

image 2-D, c.a.d en un ensemble de pixels colorés. Les couleurs observées par l’oeil humain sont

fonction du déplacement de la lumière dans le monde et de la façon dont cette lumière intéragit

avec les différents matériaux des différents objets. On appelle Rendu la discipline qui consiste

à trouver la couleur à associer aux pixels pour représenter une scène donnée. Pour ce faire, on

va placer une caméra virtuelle dans une scène 3-D, découper le film de cette caméra en pixel,

et calculer la quantité de lumière qui arrive sur chaque pixel du film (nommé aussi plan image)

de cette caméra.

Si on nomme I le pixel du plan image qui nous intéresse, on calcule sa couleur en résolvant

l’équation (équation simplifiée) suivante:

I =

∫

S
L(p, v)Vp(v)dp (0.1)

Ce que cette équation signifie c’est que pour trouver I, on va intégrer toute la lumière que

chaque point p de la scène S renvoie dans la direction v, v étant la direction menant de p à

I. Le tout est pondéré par une fonction binaire Vp determinant si un point p de S est visible

ou non depuis I. Cependant, pour déterminer la quantité de lumière que p renvoie vers v, on

utilise la fonction L, qui elle même intègre la totalité de la lumière que p reçoit depuis tous les

autres points de la scène et calcule quelle fraction de cette lumière p renvoie vers v.

On a donc déjà deux intégrales dans cette version très simplifiée de l’équation. Malheureusement,

l’ordinateur ne sait pas calculer d’intégrales; on a donc deux solutions possibles pour faire un

rendu:

1. Trouver une expression analytique qui permette de supprimer l’intégrale de l’équation

(approche basée statistique).
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2. Approximer numériquement l’équation en tirant des échantillons aléatoires dans le do-

maine d’intégration et en en déduisant la valeur de l’intégrale via des méthodes dites de

Monte Carlo.

La difficulté d’une représentation statistique de la surface réside dans le fait qu’une représenta-

tion statistique globale n’est pertinente que dans des cas très restreints (distribution gaussienne,

pas de problèmes de visibilité, uniformité de l’objet ...).

Lors de cette thèse nous nous sommes donc plutôt intéressés à la deuxième solution, celle

de l’intégration numérique, basée sur la théorie de l’échantillonnage. Ce sont ces méthodes

qui constituent le noyau dur de cette thèse, et qui ont données lieu au développement de

deux nouveaux échantillonneurs. Notre première méthode génère des échantillons 2-D ayant

une excellente distribution spatiale. Elle est étendue dans notre deuxième méthode, qui peut

produire des échantillons N-D ayant une distribution de qualité équivalente. Cette seconde

méthode permet également de contrôler la quantité d’échantillons localement et en offre la

possibilité de rajouter incrémentalement des échantillons tout en préservant la qualité de la

distribution.

Dans la suite, nous présenterons tout d’abord la théorie de l’échantillonnage, avant de détailler

nos contributions.

0.2 Théorie de l’échantillonnage

Dans le cadre du Rendu, si on ne peut pas calculer analytiquement l’intégrale, on va approximer

sa valeur en simulant un certain nombre n de rayons lumineux. Cela revient donc à un problème

d’échantillonnage; le problème étant de choisir correctement ces rayons pour avoir la meilleure

approximation possible de l’intégrale. Pour ce faire, on va utiliser des méthodes dites de Monte

Carlo et essayer d’approximer I grâce à l’équation (0.2).

E(I) =
n∑

i=1

pif(xi) (0.2)

Dans cette équation, xi est le ième échantillon, et f est la fonction à échantillonner. Par rapport

à notre équation (0.1), f(xi) correspondrait à L(xi, v)Vp(v). On a également
∑

i = 1npi = 1

pour normaliser le tout. Plus n est grand, plus on est proche de la valeur réelle pour I.

On note que suivant le choix des échantillons xi le résultat de cette équation varie, plus ou moins

suivant la quantité d’erreur mesurée. Dans le cas du rendu, le choix d’un échantillonneur est

essentiellement fonction de cette erreur. En effet, comme on intègre chaque pixel individuelle-

ment, plus cette erreur est grande, plus on va observer de différences entre deux pixels voisins.

Cela crée des artefacts dits de bruit dans l’image finale. Il a été montré que le fait d’avoir une
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distribution spatiale des xi de type bruit bleu est optimale pour réduire cette variance. Cette

distribution, essaye de maintenir la même distance entre chaque point et tous ses voisins.

Une autre solution pour réduire ce bruit est d’utiliser des échantillonneurs dits basse discré-

pance. La discrépance est une mesure mathématique qui permet d’évaluer l’uniformité d’une

distribution spatiale de points. Plus la discrépance est basse, plus la distribution est uniforme.

Pour être qualifié de basse discrépance, un échantillonneur doit voir sa discrépance baisser avec

l’augmentation du nombre N de points à une vitesse O
(

log(N)D−1

N

)
, où D est le nombre de

dimensions. Ces échantillonneurs présentent des distributions de points très structurées, et ont

pour but d’avoir la distribution la plus uniforme possible. Malheureusement, lors d’un rendu,

ils créent une sorte de grille très régulière dans l’image. C’est ce que l’on appelle l’aliassage. Ils

ont cependant l’avantage pour la plupart d’être des séquences de points. Cela signifie que l’on

peut rajouter des points à un ensemble existant tout en préservant la basse discrépance.

Les travaux qui aujourd’hui constituent le noyau dur de cette thèse, consistent à concilier ces

deux catégories d’échantillonneurs pour avoir une l’erreur la plus faible possible en intégration

sans créer d’aliassage dans l’image finale.

Nous avons pu produire deux travaux sur ce domaine. Le premier présente un premier échantil-

lonneur en 2-D qui ne présente pas d’aliassage tout en ayant une faible erreur lors de l’approximation

de l’intégration. Il est décrit Section 0.3. Section 0.4 présente notre deuxième contribution.

Nous y présentons un échantillonneur toujours à faible variance et anti-aliassé, mais pour de

plus hautes dimensions. Il permet également de contrôler localement la quantité d’échantillons

et offre la possibilité d’augmenter incrementalement le nombre d’échantillons.

0.3 Premier échantillonneur 2D

Ce premier échantillonneur était la première tentative pour concilier à la fois une discrépance

basse et une distribution bruit bleu. En utilisant des ensembles de points 1-D connus pour être

basse discrépance, on peut construire un ensemble 2-D où chaque ligne et chaque colonne est

elle même un ensemble basse discrépance. Il a été prouvé qu’un tel ensemble 2-D est lui même

un ensemble basse discrépance. Ensuite, en réarrangeant correctement cet ensemble 2-D, on

peut changer la distribution des points. Cela nous permet d’obtenir une distribution de points

bruit bleu (ou d’autres distributions), sans changer la discrépance de l’ensemble initial.

Pour réarranger l’ensemble de points, on permute les coordonnées x des points puis les coor-

données y. Intervertir des points formant un ensemble basse discrépance 1-D ne change pas la

discrépance de l’ensemble, du coup notre ensemble 2-D résultant est toujours composé de lignes

et de colonnes qui sont elles même basses discrépance. Ce qui fait que notre ensemble final

est basse discrépance, tout en ayant une distribution de points différente. Pour obtenir une

distribution ciblée, on précalcule et on stocke l’ensemble de permutations sur x et y à appliquer

et l’échantillonneur n’a plus qu’à lire ces données et à faire la permutation. Tout ceci est illustré

Figure 0.1.
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Fig. 0.1.: (a) Présente l’ensemble de points 2-D initial de notre méthode. Cet ensemble est permuté sur
chaque coordonnées (b,c) Pour donner un ensemble qui soit bruit bleu à l’arrivée (d). On peut
noter que l’ensemble de départ a un spectre de Fourier très différent de celui de l’ensemble
d’arrivée. On peut également noter que le spectre de Fourier de l’ensemble d’arrivée présente
une croix en son centre. Cette croix est symptomatique de la basse discrépance et n’est en
aucun cas un handicap aux capacités de notre échantillonneur en terme d’intégration.

Cette méthode a le mérite d’avoir réussi à prouver que la basse discrépance et la distribution

bruit bleu étaient parfaitement compatibles. Elle est cependant limitée dans ses applications

pratiques. Elle ne génère que des points 2-D, n’est pas séquence, et ne permet pas de contrôler

localement la densité des points.

0.4 Second échantillonneur N-D et Séquentiel

Ce second échantillonneur est lui aussi bruit bleu et basse discrépance. Il exploite le fait que

si un ensemble est bruit bleu dans chaque sous partie (suffisamment grande) du domaine, il le

sera également sur le domaine entier.

Notre méthode part donc d’une séquence basse discrépance qu’elle subdivise en tuiles car-

rées. Ensuite, on applique nos permutations locales, sur chaque tuile. Nous avons prouvé

formellement dans le papier que ces permutations nous permettent de préserver la discrépance

de l’ensemble entier malgré le fait qu’elles soient locales. Parmi toutes les permutations locales

possibles, nous avons précalculé celles qui correspondaient au mieux à une distribution bruit

bleu, et nous les avons stockées.

De plus, grâce à des permutations globales, dont nous avons également prouvé qu’elles préservent

la discrépance, nous pouvons rendre notre échantillonneur séquence. Cela signifie que si nous

avons un ensemble de points répartis dans des tuiles à un niveau l, nous pouvons resubdiviser

ces tuiles au niveau l + 1 pour rajouter des points tout en préservant la position des points déjà

présents.

Enfin, comme notre système est basé sur des tuiles, on peut choisir de ne subdiviser qu’une

partie des tuiles pour changer localement la densité des points.

Tout ceci est illustré Figure 0.2.
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Fig. 0.2.: (a) Présente l’ensemble de points 2-D initial, répartis dans des tuiles à un niveau l. On
permute individuellement chaque tuile (b,c) pour obtenir un ensemble qui soit bruit bleu
à l’arrivée (d). Une tuile contient toujours le même nombre de points. Pour rajouter des
points, on subdivise les tuiles. Cette subdivision peut être faite localement pour faire varier
la densité de points (e).

empty page
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1Context

Nowadays, computer generated images are ubiquitous. They appear in movies, commercials,

video games and have become almost undistinguishable from real pictures. This "realisticness"

is partly due to the modern technologies. They increase so drastically our processing power,

that it is now possible to try simulating the physical light field in the scene. The issue is that

a physical light field in the real world is something that is infinite and continuous. Computers

cannot handle any of those properties, and therefore, to simulate this light field, we need to rely

strongly on sampling and discretization.

To generate a synthetic image we need to first be able to sample this simulated light field

(meaning being able to measure the amount of light in a particular point of the scene), and

second, we need to be able to reconstruct a 2-D image from those sampled values. Our eyes

do this reconstruction thanks to a set of cells covering our retinas. Each of those cells receives

a discrete portion of the real light field in front of us. Those values are then sent to the brain

that reconstructs an image from it. To create a synthetic image from a simulated light field,

we replicate this process of sampling a set of discrete values from the simulated light field and

use tools such as convolutions or Fourier transform to reconstruct an image from it. Interested

readers can find a detailed description of this process in appendix A on page 168.

Our main focus will then be on how to simulate and sample this light field. As every object in

a scene receives light and reflects light, evaluating the amount of light that reaches a particular

point in a scene is very computationally expensive. It requires evaluating all the light incoming

to this point from every other point on every possible objects in the scene. Mathematically,

this translates as a recursive integration, which cannot be solved analytically. It requires to

be approximated, using numerical integrations methods, which strongly relies on sampling. In

this document, we will focus on the use of Monte Carlo estimators as our tool to solve this

numerical integration. Such light field simulation will be described Section 1.1, with a focus on

Monte Carlo estimators in Section 1.1.2 on page 4.

1.1 The Rendering process

To render an image, we need to simulate the flow of light bouncing within a scene. This implies

recursively integrating for every single point of the scene the light incoming from every possible

direction. To solve this set of complex integrands, we use Monte Carlo estimators, that rely on

sampling to approximate the result of an integration. In the following, we first detail how we

simulate the flow of light and the different integrands that need to be accounted for. Then, we

see how we can use Monte Carlo estimators to approximate those integrands.

1
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image plane

x
p

The light field in the scene is represented as a set of discrete light rays. The amount of light
within each ray is computed by sending this ray from the image plane towards the scene, and

bouncing it against the geometry until it reaches the light source.

Fig. 1.1.: The rendering process.

1.1.1 Path-Based rendering

Generating a synthetic image first requires a description of the scene to be rendered. This

description contains a set of objects present in the scene (often referred to as the geometry of

the scene), each of them being associated with a material, a color, a texture, a motion, etc.

A scene description also contains a set of light sources and a description of the virtual photo

camera taking the picture (its position in the scene, its lens and focal, its looking-at point etc.).

This camera defines a virtual image plane in the scene, usually discretized into pixels.

To render a scene, we compute the amount of light incoming from the scene to each pixel of

the image plane. This set of discrete radiance values will then be the input for a reconstruction

process which will generate the final image (as described in Appendix A on page 168). This

radiance can be seen as the amount of light reaching a point x from every possible directions.

To evaluate this, we use path tracing algorithms. As this is a very active field of study and as

it is a bit out of scope of this document, we will only present the simple naive algorithm here

(Fig. 1.1). Interested readers can refer to [T+12; Pha+16; Vea97] for more details.

Path tracing algorithms [Pha+16] aim at solving the following equation, first devised by Kajiya

in 1986,

I(x) = Le(x) +

∫

S
ρ(p, x)I(p)dp. (1.1)

Given here in its simplest form, this equation, known as the Rendering Equation, evaluates the

amount of light I that reaches a point x on the image plane. To do so, it sums the intensity of

the emitted light of x with the amount of light ρ(p, x) that each point p of the whole geometry

surface S reflects towards to point x. One of the difficulties with this equation is that ρ(p, x)
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is not a continuous function, it includes a visibility term, which is a binary factor with values

being either 1 or 0, that accounts for the visibility discontinuities within the scene.

Note that light is composed as a set of wavelengths, which determines its color. Since the colors,

materials, or geometry of the objects in the scene can affect each wavelength differently, this

equation needs to be solved for each of them. However, this problem is out of the scope of

this document and, to simplify the notation, we will assume that we are always working with a

single given wavelength.

The issue that interests us most here, is that Equation ( 1.1 on the preceding page) relies on

recursive evaluation of complex integrands. As we assume the scene to be a continuous signal,

those integrands translate as infinite sums. It is thus impossible to evaluate them directly (or

only in very specific cases [BN12]). Instead, we will rely on sampling-based numerical integration

methods. More specifically, we will use Monte Carlo estimators which will be described in details

in section 1.1.2 on the following page. For now, we just describe Monte Carlo estimators as a

way to approximate the integrand of a function by evaluating N points of this function, and

averaging them. Following this, Equation 1.1 on the preceding page becomes

I(x) ≈ Le(x) +
N∑

i=1

ρ(pi, x)I(pi) (1.2)

where pi is the ith sample. The quality of the approximation is now dependent on the error

from the Monte Carlo estimators, which is related to the way the samples pi are chosen (see

Section 1.1.2 on the following page). Note that in this whole document, we only focus on

unbiased estimators, meaning estimators that will converge to the true value of the integrand

when using a infinite number of samples. Therefore we will often implicitly ignore bias. Note

that other estimators could have been used, but we focus on estimators that do not assume

prior knowledge of the function to integrate. For more details please refer to [Gla95; HH64].

To evaluate each I(pi), we combine Monte Carlo estimators with Path tracing algorithms. This

means that we represent our light field as a set of discrete light rays. Then, we evaluate the

light field value for each ray by simulating how it interacts with the scene.In the real world,

rays are coming from the light before reaching our eyes. In this algorithm, we do the opposite.

The rays are thrown from the image plane and bounce within the scene either a finite amount

of times or until they reach the light.

For each pixel of the image plane, we will sample a certain amount of points {pi}. Each pi

will be used as the starting point for a light ray. Each ray is then tested against the scene to

compute the intersection point p
′

i between this ray and the geometry. Once this intersection

point is found, we sample a bouncing direction of the ray and we compute the amount of

light that bounces in this direction. To do so we use a Bidirectional Reflectance Distribution

Function (BRDF). This function takes as input an incoming light direction (the direction of the

ray) and an outgoing light direction (the sampled direction) and returns the amount of light

that was reflected. This BRDF function is specific to each possible material of each object of the

scene. Then, we once again test the bounced ray against the scene to find its new intersection

1.1 The Rendering process 3
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point with the geometry, sample a bouncing direction, compute the reflected light, etc. This

recursion ends when the ray hits a light source, or when a maximal number of recursion is

achieved (Fig. 1.1 on page 2).

Following this recursive algorithm, the evaluation of a single sample can become quite costly.

The challenge is thus to have an approximation as good a possible with as little samples as pos-

sible. This is the focus of the next section, along with the theory of Monte Carlo estimators.

1.1.2 Monte Carlo estimators

Monte Carlo estimators are used to numerically approximate a complex integrand. They rely

on a set of samples, that are used to evaluate the function to integrate. Then, the values of this

function for each sample are averaged to give an approximation of the integration.

More formally, to use classic Monte Carlo estimators, we first need to generate n independent,

uniformly distributed random variables {x(i)}n in Ω, that we will refer to as samples. Then, an

estimation of the mean value of a function f can be obtained via the unbiased estimator:

In :=
1

n

n∑

i=1

f(x(i)). (1.3)

Note that this function f is defined on a s-dimensional domain Ω. Thus, all the samples x(i)

must be generated within this same domain (following [Gla95] for notations). In most cases,

Ω = [0, 1)s but this is not mandatory.

The integration error ∆ when using such an estimator is defined as

∆ := |In − I| (1.4)

where I :=
∫

Ω f(x)dx is the true integration value. Note that this error depends on the sampling

pattern used, the number of samples used, and the integrand function.

For stochastic samplers, we often use instead of this error the Mean Square Error (MSE), that

will be defined just a bit below. First, we denote

Bias := |I − 〈In〉 | (1.5)

and

V ariance :=
〈
(In)2

〉
− 〈In〉2 (1.6)

where 〈.〉 represents the expectation of a random variable.

From [Dur11; SK13], the MSE can then be expressed as

MSE(In) = Bias2 + Variance. (1.7)
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In this thesis we only work with unbiased stochastic point sets, our MSE depends thus entirely

on the variance of In. For classical Monte Carlo estimator with pure random samples, this

variance is

σ2 :=
σf

n
, (1.8)

where σf is the variance of the integrated function f . As the variance is function of the number

of samples, the more samples we use the less error we observe (for unbiased point sets).

With a MSE in O(1/n), the error in integration ∆ is in O(1/
√

n). Thus, to divide this error

by 2, we need to use 4 times more samples, which is rather unsatisfying. Furthermore, even

though when taking a infinite number of samples in a pure random way we are guaranteed that

we will cover the whole domain uniformly, there is no guarantee, if unlucky, that when taking

a given number n of samples, they will not all clump into a small portion of space. For all

those reasons, using pure random samples is close to be the worst scenario for unbiased Monte

Carlo integration. Therefore, several improvements were developed, reducing the variance of

this estimator by alleviating this clumping.

One of the most popular is the use of stratified sampling (Section 3.1 on page 36). This sampling

subdivides the domain into k equal regions and generates random samples within each region.

This sampling has provably a better variance than pure random sampling [HH64], proportional

to the number of regions k and the way they are chosen. The exact variance function when

using stratified sampling is quite complex and thus we will not give it here. Interested readers

can find it in [Gla95], Section 7.4.3, Equation (7.35).

Another improvement, which interests us more here, is the usage of samples that are no longer

randomly chosen. By choosing such samples in order to guarantee an optimal covering of the

domain, you may reduce the error of the approximation. This category of estimators are called

Quasi Monte Carlo (QMC). We point that such estimators were not originally designed for

computer graphics applications but for financial and simulations contexts.

When using deterministic sets of samples, we can no longer rely on the MSE value, as the

approximation In is not longer a random variable. The quality of QMC estimators is thus only

measured from their error, which is

∆ =
k
√

log(n)b

n
(1.9)

for constants b and k [Gla95].

However, even though such samplers lead to a lower error and a better approximation for the

color of a single pixel, this is not enough to ensure a better final image. An image is composed

from a whole set of pixels, and therefore from a whole set of integrands, all solved independently.

The way those integrands are correlated or not also impacts the final rendering.

1.1 The Rendering process 5

Lowres version



1.2 Sampling for Monte Carlo Rendering

There are two specificities when using Monte Carlo estimators for rendering. The first one is

that neighbouring pixels should be decorrelated, to avoid structural artefacts in the final image

(Fig. 1.2 on the next page). The second is that the integrand to solve is recursive, therefore, even

for a single pixel, we need to solve several integrands all related to each other. It is interesting to

note that in most situation, we are working with recursive 2-D integrands, since we are mostly

sampling directions or points on a surface.

The structural artefacts appear mostly when using QMC estimators for rendering. QMC sam-

pling patterns were originally devised for applications in finance and simulation. They have

been proven to lead to a very low integration error, along with being easy to implement and

computationally efficient, even in very high dimensions. Those properties are very often due to

the analytical definition of such samplers. However, such analytical definition often implies that

they present a recursive and regular spatial organisation of samples. This structure correlates

the integration error over neighbouring pixel, which leads to disturbing structures in the final

image. This is studied in more details in Section 2.1 on page 14 and in Section 3.3 on page 57.

Instead, when using random samplers, this structure turns into noise [DW85], which is directly

related to the variance in the estimator. It can never be completely removed but it can become

imperceivable to the human eye, as the variance reduces (Fig. 1.2 on the facing page). Roughly,

using QMC estimators leads to higher artefacts but a faster convergence and MC estimators

presents a slower convergence but with lesser artefacts.

The second specificity of Monte Carlo Rendering is that even though we are solving a recursive

multi dimensional integrand, not all dimensions are directly correlated. Assume that we are

sampling a light ray that has N bounces. We will need one 2-D sample for the light plane. Then,

we will need N 2-D sample for the bouncing directions. We can also need a 1-D sample for the

motion blue, or another 2-D sample for the lens. The point is that we do not necessarily need

a s-D sampling pattern. One can also use several 2-D sampling patterns, while being careful

to decorrelate them and remove any structure. However, when using N 2-D sampling patterns,

this decorrelation is simulated through random shuffling of samples, which harms the quality

of the approximation of the integrand. This will be detailed in more specifics in Chapter 4 on

page 74.

1.3 Contributions

In this PhD, we focused on developing proofs and algorithms to generate sets of s-D samples

(also referred to as point sets, distributions of samples, or sampling patterns) that will be as

optimal as possible regarding Monte Carlo rendering.

We tried to address 3 major issues,

6 Chapter 1 Context
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(a) Image rendered with 512 random
samples per pixel

(b) Noise artefacts from using 4 sam-
ples per pixel with a random sampler

(c) Aliasing artefacts from using the
same 4 samples for each pixel

(d) Aliasing artefacts from using 4 sam-
ples per pixel with a structured sam-
pler

Fig. 1.2.: Different artefacts observed when rendering a scene using different sampling strategies.
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• Removing the bias in integration by guaranteeing that our point sets are uniformly dis-

tributed (Figure 1.2 on the preceding page (c)).

• Removing any structure in our spatial distributions to remove all aliasing in the final

image (Figure 1.2 on the previous page (d)).

• Finally, reducing as much as possible the variance in Monte Carlo/Quasi Monte Carlo

estimation (Figure 1.2 on the preceding page, (b)).

To assert all those issues, we tried to combine the uniformity and efficiency properties of QMC

samplers with the irregular samples placement of stochastic point sets. Joining those properties

apply additional constraints on the spatial samples organisation, which were though to be

unreconcilable. We showed that they are in fact reconcilable, by providing several algorithms

generating such point sets, along with their formal proofs. Some possible naive approaches to

generate such samplers are presented in chapter 4 on page 74 and our main contributions are

presented in chapter 5 on page 93 and in chapter 6 on page 107.

As a preliminary, Section 1.4 will present a few basic notations and definitions regarding point

processes. Those definitions will be further developed in Chapter 2 on page 14 where we will

see in deeper details how the quality of a sampling pattern regarding Monte Carlo Rendering

can be assessed.

1.4 Basic definitions

When using a MC or QMC estimator, we need to generate a set of variables x(i). We denote

point set or point pattern a set Pn of n indexed s-D points

Pn = {x(1), x(2), · · · , x(n)}

where all x(i) ∈ Ω, with Ω ⊂ Rs (Fig. 1.3 on the facing page). Note that as Pn is a set, we

implicitly assume that there are no duplicates in this set, more formally, we assume that ∀i, j,

x(i) 6= x(j). Point sets are generated by samplers, which we will denote S.

We denote S(Ω) all point sets generated from the sampler S in the domain Ω. Note however,

that in most rendering situations, the samples are defined in the unit hypercube [0, 1)s, before

being rescaled to the integration domain (which may be the surface of the light, a pixel, a

direction hemisphere, ...). This is why all along this document, we will ease the notations

by implicitly assuming that Ω is the unit hypercube (formally defined as Ω = [0, 1)s), unless

specified otherwise.

Deterministic samplers generate from a given set of parameters a unique set Pn (note that the

value n is a parameter of S). Typically, such samplers are used with QMC estimators. On the

contrary, stochastic samplers can generate several point sets from a given set of parameters. A

8 Chapter 1 Context
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point set Pn generated from a stochastic sampler is referred to as a realisation of this sampler.

We assume that if we denote A the set of point patterns that present a given characteristics,

we have S(Ω) ∈ A, meaning that a stochastic sampler generates different sets but always with

similar characteristics (see Chapter 2 on page 14 for a list of criteria that may characterize a

sampling pattern). Such sets are typically used for MC estimators.

In her book, Illian [Ill+08] presents a thorough statistical analysis for samplers (which she

refers to as point processes). We note that when S is stochastic, S(Ω) is a random variable. For

simplicity, we will assume that this is also true for deterministic samplers, with all realisations

of S(Ω) being equal for a given set of parameters. We can then differentiate different types of

point processes. A point process can be finite, infinite, isotropic, stationary and/or ergodic.

Finite/Infinite point processes A sampler S that can generate any n number of samples over

any domain Ω is an infinite point process. Finite point processes are point processes defined over

a single given Ω. They are mostly related to real world situations, for example, the repartitions

of the seeds around a tree, or the number of pores in a Swiss cheese.

Stationary and Isotropic point processes A point process is said to be stationary if it is

invariant by translation, and isotropic if it is invariant by rotation. More formally, if we assume

P a probability measure, S is stationary if ∀x ∈ Rs

P(S(Ω)) = P(S(Ω− x)) (1.10)

and isotropic if ∀α ∈ [0, 2π]

RαS(Ω) = {Rαx(1), Rαx(2), · · · , Rαx(n)} (1.11)

and

P(S(Ω)) = P(Rα(S(Ω))) (1.12)

with Rα being the rotation matrix of angle α. Note that point sets organized on a regular lattice

are not isotropic.

[DG+12] Random [Sob67]

Fig. 1.3.: Various 2-D point sets P1024 generated from different samplers S.
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Density of a point processes We also define the density of a point set as the average number

of samples inside a region R of volume VR around a sample x.

λ(x) =
R(x)

VR
(1.13)

This density is constant for isotropic and stationary point processes. A sampler generating sets

with a non constant density is sometimes called a non-uniform sampler.

Ergodic point processes The ergodicity of a sampler S refers to samplers that are so statisti-

cally invariant that the analysis of a single realisation is statistically meaningful. We point out

that a deterministic sampler is necessarily ergodic.

Sequentiality We will end this section by defining the notion of sequentiality for a sampler. A

sampler is said to be a sequential sampler if it does not require a prior knowledge of the number of

samples to generate. Such samplers are able to iteratively add n new samples within an already

existing set, while preserving the characteristics of the set. We denote sequence a sampler that

is both sequential and present highly uniformly distributed samples (low discrepancy). We will

see how we can characterize this uniformity in Chapter 2 on page 14.

Finally, as many of the samplers we will study rely on binary manipulations over positive

integers, we define as

x =
N∑

k=0

akbk (1.14)

the representation of a integer x ∈ N in base b, where ak ∈ Z/Z. Each ak value will be denoted

a digit of x, or a bit of x if b = 2. The value N is the number of digits needed to encode x in

base b. Note that each ak value belongs to the domain Z/bZ. For simplicity, we will also denote

x from the list of digits of its b-ary representation as

x = (aN , · · · , a0)b. (1.15)

Similarly, if a value x belongs to the set [0, 1), it will be denoted as

x =
N∑

k=0

akb−k−1, (1.16)

and

x = (.a0, · · · , aN )b. (1.17)

Finally, we will denote (aN , · · · , a0) or (a0, · · · , aN ) the vectors made from the list of digits of

a value x in base b.
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Note that any value x ∈ N can be turned into its equivalent y ∈ [0, 1) (and vice versa) with the

following operations

y = x/bN (1.18)

x = y · bN . (1.19)

This means that all those notations are roughly equivalent, and in this document, when there

is no ambiguity, we will often implicitly switch between them. Table 1.1 on the next page

summarizes all the notations that will be used in this document.

In the rest of this document, we will rely on those definitions to present the different charac-

teristics of a set of samples that impact the quality of the final rendered image (Chapter 2

on page 14). We will then present existing samplers (Chapter 3 on page 35), which will let

us underline where do our contributions fit in (Chapter 4 on page 74, Chapter 5 on page 93,

and Chapter 6 on page 107). Finally, we will present how those samplers behave in practice

through experimental results (Chapter 7 on page 133). Note that is this PhD, we study both

sequential and non-sequential samplers. However, only infinite and stationary point processes

are considered, with most of them being also isotropic.

1.4 Basic definitions 11
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Chapter 1
s The total number of dimensions
x A point in s-D
x(i) The ith sample of a set Pn

xi The ith coordinate of x

x
(i)
j The jth coordinate of x(i)

Pn A point set of size n
Ω The domain of definition of S
S(Ω) A point set generated from the sampler S

Chapter 2
Ff The Fourier transform of a function f

F−1
f The inverse Fourier transform of a spectrum f

Pf The Power spectrum of f
D∗ The l∞ discrepancy
D The l∞ extreme discrepancy
Do The l∞ isotropic discrepancy
T2 The l2 discrepancy
D2 The generalized l2 discrepancy

Chapter 3
(aN · · · a0)b The b-ary representation on a value x ∈ N

(.a0 · · · aN )b The b-ary representation on a value x ∈ [0, 1)
(aN · · · a0) A vector of values with ak ∈ Z/bZ

Tab. 1.1.: Table of the notations we will use throughout this document.
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2Characterizing a set of samples

There are several ways to characterize a point set. Depending on the application, one can

focus on visual quality, stochasticity, ease to control, etc. In our case, we will use those sets

for Monte Carlo rendering. We will thus characterize our samplers with characteristics related

to the integration error of their MC estimator. This leads us to three main characteristics.

First, the uniformity of the point set (Section 2.1), second, its Fourier spectrum, (Section 2.2 on

page 20) and third, its spatial organisation (Section 2.3 on page 25). We chose those measures

specifically, since they are known to be related to the integration error and integration variance

(Section 2.4 on page 28), and therefore are related to the expected quality of the final rendered

image.

2.1 Uniformity

A set of samples can be characterized by how close it is from the perfect uniform distribution.

In other words, how well the samples are spread out over a given domain. There are several

ways to measure this uniformity.

Some tests rely on a supposed lattice structure of the distribution, like the spectral test [CM67].

This test, defined only for lattices, measures the largest distance ds between adjacent parallel

hyperplanes that together cover the whole point set. The smaller this distance, the better the

uniformity of the lattice (Fig. 2.1).

d2=0.196 d2=0.128

Fig. 2.1.: Spectral test in 2-D on Korobov lattices. Figure from [Lem09]

Other tests apply on point sets quantized on a grid of a given resolution (Figure 2.2 on the next

page left), namely the test of Congruent Boxes (Figure 2.2 on the facing page right). Roughly,

the domain is partitioned according to a grid in base b, and if each box of this grid contains

the same number of samples, the point set is considered uniform [Lem09]. This test is used to
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determine if a point set is a digital net. Such nets will be of importance and will be presented

in more details in Section 3.3.2 on page 59.

Quantized Point set Subset of Congruent Boxes

Fig. 2.2.: Congruent boxes in 2-D on the Sobol sequence [Sob67]

The most common measurement of uniformity is the discrepancy of a point set. One of the

main asset of this measure is that it is not specific to a type of point set. It quantifies the

distance between a distribution of samples and the uniform distribution. In 1-D, we compute

the distances between the Cumulative Distribution Functions (CDF) of the uniform distribution,

and the CDF of a given 1-D point set Pn, both defined in the domain [a, b). Note that in most

situations, we have a = 0 and b = 1. The CDF of a point set (Fig. 2.3 on the following page) is

defined as

Fn(u) :=
1

n
Card({x, x ∈ Pn, x < u}) (2.1)

with u ∈ [a, b).

The uniform distribution, denoted U is defined as the distribution where each possible random

variable is equally probable. A 1-D illustration of the distribution U(a, b), which is the uniform

distribution of all the values in [a, b), is given Figure 2.4 on the next page.

We quantify the l∞ distance between the distribution of a given point set to U using the

Kolmogorov-Smirnov test. The distance N(Pn) between a point set Pn and the uniform distri-

bution is then

N(Pn) := sup
u
|Fn(u)− F (u)| (2.2)

where supu returns the maximum distance and where F (u) is the CDF of the uniform distribu-

tion (Fig. 2.5 on the following page). Note that we could also quantify similarly the lp distance

Dp(Pn) between the distribution of our point set and U ,

N(Pn) :=
∑

x

|Fn(x)− F (x)|p. (2.3)

Those definitions apply to 1-D point sets. We will see in the following sections the definition

of the l∞ star discrepancy (also referred to as star discrepancy [Nie92]) for 2-D point sets, and

the l2 star discrepancy for s-D point sets.
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1
n
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Fn(u)

Pn in domain [a, b] CDF of Pn

Fig. 2.3.: The CDF of a pointset Pn

a b

1
b−a

a b

1

u

F (u)

U(a, b) CDF of U(a, b)

Fig. 2.4.: The Uniform distribution U(a, b)

a b

1

Fig. 2.5.: The Kolmogorov-Smirnov difference (in red) between the CDF of a point set (in blue) and
the CDF of the uniform distribution (in black).
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Star Discrepancy Extreme Discrepancy Isotropic Discrepancy

Fig. 2.6.: Different measures for discrepancy in 2-D.

2.1.1 l∞ discrepancy

One of the most common of all the existing discrepancy measure is the l∞ star discrepancy. This

measure considers all axis-parallel hyper-rectangles B(v) in the domain [0, 1)s with a corner at

the origin of the domain and the other one at position v (Figure 2.6, left). We call such hyper

rectangles anchored boxes. We then define the function

α(Pn, v) :=
Card(Pn ∩B(v))

n
(2.4)

that counts the number of samples that fall inside an hyper-rectangle and expresses it as a

fraction of the total number of samples n. We then compare it to the true area of B(v),

v1 · · · vs.

This leads us to the final formula for the l∞ star discrepancy,

D∗(Pn) := sup
v∈[0,1)s

|v1 · · · vs − α(Pn, v)|. (2.5)

One can note the existence of other discrepancy measures than the l∞ star discrepancy. First,

the l∞ extreme discrepancy that computes the discrepancy using unanchored axis-parallel hyper

rectangles (Figure 2.6, middle). Note that the following relationship holds between the l∞ star

discrepancy D∗(Pn) and the l∞ extreme discrepancy D(Pn) [KN74]:

D∗(Pn) ≤ D(Pn) ≤ 2sD∗(Pn). (2.6)

Finally, it is worth noting the existence of the l∞ isotropic discrepancy that computes the

discrepancy using any convex shape (Figure 2.6, right). The following relationship holds between

the l∞ isotropic discrepancy Do(Pn) and the l∞ extreme discrepancy [KN74]:

D(Pn) ≤ Do(Pn) ≤ (4s
√

s + 1)D(Pn)
1
s . (2.7)

As the extreme and isotropic discrepancies are extremely difficult to compute and are both

related to the star discrepancy, we will not discuss them in details here.
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Measuring the discrepancy of a point set characterizes the uniformity of this single set. However,

a careful reader will have noted that, aside from pathological samplers, the discrepancy of a

set decreases as the size of the point set increases. We can use this property to characterizes a

sampler with the "speed" at which its discrepancy decreases. For example, for a pure random

sampler in 2-D, the l∞ star discrepancy decreases at a speed of 1√
n

, when for the regular grid, it

decreases in 1− (1− 1
n)2 [Lem09; Nie92]. The following lower bound on the l∞ star discrepancy

has been shown for s = 2 [Sch72]:

D∗(Pn) ≥ C
log(n)s−1

n
, (2.8)

where C is a constant dependant on s but independent of n [Nie92].

If you have a sampler with a discrepancy decreasing in O
(

log(n)s−1

n

)
as the number of samples n

increases, this sampler is said to be a low discrepancy sampler. If this sampler is also sequential,

we refer to it as a sequence. The l∞ star discrepancy is defined using axis-parallel hyper rect-

angles anchored at the origin (Figure 2.6 on the preceding page, left). This means that when

two samples have the same coordinate on either axis, a box of infinitely small size can contain

several samples. This almost guarantees to break the low discrepancy property. Therefore, one

of the first conditions (necessary but not sufficient) for a point set to be low discrepancy is that

it never presents several samples aligned on either dimensions.

Computing the l∞ star discrepancy can be done using explicit formulas for s = 1

D∗(Pn) =
1

2n
+ max

1≤i≤n

∣∣∣∣x
(i) − 2i− 1

2n

∣∣∣∣ (2.9)

and for s = 2, as detailed in [Nie72] (note that similar formulas exist for the extreme discrep-

ancy).

It has been observed that the set of hyper-rectangles to consider can be discretized (Fig. 2.7 on

the next page). Following the notations in [Gne+11], we denote

Xj(Pn) := {x(i)
j , i ∈ {1, · · · , n}},

the set containing all the jth coordinates of a set Pn. We also denote

X(Pn) := X1 × · · · ×Xs,

the set of all the points that can be made from all the coordinates of all the samples of Pn. Now

we can redefine the l∞ star discrepancy as

D∗(Pn) = sup
v∈X(Pn)

|v1 · · · vs − α(Pn, v)| (2.10)

which can be computed exactly using an enumeration algorithm in O(ns) [Nie72] (Fig. 2.7 on

the facing page). We stress that such an algorithm is only practicable for small values of n

and/or s. The computation of the star discrepancy has been proven to be a NP-hard problem
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Fig. 2.7.: Computing the discrete l∞ star discrepancy in 2-D.

in higher dimensions [Gne+08]. Note that the best known algorithm to compute the l∞ star

discrepancy is in O(n1+s/2) [Dob+96] and that several algorithms exist to approximate it in

s-D [Thi01; Gne+11; Sha10].

This discrepancy is not the only defined discrepancy measure, one can also compute lp star

discrepancies. We find that the l2 star discrepancy can be computed exactly in O(sn2), which

is useful as s increases.

2.1.2 l2 discrepancy

The l2 star discrepancy, denoted T2, is a variation of the l∞ star discrepancy. Instead of using

the l∞ norm (sup), we use the l2 norm :

T2(Pn) :=

(∫

[0,1)s

(|v1 · · · vs − α(Pn, v)|)2dv

) 1
2

. (2.11)

It should be used carefully as it is known to both put an emphasis on points close to 0 and

to be irrelevant for sets that contains too few samples relatively to the number of dimensions

[Mat98]. However, it can be computed very easily following Warnock’s formula [War73],

(T2(Pn))2 =
1

n2

n∑

i=1

n∑

j=1

s∏

k=1

(
1−max

(
x

(i)
k , x

(j)
k

))
− 2−s+1

n

n∑

i=1

s∏

k=1

(
1−

(
x

(i)
k

)2
)

+ 3−s, (2.12)

where x
(i)
k is the kth coordinate of the ith sample in the set. This gives us an algorithm in O(sn2)

to compute T2.
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Several versions on the l2 star discrepancy were defined [Hic98], each of them with a formula

similar to Warnock’s. Among them, the one that interests us here is the generalized l2 star

discrepancy, defined by Hickernell [Hic98] with the following formula

(D2(Pn))2 =

(
4

3

)s

− 2

n

n∑

i=1

s∏

j=1

3−
(
x

(i)
j

)2

2
+

1

n2

n∑

i=1

n∑

i′=1

s∏

j=1

[
2−max

(
x

(i)
j , x

(i′)
j

)]
(2.13)

This value is of special interest since it is related to the integration error, as will be discussed in

section 2.4.1 on page 28. The generalized l2 star discrepancy can also be computed in O(sn2).

This makes it much more efficient in higher dimensions than the l∞ star discrepancy, that has

a complexity in O(n1+s/2) [Dob+96].

For all those reasons, when evaluating the uniformity of higher dimensional pointsets (in practice,

for all sets with s > 2), we rely on the generalized l2 star discrepancy.

Those discrepancies measures are of uttermost importance in Monte Carlo integration. If a

sampler is not uniform, meaning if it does not verify

lim
n→∞

D∗(Pn) = 0,

it is not guaranteed to converge to the correct integrand value when used with Monte Carlo

estimators. However, even if it is uniformly distributed, having a structured sampling pattern

may lead to correlation between neighbouring samples, which leads to aliasing in the final

renderings. To characterize the amount of aliasing generated from using a particular sampling

pattern in rendering, we rely on spectral and spatial analysis (Section 2.2, and Section 2.3 on

page 25).

2.2 Spectral analysis

A sampler can also be characterized by how the samples are spatially organized, and more

specifically, by which frequencies arise in this distribution. First we will see how to compute the

frequency representation of a signal and then, we will see how we can characterize a point set

from this representation. Note that in [BB86], interested readers can find a much more detailed

description of all the tools presented here.

2.2.1 The Fourier transform

There are two mains representations for a signal. The most common is the spatial representa-

tion, which associate to a value x ∈ Ω a value y ∈ f(x), with x being the time or a position

in space, and y the function value. However, it appears that many real-valued signals can be

represented by a combination of sinusoids with different phases, amplitudes and frequencies.

Such representation of a signal is called its frequency, or spectral representation. The transfor-

20 Chapter 2 Characterizing a set of samples

Lowres version



mation from the spatial representation to the frequency representation of a signal is given by

the Fourier Transform.

The representation of signals as a set of sinusoids is referred to as the Fourier series, defined in

1-D by

f(x) = a0 +
∞∑

n=1

an cos(xnω) +
∞∑

n=1

bn sin(xnω) (2.14)

where the an and bn, that control the amplitude of the sinusoids, are defined in the complex

domain C and where nω is the frequency of the sinusoids. Thus, the Fourier series can also be

expressed as a sum of complex exponentials

f(x) =
∞∑

n=0

cneixnω. (2.15)

Those Fourier series assume that the represented signal is periodic. For non periodic signals,

we will rather use the Fourier transform. This operation translates from the spatial to the

frequency representation of f . This transform associates to a frequency ω its amplitude and

phase in the Fourier serie decomposition of f . It is given by the following equation in 1-D,

Ff (ω) =

∫

R

f(x)e−ixωdx (2.16)

for a function f(x), defined over R, with f presenting frequencies over the domain Ω. The real

part of Ff (ω) represents the amplitude of the sinusoid and its imaginary part the phase of the

signal f at frequency ω. Note that

Ff (0) =

∫

R

f(x)dx. (2.17)

Figure 2.8 on the following page illustrates the relationship between the Fourier transform and

the Fourier serie of a signal. In the following, we will often refer to Ff (ω) as the spectrum of a

signal f .

Note that the Inverse Fourier transform can transform back the spectrum of f into the original

signal f as

f(x) =

∫

C

Ff (ω)eixωdω (2.18)

The existence of this function allows to say that the frequency and spatial representations of a

signal are dual.

For simplicity, we only gave formulas and examples for the 1-D Fourier transform. However, the

Fourier transform is defined in s dimensions. A s-D signal presents a s-D spectrum, computed

with similar equations. You just replace the scalar products between x and ω with s-D dot

products in Equations ( 2.16) and 2.18.

However, we point out that for practical applications, we handle signals that are defined over a

closed domain Ω. Therefore, to apply a Fourier transform to our point sets, we implicitly assume
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Fig. 2.8.: Fourier Serie decompositions FN of the square wave function and their corresponding Fourier
transforms.
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that they repeat periodically (to avoid oscillation in the Fourier transform due to border effects).

Furthermore, we handle only a discrete representation of our signals, therefore, in practice, we

perform discrete and periodic Fourier transforms, which are equivalent to Fourier series.

2.2.2 The Power Spectrum

Here, we want to characterize our point sets by the amount of energy of each frequencies.

Therefore, what interests us is the amplitude of each sinusoids in the decomposition of our s-D

point set Pn. We denote by PPn
the Power spectrum of a point set. PPn

is formally defined as

PPn
(ω) = |FPn

(ω)|2. (2.19)

Using the norm of FPn
(ω) removes the imaginary part and preserves only the squared amplitude.

This results in having all the values of PPn
in R, with the removal of the phase information that

was contained in the imaginary part of FPn
.

A s-D point set, leads to a s-D power spectrum. So, for simplicity, we will often use its

radial representation instead. This representation averages all the values of the Power spectrum

between two s-D spheres, turning a s-D representation to a 1-D representation of our Power

spectrum. This radial average is only truly valid for isotropic spectra. Still, for anisotropic

spectra, it can still be used to identify peaks in the Power spectrum, a.k.a. frequencies that are

so present that they are almost unaffected by averaging. All of this is illustrated Figure 2.9 on

the next page.

2.2.3 Differential Analysis

Differential analysis is a tool was presented in [WW11], and that can be thought of as a refor-

mulation of the classical spectral analysis. It lets us compute the spectral properties of sets of

uniform and non-uniform density by reformulating the spectral analysis as a difference between

pairs of samples.

The Fourier analysis is originally expressed in terms of the absolute coordinates of samples.

When the samples are distributed non-uniformly, or on a domain that is not a unit-hypercube,

such analysis is difficult to carry. Differential analysis is instead expressed in terms of relative

positions between two samples. By matching the distance function used to measure the distance

between samples to the domain or the density of this distribution, it can produce a pertinent

spectral analysis from non uniform sampling patterns or non Euclidean domains.

This differential formulation can be directly derived from the formulation of the Fourier trans-

form for a set of samples. Formally, if we formulate the Discrete Fourier transform of a point

set Pn as follows

Fω =
n−1∑

k=0

e−2πi(ω·x(k)) (2.20)
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The radial average is computed by averaging all the spectrum values between two s-D spheres,
thus leading to a 1-D representation of the original s-D spectrum.

6
-

A purely random pointset (right), where every frequency appears. Its power spectrum (middle)
is isotropic as all frequency appear equally, and its radial average (left) confirms the absence of
peaks.

6
-

A pointset (right) with a finite number of frequency. Its power spectrum (middle) is clearly
non isotropic (and was enhanced to make the peaks visible) but when you look at its radial
average (left), the recurrent frquencies still appear clearly

Fig. 2.9.: Power spectrum and Radial average characterization.
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where x(k) is the kth sample from Pn, ω is the frequency vector and · is the inner dot product.

This leads to the following formulation for the Power Fourier Spectrum

Pω = |Fω|2 = Pr
ω + P i

ω (2.21)

where Pr
ω (resp. P i

f
) is the real part (resp. the imaginary part) of Pω.

Pr
ω =

1

N

(
n−1∑

k=0

cos(2πi(ω · x(k)))

)2

(2.22)

P i
ω =

1

N

(
n−1∑

k=0

sin(2πi(ω · x(k)))

)2

. (2.23)

Using the sum rules of trigonometry, this leads to

Pω =
1

N

n−1∑

j,k=0

cos(2πi(ω · (x(k) − x(j)))) (2.24)

where Pω only depends on the differential between the pairs of samples x(k) and x(j).

Therefore, using this type of analysis is just as discriminative as using traditional Fourier anal-

ysis. However, note that it applies efficiently only on domains where the distance function

between pairs of samples can be properly defined for the entire domain (for example using

geodesics for surfaces, of weighting the distance by the inverse density function for adaptive

sampling).

This type of analysis prooves that the spatial organization of samples can be directly related to

the spectral properties of this distribution. Furthermore, the results of spatial analysis can be

strictly equivalent to the results of spectral analysis, when using proper tools, as presented in

the next section.

2.3 Spatial Analysis

This spatial analysis of point sets is closely related to the spectral analysis. The simplest

measure in spatial analysis is the minimal distance d (usually l2 Euclidean distance) between

two samples in a point set Pn,

d(x, x′) := min
x,x′∈Pn

||x− x′||2. (2.25)

However, this measure, as simple as it is is not very useful. Instead, we will rely on the

distribution of distances between pairs of points, called the pair correlation function.
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σ←→

Ripley’s K function sums the average
number of samples at a distance

d < r from a typical sample

The PCF sums the average number
of samples at a distance d ≈ r from a

typical sample

Fig. 2.10.: Illustration of Ripley’s K function and of the PCF

2.3.1 Pair Correlation Function

In this whole section, we assume that our point set Pn is stationary (see Section 1.4 on page 8).

Before presenting the Pair Correlation Function (PCF), we will start by presenting two other

second order estimators, known as the K-function and the L-function. For the notations, we

will follow the choices made by [Ill+08].

We will start by denoting N (i)(r), the function that estimates the number of samples in a radius

r from a given sample x(i) (Fig. 2.10). This function in itself does not convey much information.

However, it will be the basis for all second order spectral analysis functions, such as Ripley’s

K-function, the L-function or the Pair Correlation Function (PCF).

Ripley’s K-function represents the average number of points that are at a distance d < r from

a typical point. If we denote this value K(r), we have for a point set Pn,

K(r) :=
1

λn

n∑

i=0

N (i)(r) (2.26)

where λ is the density of samples described in 1.4 on page 8. The normalization of K(r) by

λ, allows K to be independent from the global density and thus to be more sensitive to local

fluctuations.

This K-function relates the number of samples to the area of a ball of radius r. To alleviate this

and relate instead the number of samples to r itself, one can use the L-function. This variant

of the K-function is defined as

L(r) := s

√
K(r)

bs
(2.27)

where s is the number of dimensions and bs is the volume on the unit sphere in Rs.
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Fig. 2.11.: Ripley’s K-function, the L-function and the PCF of the pointset Pn.

Both those functions can be seen as the cumulative distribution function (with some normaliza-

tion) of the PCF. This PCF, noted %(r), is considered as the best second order characteristic.

Intuitively, it expresses the number of samples that are at a distance r for a typical sample

(Fig. 2.10 on the preceding page). For r ≥ 0, it can be defined as

%(r) :=
K(r)

dbsrs−1
. (2.28)

Oztireli [OG12] devised a simplified estimator for this measure in the particular case of isotropic

and stationary point processes. We therefore estimate the PCF of a pointset Pn in the unit

domain [0, 1)s using the following formula

%(r) =
1

n2rs−1

∑

i 6=j

kσ(r − d(x(i), x(j))), (2.29)

where d(x(i), x(j)) is a distance measure between x(i) and x(j). The factor kσ is used to smooth

out the function. Oztireli relies on this smoothing to assume ergodicity for all sets. He uses the

Gaussian function as a smoothing kernel, but one could use a box kernel or a triangle kernel

instead. To compute a PCF, we use this estimator with 3 parameters, the minimal r, rmin, the

maximal r, rmax and the smoothing value σ. Those values are usually chosen empirically. Note

that as the number of samples increase, the distances between samples will be very different for

similar distributions. To alleviate this, we normalize the distances in our estimations using the

maximal possible radius for n samples ( [GM09], Eq (5) ). The results of all those estimators

are illustrated Figure 2.11.

The issue when computing the values for %, K and L, is that we have as input a point set defined

in a bounded domain. However, those estimators implicitly assume an infinite set. This creates

a bias since for points close to the border of the domain, their nearest neighbours outside the

domain will not be taken into account. To avoid this, one can periodically tile or mirror a point

set. One can also use more advanced estimators that take those effects into account. However,

with a sufficiently big set and with sufficiently small radiuses, those edge effects can often be

ignored.
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The PCF is also a very interesting estimator as has been proven to be the spatial equivalent of

the Fourier transform. You can find the mathematical relationship between both those measures

in [Kai+16]. We recall that the differential analysis (Section 2.2.3 on page 23) was also proven to

be equivalent to the Fourier Transform. This means that in most cases, the spatial and spectral

analysis are interchangeable, and the use of one or the other is partly dictated by which will

make the computations easier. However, the spectral analysis has been thoroughly studied and

has been proven to be directly correlated to the variance in Monte Carlo estimators. This studies

have been partly done for the spatial analysis but it is still a work in progress. The relationships

between those characterizations (spatial analysis, spectral analysis but also uniformity) and the

error in Monte Carlo integration will be detailed in the next section.

2.4 Relationship to error in integration

All the previously detailed characterisation was not randomly chosen. Those particular measures

are of interest to us as they all relate to the error in the resulting MC/QMC estimator. In this

section we see how we can use this relationship to devise sampling strategies that reduce this

error as much as possible. Note that similarly to the discrepancy, for unbiased samplers, the

integration error reduces as the number of samples increases. Each sampling pattern therefore

has a convergence speed, that characterizes how the variance of the MC estimator using this

sampling pattern changes as the number n of samples increases. Our reference worst case is the

convergence speed of a pure random sampler, which is O(1/n) (Fig. 2.14 on page 32).

We remind here that we define the squared error in integration Ie as

∆ = |In − I|, (2.30)

where I is the real integration value and In is the approximation obtained from estimating it

with a MC/QMC estimator, using n samples obtained from a given point process.

Thanks to the Koksma-Hlawka theorem [Hla61], the uniformity of a point set happens to bound

the integration error of QMC estimators. We detail this theorem first, and then, we see how in

the case of stochastic patterns, the error can be reduced thanks to variance analysis. We remind

that in this section, we focus on unbiased samplers, and therefore the error in integration is

strictly equivalent to the variance (see Section 1.1.2 on page 4).

2.4.1 Koksma-Hlawka

The first theorem that interests us is the Koksma-Hlawka theorem [Hla61]. This theorem

was developed by Hlawka and proven by Koksma (for the 1-D case) [Kok42]. It bounds the

integration error ∆ using the discrepancy of a point set using the following inequality

∆ ≤ D∗(Pn)V (f), (2.31)
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where V (f) is assumed to be finite, and represents the variation of the function f in the sense

of Hardy and Krause (definition below) [Lem09].

This boundary implies that for point sets that are low discrepancy, the integration error is

supposedly lower than for other point sets. An extension of this theorem was developed for the

generalized l2 discrepancy [Lem09] as

∆ ≤ D2(Pn)V2(f), (2.32)

where V2(f) is finite and is the l2 equivalent of V (f).

As detailed in [Kel06], this theorem is however a little unsuited for computer graphics. The

issue is that it only applies on the class of functions of bounded variation in the sense of Hardy

and Krause. A 1-D function is said to be of bounded variation if its total variation is finite.

More formally, we denote V b
a the variation of a 1-D function f in an interval [a, b] with

V b
a (f) := sup

P ∈P

nP −1∑

i=0

|f(xi+1)− f(xi)| (2.33)

which takes the supremum over the set P = {P = {x0, x1, . . . xnP}| P is a partition of [a, b]

with xi ≤ xi+1 for 0 ≤ i ≤ nP −1} of all partitions of [a, b]. Then, f is a Bounded Variation

(BV) function if

V b
a (f) < +∞. (2.34)

A BV function in the sense of Hardy and Krause is an extension of this definition to 2-D

functions, which computes if the function is BV along the x and the y axis. In [Kel06], Keller

argues that this class of functions is very unhandy as, for discontinuities that are not axis aligned

(which are very common in graphics), V b
a becomes infinite. Following this observation, [Kel06]

derived several new inequalities to relate the discrepancy to the integration error. However,

as they imply diving into deeper details of BV functions and lead to results similar to the

Koksma-Hlawka theorem, we will not detail this here. Interested readers can refer to [Kel06].

We can already note that such theorem implies that a Low Discrepancy sampler, with a discrep-

ancy of O(log(n)s−1/n) when the number of samples n increases has a 2-D squared convergence

speed of O(log(n)2/n2) (Fig. 2.14 on page 32).

Even though those boundaries are very useful for deterministic samplers, they are still of limited

use, since they are just an upper bound instead of a direct relation. This direct relation can be

found when using stochastic samplers and variance analysis.
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2.4.2 Integration error analysis

For stochastic samplers, we don’t rely much on the integration error, but instead we rely on the

MSE (as detailed Section 1.1.2):

MSE = Bias2 + Variance. (2.35)

Since we are only interested in unbiased stochastic samplers, this formulation states that the

observed integration error is solely related to the variance of the approximation.

In the case where the error is solely due to the variance, we can rely on two very strong

results. The first one [Pil+15], directly relates the variance to the Fourier spectrum of both

the sampling pattern and the function to sample. The second one [Özt16] relates the PCF of a

sampling pattern to the integration error.

Spectral variance analysis

Many papers have conducted analysis of the variance in Monte Carlo integration, in both the

Euclidean and spherical domains [Dur11; SK13; Hes+10; Ram+12; Pil+15]. We will detail here

the results obtained by [Pil+15]. Their result is an expression of the variance observed when

using stationary point patterns, as a direct function of their Fourier spectrum. We denote I the

function to integrate, and In the MC estimation of the integral of I with a point set Pn. The

variance of In, is given by

var(In) =
µ(Ω)2

n

∫

Ω
〈Ps(ω)〉PI(ω)dω (2.36)

where µ(Ω) is the Lesbegue measure for the unit toroidal domain [0, 1)s and Ps,PI are the

Power Spectra of respectively the sampling pattern and the integrand I. This formula can be

further simplified for isotropic point patterns. Expressed in polar coordinates (n, ρ), we have

var(In) =
µ(Ω)2µ(Ss−1)

n

∫ ∞

0
ρs−1P̂s(ρ)P̂I(ρ)dρ (2.37)

where Ss−1 is the surface area of the s-D sphere, and P̂s, P̂I are the radial average of the power

spectra of respectively the point set and the integrand function. Note that as we are using the

radial power spectrum, we assume an isotropic spectrum.

It has been shown that for natural images, P̂I will approximate a 1
ω curve (see Chapter 7). This

means that as ρ increases in Equation 2.37, the value of P̂I will tend to 0. This means that to

reduce the variance, the value of P̂s must be as small as possible when ρ is small (Fig. 2.12 on

the facing page).

Our goal is therefore, for integration purposes, to use preferably sampling patterns that present

as little energy in the low frequencies as possible. In 1983, Yellot [Yel83] observed that the
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Fig. 2.12.: Product of the radial spectra of the sampling pattern P̂s and of the integrand P̂I .

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

R
a
d
ia

l 
P
o
w

e
r 

S
p
e
c
tr

u
m

Frequency

Fourier Spectrum Radial Average
Reconstruction of the
function sin(x2 + y2)

Fig. 2.13.: Blue Noise fourier spectrum and radial average.

photoreceptors in the retinas of monkey where distributed following a very uniform but yet

irregular distribution. It has been theorized by Ulichney [Uli88] that this distribution, called

Blue Noise, leads to the the best spectrum for integration. This ideal spectrum presents no

energy in the lowest frequencies, followed by a peak and a flat region (Fig. 2.13). Currently,

samplers that generate samples with such a spectrum are referred to as Blue Noise samplers.

Following this analysis, the theoretical MSE of Monte Carlo estimators using a stratified sampler

decreases in O(1/(n
√

n)) as n increases. A similar convergence speed was also empirically

devised for the Blue Noise samplers. This is better than the speed of the pure random sampler

but asymptotically not as good as the convergence speed of Low Discrepancy Samplers (Fig. 2.14

on the following page).

Spatial variance analysis

In [Özt16], the authors devised a formula relating the PCF of a stationary sampling pattern to

its resulting variance in MC integration. We will denote % the PCF of a sampling pattern. From

Campbell’s theorem, they expressed the expected value of the MC integration of a function f

defined over a domain Ω using the statistics of the sampler used. If we denote In the MC

estimation of the integration of f over Ω, this leads them, for stationary processes, to

E(In) =

∫

Ω
f(x)λdx (2.38)

2.4 Relationship to error in integration 31

Lowres version



 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Number of samples

MSE=k_0/N
MSE = k_1/(N sqrt(N))

Error^2 = k_2(log(N)/N)^2

The convergence speeds of the main categories of samplers, when the
number n of samples increases. In 2-D, the pure random sampler, which
is our worst case reference, converges in O(1/n). The samplers with as
little energy as possible in their low frequencies converge in O(1/(n

√
n)),

when the low discrepancy samplers converge in O(log(n)2/n2).

Fig. 2.14.: Comparison of convergence speeds.

where λ is the intensity function (constant for stationary processes). They also derive E(In)2

as

E(In)2 =

∫

Ω
f2(x)λdx + E(

∑

i 6=j

fifj) (2.39)

=

∫

Ω
f2(x)λdx +

∫

Ω×Ω
I(x)I(y)λ2%(x− y)dxdy. (2.40)

Finally, from

var(In) = E(In
2)− (E(In))2 (2.41)

they derive the formula relating the variance to the PCF,

var(În) =
1

λ

∫
f2(x)dx +

∫
af (h)%(h)dh−

(∫
f(x)dx

)2

(2.42)

where h = x − y, and af represents the auto-correlation of f , which tends to 0 as h increases

due to the finite support of f .

If we look at each term of this function, we see that the first term depends on 1
λ , meaning

that the more samples the higher the intensity and the lower the error. The third term does

not involve the point pattern, so we only care for the second term. What can be seen here is

that when h is small (when af is not 0), the value %(h) should be as small as possible. This

underlines the spectral analysis from [Pil+15] that stated that as the Power spectrum of the

function tends to 0 as the frequency increases, the Power spectrum of the point set should be

as small as possible in the low frequencies. It also underlines the correlation between the PCF

of a set and its radial spectrum.
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2.5 Conclusion

In this section, we described several measures used to characterize a point set. Among them are

the measures describing the uniformity of a set. The main one is the l∞ star discrepancy. Thanks

to the Koksma-Hlawka theorem, we know that a point set with a lower discrepancy limits the

maximal possible error. As this value can be difficult to compute in s-D, one can rely on the

generalized l2 star discrepancy to ease the computations while preserving the Koksma-Hlawka

inequality.

Then, we have all the measures that rely on computing statistics over the spatial distribution of

samples. Those measures have been shown to be roughly equivalent to the spectral properties

of the point set, while being in any cases much easier to compute, even in s-D. Furthermore,

they are also directly related to the integration error, which makes them our main criteria when

evaluating sampling patterns.

In the following chapter, we use all those characteristics to classify existing sampling techniques

and sampling patterns, and to derive their convergence speeds.

2.5 Conclusion 33

Lowres version



http://cpc.cx/jDN

http://cpc.cx/jEW

34 Chapter 2 Characterizing a set of samples

Lowres version

http://cpc.cx/jDN
http://cpc.cx/jEW


3
State of the art

In this chapter, we present existing samplers, evaluating them based on the characteristics

detailed in the previous section. We classify those samplers into 3 categories.

First, in Section 3.1 on the next page, we present some historical samplers. Such samplers

usually aim at improving over the pure random sampler w.r.t. its uniformity. They are usually

very simple and do not provide strong guarantees over the spatial organization of samples.

However, such samplers are very efficient, and extend easily to higher dimensions. This means

that even though, they are not optimal for Monte Carlo Rendering (where a higher correlation

between samples is required to ensure a uniform and unstructured coverage of the integration

domain), they are still implemented in most current rendering systems [Pha+16].

Section 3.2 on page 40 presents the samplers that generate Poisson Disk or Blue Noise spec-

trum. Both those types of samplers increase the amount of correlation between samples to try

generating stochastic sets of samples with roughly the same distance between each sample and

all of their neighbours. Note that the Poisson disk Spectrum differs slightly from the Blue Noise

spectrum, as it presents a non-zero energy in the lowest frequencies, which is harmful to the

variance of MC estimators (Section 2.4 on page 28). Still, in a vast part of the literature both

those spectra are considered the same which is why we regrouped them. Contrary to historical

samplers, Blue Noise and Poisson Disk samplers are limited to low dimensions (usually, they

only generate 2-D samples).

Finally, Section 3.3 on page 57 details the samplers that are low discrepancy. Such samplers

are usually defined from implicit analytical functions, based on bit reversal. This makes them

very efficient, even in high dimensions, and allows to add consistent new samples iteratively

within an existing point set. However, they are rarely stochastic and their analytical definition

generates highly structured sampling patterns. Note that in most of this section, the samplers

will be defined over the unit domain [0, 1)s (unless specified otherwise).

Figure 3.37 on page 71 presents a summary of the main samplers from each category, evaluated

on the closeness of its spectrum to Blue Noise and on the quality of its discrepancy. Figure 3.38

on page 72 presents the same samplers, evaluated on their computing efficiency (speed) and on

the number of dimensions that can be sampled.
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Fig. 3.1.: Characteristics of a Whitenoise sampler.

3.1 Historical samplers

In this section, we present some historical samplers. Most of those samplers aim at improving

over the pure random sampler. Thus, they usually present a higher error in integration than

optimal Blue Noise samplers, but they do not generate aliasing during rendering since they do

not present any structures in the sampling patterns. They are also very easy to implement and

efficient even in higher dimensions. This is why they keep being so popular in rendering engines

[Pha+16].

Whitenoise sampler We start by presenting the most naive sampler, the Whitenoise sampler.

This sampler generates purely random samples. Consequently, in the resulting point set, all

frequencies are present with the same energy which leads to a flat Fourier Spectrum (Fig. 3.1).

Note that since the Fourier spectrum is flat, there is a higher energy in low frequencies, which

leads to a high variance in integration. Due to the simple expression of this sampler, the MSE

of the pure random sampler is known to be in O
(

1
n

)
, with a discrepancy in O

(
1√
n

)
.

Stratified sampler One of the drawbacks of using a Whitenoise sampler is that, as it is fully

random, nothing prevents having subsets of samples that are arbitrarily close to each other.

This translates as portions of space that contains a lot of samples, and others that are almost

empty (see Figure 3.2 on the facing page, left). As the energy in the low frequencies of the

spectrum is due to those empty spaces, we want to avoid them as much as possible. One way

to do that, is to use Stratified sampling. This sampler, in its simplest form, partitions the space

using a s-D grid, and generates a random sample inside each cell of this grid (see Figure 3.2 on

the next page, right). This limits the number of arbitrarily close samples to subsets of size 2s

and thus increases the uniformity. As can be seen in the radial spectrum (Fig. 3.3 on the facing

page), there are much less energy in the low frequencies which leads to a lower variance in MC

integration, as detailed in [Lem09] (Section 1.1.2 on page 4).

This sampler is one of the most used in rendering engines as its variance is reasonably low and its

implementation is very easy. However, this sampler cannot generate any number of samples. In

dimension s, this sampler can only generate a point set Pn when n = ks. Therefore, as we want
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Fig. 3.2.: Comparison between a Whitenoise point set and a Stratified point set.
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Fig. 3.3.: Characteristics of a Stratified sampler.
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Fig. 3.4.: 2-D point set with stratified 1-D projections.

to integrate over more and more dimensions, we will have to generate more and more samples

just to be able to properly sample each dimension. This phenomenon is called the curse of

dimensionality, and is the main drawback of the Stratified sampler relatively to the Whitenoise

sampler. This is usually alleviated in rendering by generating 2-D stratified sampling patterns

that are then shuffled between dimensions [Pha+16].

This sampler has an improved uniformity but, several samples can still present the same x or

y coordinate, leading to overlapping samples in the 1-D projections. As detailed in Section 2.1

on page 14, this overlap can increase drastically the discrepancy of a point set and thus should

be avoided. To alleviate this, sampling strategies based on shuffling a canonical point set have

been developed.

Shuffling canonical projections Most those methods aim at generating stochastic point sets

while preserving the (s−1)-D projections [Shi+91; Chi+94; Ken13]. As explained in Section 2.1

on page 14, having two samples on the same line or on the same column is very harmful to

the uniformity of this pattern. In the context of the samplers described here, preserving the

(s − 1)-D projections of a point set is used to ensure that those projections will be stratified.

This supposedly decreases the error in the Monte Carlo estimators and therefore improves the

quality of the rendered image. This property is illustrated Figure 3.4.

Those samplers usually start with a canonical set, either stratified or diagonalized (Fig. 3.5 on

the next page). Then, they randomly swap the lines and columns in this arrangement. This

preserves the 1-D projections, as no samples were on the same line or column originally and the

coordinates are not changed, merely swapped.

The N-Rooks sampler is one of the main examples of such samplers [Shi+91]. But even though

it preserves the stratification of the 1-D projections, it presents spectral characteristics that
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Canonical Arrangements Shuffling [Shi+91]

Fig. 3.5.: Shuffling canonical arrangements
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Fig. 3.6.: Characteristics of a N-Rooks sampler [Shi+91]

are almost identical to Whitenoise (Fig. 3.6). The only notable change is the presence of a

"black cross" in the middle of the Fourier Spectrum (since there are no samples aligned on either

dimension, there are no frequencies in the strictly vertical or strictly horizontal directions). The

original goal of this sampling was to allow a stratified sampling for any number of samples,

instead of simply for point set whose size is a power of s, but due to the poorer quality of its

spectrum, this sampler is almost unused in rendering nowadays.

One can note that some authors [Ken13] alleviate this "Whitenoise effect" by correlating the

swapping of coordinates. Their goal was to combine the very good properties of the stratified

sampling with a higher uniformity, ensured by their original canonical arrangement. However,

even if this gives good results for low number of samples, the correlation generates spectral

peaks for a higher number of samples (Fig. 3.7 on the next page).

If we look at all the samplers presented in this section, we can note that are all very efficient

and easy to implement, even in higher dimensions. They are therefore quite present in current

rendering systems. However, as they rely or pure randomness (either in the sample generation

or in the shuffling), they do not present Fourier spectra that are as good as the spectra from

Blue Noise sampling patterns (Section 3.2 on the following page), or the excellent uniformity of

Low discrepancy samplers (Section 3.3 on page 57).
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Fig. 3.7.: Characteristics of a Correlated Multi Jitter sampler [Ken13].

3.2 Poisson Disk and Blue Noise samplers

Using the analogy with the visible light spectrum, several colors of noise were devised (Fig. 3.8

on the facing page). The most famous one is the white noise, generated from pure randomness

with a flat spectrum. One can also note the existence of red or pink noise, that present more

energy in the lowest frequencies. Such noise are formed by clustered points and are unsuited for

Monte Carlo integration, but are very useful in biology or physics to represent the distributions

of for example plants or galaxies. Green noise presents higher mid frequencies, and can be used

to modelize fallen leaves or the distributions of seeds around trees for example. Finally, Blue

Noise puts the emphasis onto high frequencies. This type of noise is of major interest for Monte

Carlo integration and is the kind of distribution that interest us here. A good survey of Blue

Noise sampling techniques can be found in [Yan+15]. Many notations in this section will come

from this survey.

Samplers that generate a Blue Noise spectrum can be roughly divided into four families. First,

those that generate Poisson Disk distributions (Section 3.2.1), based on variants of the Dart

Throwing algorithm. Contrary to a true Blue Noise distribution, the Fourier spectrum obtained

from Poisson Disk is not zero for the lowest frequency [Pil+15]. However, those samplers are still

considered Blue Noise in an important part of the literature. Then, we will present samplers

that generate true Blue Noise distributions from gradient descent and energy minimization

(Section 3.2.2 on page 44), and samplers that generate Blue Noise distributions from tiled based

methods (Section 3.2.3 on page 49). Finally, we will see algorithms that generate Blue Noise

from Dithering (Section 3.2.4 on page 52), and other less common methods (Section 3.2.5 on

page 54).

3.2.1 Poisson Disk samplers

The most naive sampler generating Poisson Disk distribution is the Dart Throwing sampler

[Coo86] (Fig. 3.9 on the facing page). The idea is to iteratively insert samples into an already

existing set. A new sample is generated purely at random, and is kept only if it is at a sufficient
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Fig. 3.8.: Pointset and Radial Spectrum from several colors of noise.
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Fig. 3.9.: Dart Throwing algorithm.

distance from every other samples. This distance is called the disk radius, and is computed

based on the maximal packing density γs of n s-D spheres with the following formula

rmax :=
s

√
γs

n

Γ(n
2 + 1)

πn/2
, (3.1)

where the Γ function is the extension of the factorial function to positive complex and real-valued

arguments, defined as

Γ(x) :=

∫ ∞

0
xz−1e−xdx (3.2)

with x ∈ C.

However, this algorithm has a major flaw: it is not guaranteed to end. If one wants to generate

n samples, it is possible to reach a situation where m < n samples where placed, but where

there is no longer any position in space that is at a sufficient distance from all other samples.
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Fig. 3.10.: Characteristics of a Relaxation Dart Throwing sampler [MF92].

To alleviate that, the relaxation dart throwing method [MF92] was developed (Fig. 3.10). This

algorithm initiates the radius rmax with a large value, and if there is too many unsuccessful

trials, this radius is decreased. This process goes on until all n samples have been placed. Note

that this relaxed dart throwing can be considered as a sequential sampler, as it iteratively adds

samples within a pre-existing set, while being consistent regarding the distance between pairs

of samples.

Note that those two methods, generate different types of Poisson disk sampling. The dart

throwing sampler belongs to the family of accurate samplers, which generates point sets such

that all the distances d between sample pairs are d > rmax. In opposition, the relaxed dart

throwing algorithm is an approximate sampler. It generates point sets where the distance

between the majority of sample pairs is d > rmax but where there might be pairs of samples

with d < rmax. Another side effect of the relaxed Dart Throwing is that the resulting sampling

pattern is not necessarily maximal. This means that samples could still be added to the set

without changing the value of rmax.

For both those algorithms, one can note that they are highly inefficient. You may generate

lots of samples before finding one that fits. Therefore, another simple approximate algorithm

for Poisson disk sampling was devised, the Best candidate algorithm [Mit91]. This algorithm

generates a new random samples by generating k new candidates, and then by selecting the

sample with the largest minimum distance to all others. Note that this algorithm is guaranteed

to finish and is much faster than dart throwing. However, it is sill has an O(n2) complexity.

Another noticeable approach, although quite exotic, is to generate Poisson Disk through molec-

ular dynamics [LS90]. Such methods generates n random particles and moves them around

with a collision check. The radius of the particles gradually increases until no particle can move

anymore. The main asset of such methods is that particular dynamics offers well known and

efficient algorithms, that can be parallelized on GPU. This makes such approach faster than

the previous ones, but it may generate very regular structures in 2-D. Other similar methods

will be devised for Blue Noise at the end of Section 3.2.2 on page 44.
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Fig. 3.11.: Characteristics of Real Time Accurate Poisson Disk sampler [DH06].

Other algorithms were devised to generate Poisson disk sampling in O(n) or O(n log(n)), usually

relying on efficient data structures. In [DH06], authors present a method that generates 2-

D Poisson Disk sampling in O(n log(n)) (Fig. 3.11). They accelerate the algorithm by only

sampling subsets of the domain, which are known to contain at least one sample in a maximal

distribution and by using a carefully chosen data structure. This new data structure is called

scalloped, as the subsets to be sampled are defined as a difference between disk regions. Authors

of [Jon06] also present an accelerated algorithm using the intersection of the exclusion disk and

Voronoi diagrams to identify the subsets of space where new samples are allowed. As both

those new structures are difficult to handle, other methods [Whi+07] use a simple quadtree

structure to guide the sample placement. Some methods simply used the parallel properties of

the GPU to accelerate the samples generation [Wei08; Bow+10; Xia+11; Ebe+11]. Note that

[Ebe+11] also allows for sample generation on non convex domains. We also point that [Wei08]

can generate higher dimension poisson disk sampling, although its practicability decreases as

the dimension increases.

In his paper, Bridson [Bri07] accelerates the generation of samples in high dimension by parti-

tioning the domain using a regular grid. This grid resolution is carefully chosen so that each cell

contains at most one sample. Then, when generating a new sample, we use the best candidate

algorithm but only test the distance against the samples in the neighbouring cells instead of test-

ing the distances against all samples. This algorithm runs in O(n) but generates approximate

distributions. There exists similar algorithms that runs in O(n log(n)) for accurate distributions

[GM09]. However, since all those methods rely on a grid subdivision of the domain, they all

face the curse of dimensionality. This means that as the number of dimension increases, the

number of grid cells increases exponentially. To alleviate that, [Ebe+12] uses a flat implicit

representation of a quadtree that is also ported on the GPU.

Note that until now, most of the aforementioned Blue Noise methods aimed at generating 2-D

(or low-D) Poisson Disk sampling patterns. This limitation comes from the sampling structures

used that were defined in 2-D, or simply to the computational cost of the algorithm that prevents

its use in higher dimensions.
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Fig. 3.12.: Product of the radial spectrum of a Poisson sampling pattern P̂s and of an integrand P̂I .

For all those methods, we still have a non-zero energy in the low frequencies (Figures 3.10

on page 42, 3.11 on the previous page), in [Tor+06], authors found that, for a point set Pn

with sufficiently large n, the minimal value of the Power Spectrum near the DC was 1/20. It

will therefore have a very bad behaviour regarding variance reduction, due to the relationship

between the spectrum and the variance [Pil+15] (see Section 2.4.2 on page 30). Figure 3.12

illustrates the product of the radial spectrum of a Poisson Disk distribution [DH06] with the

radial spectrum of a typical scene. One can note that since the radial spectrum of the point set

is not null in the lower frequencies, the product has a higher value near 0. Since the variance is

directly linked to the integrand of this product [Pil+15], this small peak at 0 automatically leads

to a higher variance. Poisson Disk are therefore mainly used for stippling or object placement

but not for Monte Carlo integration, which is our topic of interest. Instead, we prefer to use

Blue Noise samplers.

There are several families of methods to generate Blue Noise samplers. The main ones are

the algorithms based on energy minimization (Section 3.2.2), and the tiled based systems (Sec-

tion 3.2.3 on page 49). But Blue Noise can also be generated from dithering matrices (Sec-

tion 3.2.4 on page 52).

3.2.2 Optimization based Blue Noise

The samplers discussed in this section present the ideal spectrum for variance reduction as they

present no energy in the lowest frequencies (Fig. 3.8 on page 41). We refer to this energy-less

interval as the zero region of a spectrum. In this section, we present methods that generate Blue

Noise from energy minimization. Note that most Blue Noise samplers were initially devised to

account for adaptive sampling. We remind the reader that in this document, we only focus on

uniform sampling, but we will still compare the performances of Blue Noise samplers regarding

their adaptivity. As it was one of their original purpose, this whole section would make little

sense if we did not. Nonetheless, our main focus will stay on their variance reduction property.

The simplest algorithm to generate Blue Noise from iterative optimization is known as Lloyd’s

relaxation [Llo82; Du+99], also referred to as Centroid Voronoi Tessellation (CVT) in Computer
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Fig. 3.13.: Characteristic of a Lloyd’s relaxation [Du+99].

Iteration 0 Iteration 1 Iteration 2 Convergence

Fig. 3.14.: Lloyd’s algorithm.

Graphics (Fig. 3.13). This algorithm generates the Voronoi diagram of a set of samples and

displace each sample to the center of its Voronoi cell. The process is then repeated, until

the system reaches stability (Fig. 3.14). Using such methods, a point set Pn is optimized by

minimizing the following energy

ECV T :=
n∑

i=1

∫

Vi

||x− xi||2dx (3.3)

where {Vi}n
i=1 is the set of cells of the Voronoi diagram with

Vi := {x ∈ Ω,∀j||x− xi|| ≤ ||x− xj ||}. (3.4)

A key to the efficiency of such algorithms is the computation and update of the Voronoi dia-

gram. In this document, we will assume that this computation is done and we will not go into

further details regarding how it is done. An interested reader can refer to [All+05; Val+08;

Yan+09; Ron+11; Yan+14b] for more information regarding Voronoi diagrams. In 2-D, point

sets computed using Lloyd’s algorithm converge to an hexagonal grid. To alleviate this, the

optimization must be stopped after a certain number of iteration, and before reaching conver-

gence. Unfortunately, there is no objective rule as to how to choose this number of iterations

[Bal+09]. Furthermore, the computation of the Voronoi diagram limits this algorithm to low

dimensions.

Early algorithms aimed at generating Blue Noise samples for stippling applications. Therefore,

their goal was not the Fourier spectrum of the resulting set but its visual quality and adaptivity.
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Fig. 3.15.: Characteristics of the Capacity Constraint Voronoi sampler [Bal+09]

In [Sec02], the authors proposed an adaptation of the Lloyd’s relaxation, weighting the Voronoi

diagram by the density function they were trying to stipple. Still for stippling purposes, Balzer

et al. [Bal+09] (Fig. 3.15) replaced the Voronoi diagram by a Capacity Constraint Voronoi

Tesselation (CCVT) (Fig. 3.15). They associate to each sample of a pointset Pn, a capacity ci

computed from the area of its Voronoi cell and of the underlying density function ρ,

ci :=

∫

Vi

ρ(x)dx. (3.5)

Then, at each iteration, they update this capacity constraint diagram and move the samples to

the centroids of their cells, such that ∀i ∈ [1, n], ci = c∗ with

c∗ :=

∫
Ω ρ(x)dx

n
. (3.6)

Their method was then improved upon by [Li+10b] that proposed an accelerated algorithm

to construct capacity constrained Voronoi tessellations, allowing this computation to be paral-

lelized on GPU. Another paper by Xu et al. [Xu+11] aimed at speeding up this Blue Noise

generation. In this paper, the authors no longer use a CCVT but instead the Capacity Con-

straint Delaunay Triangulation (CCDT), as the Delaunay triangulation is the dual structure

from the Voronoi diagram. This method is faster than [Bal+09] and extends the definitions to

mesh surfaces. Finally, [Che+12] combined CCVT and CVT for sample surfaces. Their energy

function is

ECapCV T := ECV T + λECapV T (3.7)

where ECapV T is defined as

ECapV T :=
∑

i=1

n

(∫

Vi

ρ(x)dx

)
. (3.8)

They also achieve a significant performance improvement from an efficient optimization frame-

work.

Other methods were devised based on [Eld+97]. This method places samples one by one,

placing each new sample in the region with the less samples already present. They define the
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Fig. 3.16.: Characteristics of the FPO sampler [Sch+11]

position of this sample as the point of space that is further from any other samples. Proof

exists that this sample necessarily lies on the Voronoi diagram of the current set. Therefore,

at each iteration, the algorithm tests all points on the edges of the Voronoi diagram of the

set, adds a point on the one that is farthest from all samples, and updates the Voronoi with

this new sample. This idea was extended in [Sch+11], with their Farthest Point Optimization

(FPO) method. In this paper, the whole set of samples is generated at random and iteratively

optimized. Each iteration selects a sample, and pushes it as far away as possible from all

other samples. However, the resulting pattern still presents some regularity that we would like

to avoid (Fig. 3.16). In [Kan+11] the authors presented a similar method using a Delaunay

triangulation updated iteratively. Using this Delaunay triangulation, the FPO algorithm was

parallelized on the GPU by [CG12]. Finally, it was extended to surfaces and adaptive sampling

by [Yan+14a].

A very notable method for Blue Noise generation was developed using Optimal Transport

(BNOT) [DG+12] (Fig. 3.17 on the following page). They use a Power diagram instead of

a Voronoi diagram. A Power diagram is an extension of the Voronoi diagram where each cell is

defined as

V w
i := {x ∈ Ω, ||x− xi||2 − wi ≤ ||x− xj ||2 − wj∀j} (3.9)

with W = {wi}n
i=1 the set of weights defined for each sample. They then minimize the following

function

EBNOT = ε(W ) +
∑

i=1

nλi(ci − c) (3.10)

where ci =
∫

V w
i

ρ(x)dx) and ε(W ) is defined as

ε(W ) =
∑

i=1

n

∫

V w
i

ρ(x)||x− xi||2. (3.11)

There also exist methods that generate Blue Noise with particle based approaches [Fat11;

Jia+15]. In [Fat11] (Fig. 3.19 on page 49), the authors motivation is to have a better com-

putational efficiency than optimization based methods. They attach a density function to each

sample and measure the difference between the sum of densities from the samples and the ex-
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Fig. 3.17.: Characteristics of the BNOT sampler [DG+12].

pected density. This gives an energy function, but instead of minimizing this energy, they use it

to define a statistical model, from which they draw points. This kind of algorithm is slow, but

by generating samples one by one, the authors manage to generate their samples in linear time.

It is worth noting that this algorithm was initially thought for stippling, and cannot be used

for Monte Carlo integration. The issue is that, as the authors draw samples from statistical

models, there is a minor shifting of the samples, imperceivable for stippling, but that generates

a lot a bias when used with Monte Carlo estimators.

Other particle based approach are the ones of [Jia+15]. Their general algorithm is illustrated

Figure 3.18 on the facing page. The authors rely on Smoothed Particle Hydrodynamics (SPH),

a method from fluid simulation that minimizes the internal pressure variance. This method

uses a spring mass system if the difference between the density of particle and the rest density

is positive, the particles are pushed away, and if the difference is negative, the point are brought

together. The adaptation of [Jia+15] is to have clamped this difference to 0, so that the points

are never brought together. Each sample is associated to a density kernel. At each iteration

a sample is added and the spring mass system is updated. Their method allows to generate

higher dimensions Blue Noise at faster rates than other optimization based methods. More

recently, [Ahm+16a] proposed a new particle based Blue Noise method, aiming at optimizing

the coverage radius while preserving computational efficiency. However, to the best of our

knowledge, such methods usually focus on surface sampling for remeshing and the resulting sets

where never thoroughly tested for Monte Carlo integration.

All aforementioned methods tend to generate Blue Noise in "low-D". However, in a rendering

context, we need to solve several recursive 2-D integrands (see Section 1.1.1 on page 2). In

this context, the method in [Rei+15] is notable as its aim is to generate s-D sampling patterns,

with the added constraint that they present the same spectrum in every projections. Authors

suggest two methods. The first one, is derived from the dart throwing algorithm, which generates

Poisson Disk sampling patterns in every projections. To do so, they add new constraints on the

Dart Throwing algorithm, one for each projection. As in the original Dart Throwing algorithm,

a new sample is added if it is a proper distance from all other samples in the domain, but it

is also tested over all samples within each projections of the s-D set. Only a sample passing

all those tests is added to the final set. The second method relies roughly on the same idea of

48 Chapter 3 State of the art

Lowres version



Identify the neighbours of a
sample and compute forces
through a spring mass sys-
tem

Repeat for each sample
Apply forces to move the
samples

Fig. 3.18.: Single iteration of a naive basic particle based Blue Noise sampling.
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Fig. 3.19.: Characteristics of the particle based sampler from [Fat11].

adding projection-wise constraints, but is derived from the Lloyd’s relaxation algorithm, and

generates Blue Noise sampling patterns in the projections. Unfortunately, despite the s-D claim

of the paper, both those algorithms are so costly that they hardly generate samples in more

than 4 or 5 dimensions. They are also almost unable to generate a high number of samples.

Most their examples are limited to a few thousands samples.

All the methods in this section rely on iterative optimisations, usually through the computation

and update of Voronoi Diagrams or through particle simulation. Those optimizations generate

high quality Blue Noise but it has a computational cost. To alleviate this cost, Tiled Based

methods were devised, based on precomputed tiling patterns, that simply needs to be combined

together at run-time.

3.2.3 Tiled Based algorithms

In this section, we focus on methods generating Blue Noise from precomputed tiles filled with

samples. Such methods are very efficient as they are based on simple recursive paving rules

and tiles combinations. The main difficulty is avoiding artefacts due to the repetitive/periodic
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Set of 11 wang Tiles Paving from those tiles

Fig. 3.20.: Wang Tiles paving.

structure of the paving, and of the repetition of the tiles. Those repetitions would lead to

aliasing when used in Monte Carlo rendering. Furthermore, we need to maintain consistency

at the boundaries between tiles. A whole family of Tiled-based methods are based on Wang

tiles [Hil+01; Coh+03; LD05] (Fig. 3.20). Wang tiles can be used for an aperiodic paving of

space (meaning without periodic structure) with square tiles (note that those tilings are not

mathematically aperiodic, but as the tiling is randomly constructed, there is a probability 1

that it will not be periodic). To handle the boundary issues, each edge of each square tile is

associated with a color. The final tiling can then only be composed of tiles with similar facing

edge color, under the constraint that no tile can be rotated.

To use this tiling for Blue Noise, one fills the tiles with precomputed sets of Blue Noise sam-

ples. Those sets can be generated by a constrained Lloyd’s relaxation, where this relaxation is

additionally constrained on the edges to maintain a coherency between edges of the same color.

Amongst such methods, the most notable is [Kop+06]. This algorithm, contrary to [Hil+01;

Coh+03; LD05], supports adaptive sampling and random direct access of samples. Furthermore,

the precomputation of their tiles takes only a few minutes and weight only a few mega bytes of

storage. In their experiments, authors claim to generate a set of 8 tiles with 2048 samples each

in around 20 minutes, stored in a 6 megabyte file.

The drawback of this method is that it uses several samples per tiles. This implies that to

generate an arbitrary number of samples, one needs to rely on a ranking algorithm. This ranking

[Ost07] is not an off-line process and does not allow a fine control for adaptivity. Furthermore,

storing the tiles or the recursive paving rules can be memory costly or they may be too little

available tiles to avoid repetition in Monte Carlo rendering context.

Other methods use more complex tilings with a single sample per tile (Fig. 3.21 on the next

page). This allows for a finer control for adaptivity and avoids the memory cost of tile storage.

However, such methods are even more prone to aliasing than the previous ones. This is the

case of Penrose tiling [Ost+04]. This method presents a recursive definition of a Penrose tiling

where each tiles contains a sample. Furthermore, a set of precomputed correctional offsets

(from a Lloyd’s relaxation) is used to ensure Blue Noise properties for the final set. However,

the obtained set presents several peaks in its Fourier spectrum (Fig. 3.22 on the facing page).

To alleviate that, one can use polyominoes to tile the domain [Ost07]. The process of sampling

with polyominoes is almost identical as sampling with penrose tiles, with a different correctional
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Polyominoes Tiling
[Ost07]

Irregular Trihexes tiling
[Wac+14]

Fig. 3.21.: Sampling patterns from [Ost+04],[Ost07] and [Wac+14] and their underlying paving system.

6

-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

R
a
d
ia

l 
P
o
w

e
r 

S
p
e
c
tr

u
m

Frequency

P1024
Fourier Spectrum on 8192

samples
Radial Average on 8192

samples

Fig. 3.22.: Characteristics of the Penrose tiling sampler [Ost+04].

offsets table. Even though sampling with polyominoes effectively reduces the amount of aliasing,

it does not remove it entirely.

Through the usage of irregular trihexes, [Wac+14] achieved a tiling that is both recursively

subdividable and without any obvious regularity. The resulting sampling set thus have a Fourier

spectrum that is without peaks. Furthermore, their method also allows for user defined Fourier

spectrum. The Fourier spectrum is controlled by the set of correctional offsets for the samples

positions in the tiles. By changing such offsets, the final Fourier spectrum can be changed.

However, due to its irregularity, their tiling patterns requires a table storing the subdivision

rules. Combined with the table containing the offsets, this algorithm becomes very memory

costly. All together, the tables given by the authors for the subdivision rules and the Blue

Noise offsets weight about 2 gigabytes.

Finally, a notable method for Tiled based Blue Noise is the use of AA Patterns [Ahm+15]

(Fig. 3.23 on the next page). As noted by [Wac+14], the tile storage can grow up to gigabytes

of memory. Here, the authors aim at using tiles with an implicit definition, AA patterns. Those

patterns come from error quantization and are used for ornamental purposes. By using those

patterns as tiles and storing only the displacement vectors within each tile, AA patterns allow

for tiled based Blue Noise generation without any memory costs. Their spectrum is also peak
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Fig. 3.23.: Characteristics of the AA Pattern sampler [Ahm+15].

free due to the aperiodic tiling resulting from AA patterns. However, they no longer allow for

adaptive sampling. Very recently, [Ahm+17] presented a method that generates Blue Noise

from a regular grid. This scrambling allows for a very efficient handling of the recursivity and

of neighbouring tiles.

Thanks to their recursive paving, all tiled-based methods are naturally suited for adaptive sam-

pling. An important number of those methods where originally calibrated for stippling purposes.

This means they aim at representing an image a set of dots, which can have applications, for

example, for printing purposes. Another class of algorithms that can be used for the same

purpose, the dithering methods. Such methods will be the topic of the following section.

3.2.4 Dithering based methods

Originally, dithering was used when printing images. Printers only place ink dots on paper,

therefore, a black and white image must be stippled (halftoned) to be printed. Dithering is

used to prevent regularities in the halftoned image. There are several dithering algorithms

[Uli87]. The easiest one is to simply threshold the original image, meaning that ink is placed for

every point that is above a given threshold (Figure 3.24 on the facing page (a)). However, with

such method, there is a lot of detail loss. To avoid that, this threshold can be made random,

but this results in a lot of noise (Figure 3.24 on the next page (b)). Instead, one can use ordered

dithering. A dithering matrix is precomputed and used as threshold (Figure 3.24 on the facing

page (c)). Among such matrices, some are tuned for Blue Noise sampling patterns. This is such

matrices that will interest us here (Figure 3.24 on the next page (d)).

Among the first methods to do Blue Noise dithering is [MP92]. They iteratively build dithering

matrices from the difference between the Fourier transforms of the current matrix and the new

matrix. Following this work, [Pur+94] tried to generate such matrices with an algorithm very

similar to dart throwing. Still another method was proposed by [NBJ97] to generate such

matrices from genetic algorithms. Here, the method that interests us more is the very recent

method from [Cor+17] (Fig. 3.25 on the facing page). They pre-compute matrices using the

method from [Pur+94] and then tile those matrices to generate a point set of arbitrary size.
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Fig. 3.24.: Halftoned images from various dithering algorithms.
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Fig. 3.25.: Characteristics of the Forced Random sampler [Cor+17].
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Fig. 3.26.: (left) Stippling with isotropic Blue Noise [Bal+09] and (right) with anisotropic Blue Noise
[Li+10a]. Figure courtesy of [Li+10a]

.

With such dithering algorithms, we completed our tour of the main families of methods gen-

erating Blue Noise sampling patterns. However, this list is in no way exhaustive (far from it).

Other notable algorithms exists that did not directly aimed at generating Blue Noise sampling

distributions but that still may be considered as Blue Noise samplers. In the next section, we

will detail some of those algorithms.

3.2.5 Other methods

In this section, we present methods that generate variants of the classical Blue Noise sam-

pling patterns. Some try to generate anisotropic or Multi-class Blue Noise, when other aim at

targeting a user defined Fourier spectrum, or improving over the original Blue Noise spctrum.

Anisotropic and Multi Class Blue Noise

Those methods are of little use for Monte Carlo integration. However, they are notable variants

of the Blue Noise sampling patterns and are presented here for the sake of exhaustivity. The

anisotropic Blue Noise presented in [Li+10a], is generated from an adaptation of the Dart

throwing and the Lloyd’s relaxation algorithm. The idea is to generate samples along a given

vector field, mostly for stippling and importance sampling of surfaces (Fig. 3.26). For object

placement, in many situations you may have to organize several families of objects. In [Wei10],

the authors present a method for Multi-class Blue Noise. They also adapt the Dart throwing

and Lloyd’s relaxation to handle the attachment of an identifier to each sample, identifying the

class of this sample.
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Controlling the Fourier spectrum

A few methods were devised allowing to generate samples matching a user-given Fourier Spec-

trum, usually based on methods like Dart throwing or Gradient descent optimization. The

versatility of such algorithms is very important as it could help creating tailored sampling

patterns when rendering a given known scene.

The first paper to note is the one from [OG12]. It uses either Lloyd’s relaxation or a Dart

Throwing algorithm to generate a sampling pattern matching a particular Pair correlation

function (Section 2.3 on page 25). For the Dart Throwing variant, the method changes the

conditions of acceptance or rejection of the samples. When adding a new sample, the PCF (see

Section 2.3 on page 25) of the new set is computed. The distance between this PCF and the

targeted PCF is computed using a l∞ or a lp distance between the two PCFs. A sample is

accepted if this distance between PCFs is below a certain threshold. Similarly, [OG12] adapted

the Lloyd’s algorithm by weighting the gradient in the optimization with the PCF. As it is

based on simple Dart Throwing or simple gradient descent, this method cannot generate massive

amounts of samples. Furthermore, this method finds it more difficult to generate very regular

structures, as the PCF (when used with Euclidean distance) is an isotropic measure. But, as

the PCF is also a s-D measure, this methods can generate pointsets in higher dimensions.

This idea of controlled Fourier spectrum was also developed in [Zho+12], where instead of using

PCFs, they use differential analysis from [WW11] and a gradient descent analysis. Similarly

to [OG12], as their fitting is based on a isotropic measure, they find it difficult to generate

structured sampling patterns.

Finally, we can note the recent paper of [Rov+17], that uses the PCFs to generate sampling pat-

tern with adaptive density and correlations. Authors provide a framework allowing to perform

consistent analysis of such sets. However, even though such adaptive correlation can be very

useful for stippling, object placement or reconstruction, it is still unknown how they behave on

a context of Monte Carlo rendering.

We point out that all tiled based methods allow for a certain amount of spectrum control by

changing the offset table.

Variants on the Blue Noise spectrum

Other sampling patterns exist that aim at a particular Fourier spectrum, improving over the

original Blue Noise spectrum. However, for the following methods, the aim is no longer to allow

user control of the Fourier spectrum but to generate a point set with a Fourier spectrum that

was chosen to have the largest possible zero region or to avoid the oscillation in the higher

frequencies (or both).
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Fig. 3.27.: Characteristics of the Step Blue Noise sampler [Hec+13].
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Fig. 3.28.: Characteristics of the Single Peak Blue Noise sampler [Hec+13].

The first of such methods is the Step blue noise [Hec+13]. The authors aimed at obtaining a

radial spectrum in the shape of a step function (Fig. 3.27). Here, the authors mostly aim at

having a flat final spectrum. This is motivated by the idea that the high amount of energy in

some frequencies and the accompanying oscillations are the part of the spectrum that generate

most of the noise in the resulting image. In the same paper, they also propose the Single-

Peak blue noise function, that instead of presenting a range of frequencies with higher energy,

presents a single higher peak (Fig. 3.28). In both cases, the spectra are obtained from a gradient

optimization.

A very recent paper [Kai+16] tried to increase the size of the zero region to its theoretical

maximal size. To do so, they developed the Stair Blue Noise sampling pattern. They generate

such a set from a target PCF, and use a least square optimization to optimize the PCF of a

given set to match the Step Blue Noise target. The asset of this method is that it allows for a

larger zero region than other methods, which reduces the variance in Monte Carlo integration

[Pil+15].

We recall that in this document, we are focusing on unbiased samplers, therefore, in the context

of this PhD, reducing this variance is equivalent to reducing the integration error. It is this

property that motivates research for more efficient and higher dimensional Blue Noise sampling
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patterns. However, there are other ways to reduce this integration error. Another possibility

is to rely on sampling patterns with a mathematically optimal uniformity. Such samplers are

referred to as Low discrepancy samplers, and will be the topic of the next section.

3.3 Low discrepancy samplers

A sampler is usually said to be Low discrepancy if its l∞ star discrepancy in s dimensions

decreases in O(log(n)s−1/n) when the number of samples n increases. Most of those sets are

deterministic so it makes no sense to evaluate their variance properties. Instead, we simply

evaluate their integration error, using the theorem of Koksma-Hlawka [Hla61]. This theorem

states that the discrepancy of a sampler is an upper bound over its integration error, as detailed

in Section 2.4.1 on page 28. This leads to a maximal error in O(log(n)s−1/n), when using a

QMC estimator with n samples. In this section, we present a list of existing samplers whose

goal is to ensure the best possible uniformity.

The issue with most those methods is that the resulting sampling patterns present a very regular

structure and are therefore very prone to aliasing. Furthermore, as they are deterministic, it

becomes difficult to decorrelate the samples between pixels. A few methods exist to address

both those issues. Those algorithms are referred to as scrambling.

Here, we first present existing lattices samplers, before presenting common digital nets and

digital sequences. We will finish by detailing some of the scrambling methods.

3.3.1 Lattices

Lattices are usually avoided in Monte Carlo rendering as there is no sampling pattern that

generates as much aliasing as regular grids. However, such structures present no energy at all

outside the spectral peaks, therefore, for particular integrands with limited frequencies, they

can be useful. A lattice point set is defined as

Definition 1 ([Lem09], Def 5.2) For a given dimension s, a lattice point set Pn is defined

by an integration lattice Ls of the form

Ls := {v1w1 + ... + vsws, v ∈ Zs} (3.12)

where the s vectors w1, · · · , ws in Rs - which form a basis - are linearly independent over the

rational numbers and are such that Zs ⊂ Ls. The corresponding point set is obtained as

Pn := Ls ∩ [0, 1)s. (3.13)

In other words, the points in Pn are obtained by taking all integer linear combinations of the

vectors that fall in [0, 1)s. The resulting number of points n in Pn can be shown to be equal to

1/| det(W )|, where W is the s× s matrix whose ith row is wi.
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Fig. 3.29.: Korobov point set with a = 7 [Kor59]. Zoom to see the peaks in the Fourier spectrum.

To reduce the number of possible bases, we can rely on the rank r of a lattice. A Rank-1 lattice

is defined as

Pn :=

{
i

n
(z1, · · · , zs) mod 1, i = 0, · · · , n− 1

}
(3.14)

where zi ∈ N. The vector z is referred to as the generating vector. An interesting property of

such lattices is that they can be made fully projection regular simply by choosing the values for

zi to be prime with n.

One example of construction for the vector z is Korobov point sets [Kor59] (Fig. 3.29).

A Korobov point set Pn is created from a generator value a, and the following z function,

z := (1, a, a2 mod n, · · · , as−1 mod n) (3.15)

Pn :=

{(
i

n
z
)

mod 1, i = 0, · · · , n− 1

}
. (3.16)

When a and n are prime relatively to each other, Korobov point sets are fully projection regu-

lar.

Dammertz and Keller introduced those lattices for rendering purposes [DK08]. Their idea is to

perform an exhaustive search over the Korobov generators to maximize the minimum distance

between samples of the grid. This increases the size of the zero region in the Fourier Spectrum.

As such Rank 1 lattices are very efficient to compute, such sampling pattern can prove very

useful if we can ensure that there are no frequencies above this region.

For all previously presented grids, the computation of the samples requires a prior knowledge

of the total number of samples to generate. To overcome this limitation, Hickernell introduces

extensible lattice sequences [HH97]. The ith sample of such sequence is generated from a vector

z with the following function

vi := φb(i− 1)z mod 1, i ≥ 1 (3.17)

where φb is the radical inverse function in base b. In most cases, the z vector is found through

exhaustive computer search [Hic+00; GL07].
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However, even with an optimal z vector, we can point that in a typical rendered scene, we

observe a very wide range of frequencies. Therefore, in most situations, the grid structure of

the above mentioned methods will create massive aliasing artefacts. Instead, we will rather use

other low discrepancy sampling patterns, the digital nets and sequences.

3.3.2 Digital Nets and Sequences

Before diving into the details of the algorithms generating digital nets and digital sequences,

we will see more precisely what exactly is a digital net, and what is a digital sequence. The

name digital net refers to all s-D point sets in the domain [0, 1)s, defined in a basis b, that are

(t, k, s)-nets (see Definitions 2 and 3). Roughly speaking, such point sets contain bk samples,

and if you partition their domain into intervals that are fractions of bq, you will have the same

amount of samples inside each interval. When q = 0, there is a single interval containing all

samples. The smaller the factor t = k − q, (with q the highest possible value inducing a valid

partitioning) the better the uniformity of the net. More formally, Lemieux [Lem09] derives the

definitions of (t, k, s)-nets from the concept of (q1, · · · , qs)-equidistribution.

Definition 2 ([Lem09, Def 5.6]) Let q1, · · · , qs be non-negative integers, and let q1 + · · ·+qs.

A point set Pn with n = bk points is (q1, · · · , qs)-equidistributed in base b if every cell (or

elementary interval) of the form

J (r) :=
s∏

j=1

[
rj

bqj
,
rj + 1

bqj

)
, (3.18)

for 0 < rj < bqj , j = 1, · · · , s, contains bk−q points from Pn.

The intervals J (r) are called dyadic intervals.

Definition 3 ([Lem09, Def 5.7]) A set Pn containing n = bk points is called a (t, k, s)-net

in base b if it is (q1, · · · , qs)-equidistributed in base b whenever q ≤ k − t.

Figure 3.30 on the following page illustrates a (0, 4, 2)-net in base 2. This set contains 24 = 16

samples, that are equidistributed for all intervals which sizes are in 1
2q0
× 1

2q1
with q0 + q1 ≤ 4.

Figure 3.31 on page 61 illustrates a (2, 4, 2)-net in base 2. This set contains 24 = 16 samples,

that are equidistributed for all intervals which sizes are in 1
2q0
× 1

2q1
with q0 + q1 ≤ 4− 2. Note

that, as stated in [Nie92], (0, m, s)-nets in base b = 2 can only exist for s ≤ 3.

This leads us to the concept of digital sequence. A digital sequence refers to point sets of infinite

size. This means that from a digital sequence, we can generate a point set Pn with n samples,

and then, with the same algorithm, enrich this point set with m new samples to generate a new

set Pn+m. Usually, such sequence is defined implicitly. A digital sequence is a (t, s)-sequence,

which is an extension of a (t, k, s)-net.
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q0 + q1 = 4, 24−4 = 1 sample per box

q1 = 0, q2 = 4 q1 = 1, q2 = 3 q1 = 2, q2 = 2 q1 = 3, q2 = 1

q1 = 4, q2 = 0

q0 + q1 = 3, 24−3 = 2 samples per box

q1 = 3, q2 = 0 q1 = 2, q2 = 1 q1 = 1, q2 = 2 q1 = 0, q2 = 3

q0 + q1 = 2, 24−2 = 4 samples per box

q1 = 2, q2 = 0 q1 = 1, q2 = 1 q1 = 0, q2 = 2

q0 + q1 = 1, 24−1 = 8 samples per box

q1 = 2, q2 = 0 q1 = 0, q2 = 1

q0 + q1 = 0, 24−0 = 16 samples per box

q1 = 0, q2 = 0

Fig. 3.30.: (0, 4, 2)-net in base 2.
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q0 + q1 = 4, 24−4 = 1 sample per box

q1 = 0, q2 = 4 q1 = 1, q2 = 3 q1 = 2, q2 = 2 q1 = 3, q2 = 1

q1 = 4, q2 = 0

q0 + q1 = 3, 24−3 = 2 samples per box

q1 = 3, q2 = 0 q1 = 2, q2 = 1 q1 = 1, q2 = 2 q1 = 0, q2 = 3

q0 + q1 = 2, 24−2 = 4 samples per box

q1 = 2, q2 = 0 q1 = 1, q2 = 1 q1 = 0, q2 = 2

q0 + q1 = 1, 24−1 = 8 samples per box

q1 = 2, q2 = 0 q1 = 0, q2 = 1

q0 + q1 = 0, 24−0 = 16 samples per box

q1 = 0, q2 = 0

Fig. 3.31.: (3, 4, 2)-net in base 2.
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Definition 4 ([Lem09, Def 5.7]) A (t, s)-sequence is a sequence of points for which each b-

ary segment of the form v(l+1)bk−1 , · · · , v(l+1)bk−1 with k > t and l > 0 is a (t, k, s)-net in base

b.

Furthermore, if a sequence is a (t, s)-sequence, we have the following upper bound on its l∞
star discrepancy ([Nie88, Eq 3.])

D∗ ≤ cs(log(n))s + O

(
log(n)s−1

n

)
(3.19)

where cs is a constant depending on the basis b, the number of dimensions s, and most important,

on the t value. Formally, we have ([Lem09, Eq 5.6])

cs :=
1

s!
bt b− 1

2bb/2c

( bb/2c
log(b)

)s

. (3.20)

Equation ( 3.19) and ( 3.20) thus express how the t factor directly affect the low discrepancy

property of the sequence.

For the (t, ks)-net definition, the t value is the smallest t = q0 + · · · + qs−1 for which Pn is

q0, · · · , qs−1-equidistributed. Similarly, for a (t, s) sequence, the t value is the smallest such

that the subsets of Pn are (t, k, s)-nets.

Now that the concepts of digital nets and sequences are defined, we will see the existing methods

to generate such samplers. What definition 4 means, is that there exist an implicit link between

the discrepancy and the net properties of a sampler. Even though the concept of low discrepancy

is defined asymptotically and thus cannot be used to describe a single point set, we can however

say that any set that is a (t, k, s)-net has a guaranteed uniformity, as good as its t value is

low.

Many digital nets or sequences follow the same construction. The coordinate in each dimension

d of each sample can be generated from an analytic function fd, taking as parameter the index

of the sample in the set. A sample x, the ith sample of a s-D set, can be represented as

x(i) := (f1(i), ..., fs(i)). (3.21)

The function fd(i) calculates the coordinate in the dth dimension of the ith sample of the set.

Thus, the values of the fd functions are values in the domain of the sampling pattern which is

usually [0, 1)s. In most situations, the fd function computes the coordinate of the ith sample by

performing bitwise modifications to the index i.

As was detailed Section 1.4 on page 8, the bit representation in base b of a value xd ∈ [0, 1)s is

as follows:

xd =
∞∑

i=1

aib
−i (3.22)
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also represented as

xd = (.a1a2 · · · aN )b (3.23)

where ak is the kth digit of the b-ary representation of xd.

Following this, the function fd can be noted as

fd(n) := Cd ⊗ (a0, a1, · · · , aN )T (3.24)

where Cd is a N ×N matrix, and ak is the kth digit of the b-ary representation of the index n,

with N the total number of digits needed to represent n in base b. Note that as the number of

samples increases, the value of n increases as well, and therefore the value of N increases too

as more digits will be needed to represent a higher n in base b.

The ak values are defined in the F2 domain. This domain is a ring over Z/2Z with operators

for addition ⊕ and multiplication ⊗. The Cd matrices, defined in FN×N
2 , are called generating

matrices. From here, what differentiates most methods generating digital nets and digital

sequences are the Cd matrices used.

Note that if we want our resulting sampling pattern to be a (0, k, s)-net, the matrices Cd must

follow some constraints:

Theorem 1 ([Nie92, Theorem 4.28]) Let Pn be a point set of size n = 2k in base 2 and

dimension s generated from the matrices C1, · · · , Cs. Pn is a (0, k, s) net in base 2 if for all

d = (d1, · · · , dn)T ∈ Ns
0 with |d| = m the following holds

det(C
(∑s

j=1
dj

)
) 6= 0 (3.25)

where

C
(∑s

j=1
dj

)
:=




c1
1,1 · · · c1

1,m
...

c1
d1,1 · · · c1

d1,m
...

cs
1,1 · · · cs

1,m
...

cs
ds,1 · · · cs

ds,m




∈ Fm×m
2 (3.26)

with Cj :=
(
cj

k,l

)m

k,l=1
for j = 1, · · · , s. This means C

(∑s

j=1
dj

)
is an m ×m matrix consisting

of the first dj rows of the generator Cj for all j = 1, · · · , s.

A careful reader will have noted that Theorem 1 only applies to digital nets. Further constraints

apply for generating digital sequences. We would like to first point out that if a matrix Cd is not

upper triangular, the resulting sampler is not a (0, s)-sequence. To be a sequence, a sampler

has to be able to increase the size of the Cd matrices on the fly, without changing the result of

3.3 Low discrepancy samplers 63

Lowres version



6

-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

R
a
d
ia

l 
P
o
w

e
r 

S
p
e
c
tr

u
m

Frequency

P1024
Fourier Spectrum on 8192

samples
Radial Average on 8192

samples

Fig. 3.32.: Halton point set [Hal64].

the computation of the previous indices. Therefore, all values below the diagonal must be 0, to

act as neutral elements in the computations and therefore preserve the position of the previous

samples. When generating digital nets, we do not need to increase the size of the matrix on

the fly as we already know the number of samples required. Therefore, we also do not need the

matrix to be upper triangular. We will detail this further as we present the common existing

digital sequences and digital nets.

Digital Sequences

The first and simplest digital sequence is the Van der Corput sequence [Cor35]. This 1-D

sequence generates the coordinates of the ith sample by reversing its digit in base 2. This

translates in Equation 3.24 on the previous page as

(a0, a1, · · · , aN )T = I⊗ (b0, b1, · · · , bN )T (3.27)

where I is the identity matrix, x = (.a0a1 . . . aN )b and i = (bN . . . b1b0)b. The Van der corput

sequence is often denoted φ.

This sequence was extended by Halton [Hal64] to a s-D sequence through the use of different

bases in each dimension. When you perform a 1-D bit reversal in a basis b, it sums up as dividing

your domain into bn intervals and putting one sample inside each interval. In s-D, if the bases

used are prime numbers on all dimensions, one is guaranteed that the intervals will not be

aligned between dimensions and therefore the sequence will be low discrepancy. Furthermore,

this use of several basis also helps reducing the regularities and therefore the peaks in the

resulting Fourier spectrum (Fig. 3.32).
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Fig. 3.33.: Sobol point set with t = 0 [Sob67].

The Sobol Sequence

For sequences using a single basis, the most famous (t, s)-sequences is probably the Sobol

sequence [Sob67] (Fig. 3.33). Defined in base 2, this sequence builds the matrices Cd from

primitive polynomials. The choice of the primitive polynomials used will affect greatly the

result of the sampling pattern (Fig. 3.34 on the following page).

The list of all the primitive polynomials usable for this sequence can be found in [Oei]. Each

polynomial is referred to using its index in this list. We build each Cd matrix from the polyno-

mials using the following algorithm, which can also be found in [JK08]. We remind that each

dimension uses a different Cd matrix, generated from its corresponding primitive polynomial.

We start with a primitive polynomials of degree k in the field F2, denoted as

xk ⊕ a1xk−1 ⊕ a2xk−2 ⊕ · · · ⊕ ak−1x + 1 (3.28)

where the coefficients ai are either 0 or 1. A set of numbers m1, m2, · · · is built from the following

recurrence relation

mj := 2a1mj−1 ⊕ 22a2mj−2 ⊕ · · · ⊕ 2k−1ak−1mj−k+1 ⊕ 2kmj−k ⊕mj−k (3.29)

You may have noticed from this equation that it requires an initial subset of mj value to iterate

upon. Those values can be chosen freely, as long as for each mj with 1 ≤ j ≤ k, mj is odd

and mj is lesser than 2j . Those conditions ensure that the binary Cd matrix formed for the mj

values will present 1 on its diagonal and will be upper triangular. Those numbers are used to

create the set of direction numbers {v1, v2, · · · } with

vj =
mj

2j
(3.30)
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(a) Polynomials
1 and
x + 1, corresponding to in-
dices 0 and 1.

(a) Polynomials
x2 + x1 + 1 and
x3 + x + 1, corresponding to
indices 3 and 4.

(a) Polynomials
x3 + x2 + 1 and
x4 +x1 +1, corresponding to
indices 5 and 6.

Fig. 3.34.: Sobol sets with polynomials of different degrees

Finally, the Cd matrix is created by concatenating the vj values, expressed in binary, as its

columns. Meaning, if we denote vi
j the ith bit of the number vj , we have

Cd =




v0
1 v0

2 v0
3 · · ·

v1
1 v1

2 v1
3 · · ·

v2
1 v2

2 v2
3 · · ·

...
...

...
...




=




1 v0
2 v0

3 · · ·
0 1 v1

3 · · ·
0 0 1 · · ·
...

...
...

...




. (3.31)

The simplification to an upper triangular matrix is guaranteed from the conditions on the initial

mj values.

The Sobol sequence has been proven to be a (t, s)-sequence. However, the higher the degree

of the polynomials, the higher the t value and therefore the worse the quality of the sampling

pattern. Formally, we have

t :=
s∑

d=1

kd − 1, (3.32)

where kd is the degree of the polynomial used in the dth dimension [Lem09]. It is interesting to

know that there is a limited number of primitive polynomials of each degree, and that to be a

(t, s)-sequence, the Sobol sequence can not use the same polynomial twice. Therefore, the higher

the dimension of the point set, the worse its uniformity. This is illustrated in Figure 3.34.

This drawback is actually true for most of the low discrepancy sequences. One way to alleviate

this issue is to permute the digits of the sample index before computing its coordinate. This

does not change the position of the samples of the sequence but it changes their order in this

sequence. This can be done using Gray Code. Each index i is replaced with its Gray Code

equivalent, denoted G, as

G(i) := i⊕
[

i

2

]
(3.33)

where the ⊕ operator is the logical xor operator, and [.] represents the integral part function.

Note that the function G takes as input an integer i ∈ N, and outputs another integer G(i) ∈ N.
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samples
The first 12 Gray code
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Fig. 3.35.: Application of Gray Code on a Sobol sequence.

Applying Gray Code changes Equation 3.24 on page 63, that generates the dth dimension of the

ith sample of the s-D sequence defined from a set of s generative matrices {Cd}, to

(cN , · · · , c0)2 = G(i)(a0, a1, · · · , aN ) = Cd · (c0, c1, · · · , cN )T . (3.34)

The impact of Gray Code is illustrated Figure 3.35.

The Sobol sequence was later extended in several ways. In [Tez95], Tezuka obtained a sequence

no longer restricted to primitive polynomials. In [Fau82], the Faure sequence was developed.

This sequence aims at building (0, s)-sequences in base b, relying on Pascal Matrices raised

to the power j, j = 0, · · · , s. Note that this construction requires that s ≤ b, which prevent

a dynamic increase of the number of dimensions. Finally, Niederreiter [Nie88], extended this

sequence to bases b 6= 2, which were further extended to Niederreiter-Xing sequences [NX95],

where t increases linearly with s (instead of exponentially for other sequences), which is the

optimal achievable rate.

All the sequences presented above allow for a direct generation of the ith sample, without any

prior knowledge of the total number of sample of the point set. This property adds constraints

on the sample generation that limit the number of possible sampling patterns. If we choose to

remove the sequentiality, we will generate digital nets, which are less constrained than digital

sequences and therefore allow for new sampling patterns.
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Digital Nets

An interesting property of digital sequences is that any digital sequence defined in dimension s

can be turned into a digital net in dimension (s + 1) [Nie92]. To do so, simply set the matrix

Cs+1 as

Cs+1 :=




0 0 · · · 0 1

0 0 · · · 1 0

0 1 · · · 0 0

1 0 · · · 0 0




(3.35)

This can be intuitively defined as setting the (s + 1)th coordinate of the ith sample in a point

set of size n as i
n .

The Hammersley point set [Ham60] is the combination of this property with the Van der Corput

sequence (Fig. 3.36 on the facing page). This set is defined in 2-D, where the ith sample x is

defined as

x :=

(
φ(i),

i

n

)
(3.36)

with φ being the Van der corput sequence and n being the size of the point set. Expressed in

the framework of Equation 3.24 on page 63, we have

C1 =




1 0 · · · 0 0

0 1 · · · 0 0
. . .

0 0 · · · 1 0

0 0 · · · 0 1




(3.37)

C2 =




0 0 · · · 0 1

0 0 · · · 1 0
...

0 1 · · · 0 0

1 0 · · · 0 0




(3.38)

Due to the high structure induced by the implicit definition of the sampling patterns, Digital

nets are deterministic and regular sampling pattern. When used in rendering, this generates

aliasing and correlation between pixels. To alleviate this, scrambling algorithms were devised

and will be presented in Chapter 4.

3.3.3 Conclusion

In conclusion, among existing samples we can denote three major families. The stochastic

historical samplers, the Blue Noise samplers, and the Low Discrepancy analytically defined
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Fig. 3.36.: Hammersley point set [Ham60].

samplers. Each of those families have its pros and cons, as illustrated on the graphs 3.37 and

3.38.

On the graph 3.37, we roughly compare the performances of the main samplers for each family,

with respect to their spectrum quality, and their discrepancy. A spectrum is considered of good

quality if it is close to the Blue Noise spectrum and does not present spectral peaks. For the

discrepancy, the right most samplers are those that are Low Discrepancy. We can note that the

best Low discrepancy spectrum is also the one with the worst Fourier spectrum, and that the

discrepancy of the sampler with the best spectrum is only average.

The graph 3.38 regards mostly the practicality of various samplers. A sampler can present the

best spectrum and Low discrepancy, if it can’t be used in practice it is rather pointless. On this

graph, we compare samplers with regard to their computational efficiency (the speed at which

they can generate high amount of samples), and their dimensionality (a higher dimensionality

means a sampler can generate samplers in higher dimensions). Both those characteristics are

mandatory for rendering, as we solve recursive higher-dimensional integrands, and generate

several hundreds of samples per pixels. It can be seen on this graph that canonical and Low

Discrepancy samplers are very practical, when Blue Noise samplers are almost impossible to

use in a rendering context, despite the quality of their spectrum.

Following this, we conclude that historical samplers have a spectrum of reasonable quality (in

the sense that is does not generate aliasing) and are efficient for higher dimensions. Blue Noise

samplers present an optimal spectrum and are therefore ideal for Monte Carlo Rendering as they

have a very low variance and do not generate aliasing. However, such samplers are limited to

low number of dimensions, and are not computationally efficient. Finally, the low discrepancy

samplers present a very low error in integration, are very efficient even in high dimensions thanks

to their analytical definition, and some also allow for iterative addition of samples. However,

their structured sampling patterns induce strong aliasing when used in Monte Carlo rendering.

Table 3.1 on the following page sums all the integration errors (or MSE) of various samplers,

presented in this chapter.
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Sampler Worst Case MSE/Error2 Discrepancy

Whitenoise O(1/n) O(1/
√

(n))
Stratified O(1/(n

√
n))

Poisson Disk O(1/n)
Blue Noise O(1/(n

√
n))

Low Discrepancy O((log(n)/n)2) O(log(n)/n)
Tab. 3.1.: Worst case convergence speeds of the integration error when using warious sampling patterns,

along with their discrepancy.

In this PhD, we aimed at creating hybrid samplers. Those samplers would have both a Blue

Noise spectrum and be Low Discrepancy. This allows them to have the lowest error in inte-

gration, without any aliasing, while still being computationally efficient in higher dimensions.

Chapter 5 on page 93 will now present a first Low Discrepancy Blue Noise sampler (LDBN)

that was developed jointly by us and the Universities of Konstanz and Shengen. This sampler

is a first step towards hybrid samplers but it is still limited to 2-D and does not present any

sequential properties. Then, Chapter 4 on page 74 will present simplistic methods (inspired

from energy minimization or genetic algorithms) to develop multi-dimensional low discrepancy

sequences with controllable spectrum. Finally, Chapter 6 on page 107 will improve upon those

naive ideas to present a new scrambling technique applied on the Sobol sequence that preserves

its sequentiality while both giving a Blue Noise spectrum to its 2-D projections and maintaining

their Low Discrepancy property. It also maintains some uniformity of the s-D set.
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Fig. 3.37.: Overview of common state of the art samplers regarding spectral quality and discrepancy.
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4Optimizing a set

As shown in Section 2.1.1 on page 17, the discrepancy of a set creates an upper bound on the error

of the Monte Carlo integration using this set. Therefore, the lower the discrepancy the lower

the bound on the error. However, most low discrepancy samplers are highly structured, which

generates aliasing when used for rendering an image. On the other hand, among stochastic

samplers, the best distribution of samples for MSE reduction is the Blue Noise distribution

(Section 2.4.2 on page 30). This distribution also does not present any spectral peaks and thus

does not generate aliasing. We thus try to create sets that are both Low discrepancy and Blue

Noise, in hope to have an optimal low in integration error along with an anti aliased spectrum.

In this Chapter, we present a few naive methods to improve the spectrum or the discrepancy of

various samplers. The first category of methods, Section 4.1, aimed originally at randomizing

Low Discrepancy analytic samplers. However, we will see that one of those methods, named

Owen’s scrambling [Owe95], also allows to improve the Fourier spectrum of point sets.

In a second time, Section 4.2 on page 79 presents our adaptation of Owen’s scrambling that

allows to generate samples sequentially. Finally, Section 4.3 on page 80 and Section 4.4 on

page 84 presents our early attempts to either improve the discrepancy of a Blue Noise set or to

scramble a Low Discrepancy set to give it a Blue Noise Fourier spectrum.

4.1 Randomizing Low discrepancy sets

In general, all the Low Discrepancy point sets and sequences presented Chapter 3 show very

regular point placement. This leads to peak in their Fourier spectrum which in turn lead to

aliasing. Furthermore, those point sets are deterministic, which is an issue in rendering as using

the same point set in each pixel also leads to aliasing due to pixel correlation. In this section,

we present some common randomizing algorithms to alleviate those correlations.

4.1.1 Shifting

The easiest method to randomize point sets are the digital shifts. Such methods combine each

sample of the set with a single randomly chosen input. They thus do not break the sequentiality

of an input sequence.
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The most straightforward one is the Cranley-Patterson shift [CP76]. This applies a toric digital

shift, chosen randomly, to a point set. More formally, with this method, a sample x is shifted

to create a new sampler x′ from a shift vector v with the following formula

x′ := x + v mod 1, (4.1)

where the + operator performs the coordinate wise sum of the two vectors.

This scrambling efficiently decorrelates the pixels in rendering while preserving the Fourier

spectrum of the set. Following [KN74, Lemma 1.1], such method preserves the uniformity of

the given set. Note that if this scrambling is applied on a Digital net, it does not preserve the

net properties of the input set.

If one needs to preserve the net properties of the set, one can use the Digital shift. This method

takes a vector at random and performs a xor in base b between this vector and all samples. If

we denote x′′ the Digital shifting of x with a vector v, we have

x′′ := x⊕ v, (4.2)

where the ⊕ operator performs the coordinate wise xor of the two vectors.

Shifting methods are extremely efficient when it comes to randomizing a point set. However,

they pretty much do not do anything else. In the following subsections, we will see other

randomizing methods that affect the Fourier spectrum of a point set. We will start by presenting

a 1-D scrambling method, that we will reuse in Chapter 5 on page 93 to adapt the spectrum

of a Low Discrepancy set. Then, we will present Owen’s scrambling, which will be reused in

Chapter 6 on page 107.

4.1.2 Chunk based 1-D scrambling

In [KN74], we can find the following theorem,

Theorem 2 ([KN74, Chapter 2, Theorem 4.1]) Let Pn := {x1, x2, · · ·xn} and P ′
n := {y1, y2, · · · , yn}

be two finite sequences in [0, 1). Suppose ε1, ε2, · · · , εn are nonnegative numbers such that

|xk − yk| ≤ εk for 1 ≤ k ≤ n. Then, for any ε ≥ 0, we have

|D∗(Pn)−D∗(P ′
n)| ≤ 2ε +

N(ε)

n
(4.3)

where N(ε) denotes the number of k, 1 ≤ k ≤ N , such that εk > ε.

This theorem starts with two 1-D indexed sets of samples, such that for all i, the ith sample of

the first set can be paired with the ith sample from the other set. The theorem then states that,

if the difference between paired samples does not exceed a value ε, then the difference between

the discrepancies of both input sets is in O(1/n), and is bounded by 2ε + n/n.
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In our case, we will use this theorem to evaluate how much scrambling a 1-D Low discrepancy

sequence affects the discrepancy of the original sampling pattern. Instead of having two different

sequences as input, we will take a 1-D Low Discrepancy sequence S, and then its scrambled

version. We then see that if we scramble it locally, the difference between the discrepancy of

those sequences is bounded by the size of the scrambled subset. We will come back to this in

Chapter 5 on page 93, where we will give formal definitions and formal proofs for this. We

will also see how this 1-D theorem can be used in a 2-D context for spectral control of Low

Discrepancy sequences.

There exists another method, that scrambles sets of higher dimensions, Owen’s scrambling

[Owe95], (already used for Rendering in [Vea97]). This method allows to preserve the discrep-

ancy of a full s-D set by randomly scrambling each 1-D projections of this set. It can also

impact the Fourier Spectrum of the initial set, and therefore served as a basis for most our

experiments.

4.1.3 Owen’s scrambling

For the particular case of digital nets, advanced scrambling method exists [Lem09]. The most

important one for us is the Owen’s scrambling [Owe95], also referred to as fully random scram-

bling.

This scrambling usually applies on sets that are (t, k, s)-nets, and guarantees to preserve the net

properties of the set. It could be applied on other categories of sampling patterns but would

not be as easy to implement and we would not have any guarantees on the resulting set.

It relies on swapping some coordinates of some samples, randomly chosen. This swapping

is performed independently over each dimension. A s-D point set is permuted using s 1-D

permutations, one for each dimension. Therefore, we can detail this scrambling in 1-D without

any loss of generality.

Geometrically, a domain Ω is recursively subdivided by a factor 2. Then, a binary tree of

boolean flags is used to determine if two subdivisions of space are to be swapped or not. Each

flag of this tree corresponds to a pair of neighbouring subsets of the domain, and by filling

this tree of boolean flag with random values, we will randomly swap portions of space. This is

illustrated in 1-D Figure 4.1 on the next page and in 2-D Figure 4.2 on the facing page.

We now give a more formal definition of this scrambling. For a set of n 1-D samples Pn, if Pn

is a (t, k, 1)-net, each sample can be expressed as an integer, defined in base 2 by d = log2(n)

bits. Thus, Owen’s scrambling of this set requires a binary tree of depth d. This tree is filled

with a set of n− 1 boolean flags chosen randomly. Formally, a boolean tree is defined as a set

of flags {Bj}, where j is the binary vector representing the id of this flag at a given depth i.

The length of the binary vector j allows to retrieve the level i of a given flag.
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Fig. 4.1.: Owen’s scrambling algorithm in 1-D [Owe95]

Original Image Scrambling on dimension (x, y)

Scrambling on dimension x Scrambling on dimension y

Fig. 4.2.: Geometric illustration of Owen’s scrambling algorithm in 2-D [Owe95]
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B(.)

B(0) B(1)

B(00) B(01) B(10) B(11)

B(000) B(001) B(010) B(011) B(100) B(101) B(110) B(111)

This boolean tree is then applied on each 1-D sample of the set. Let us consider a 1-D sample

with coordinate x ∈ [0, 1) defined in base 2 with digits ai (i.e. x :=
∑∞

i=1 ai2
−i). Owen’s

scrambling creates a new 1-D point π(x) from a tree of depth d. The initial sample x is

defined in base 2 as x = (.a0a1 · · · aN ) Each digit ak of this point is xored with the flags in the

permutation tree as follows, leading to a new set of bk digits:

b0 := B(.) ⊕ a0

b1 := B(a0) ⊕ a1

b2 := B(a0a1) ⊕ a2

...

bd−1 := B(a0a1···ad−2) ⊕ ad−1

where the ⊕ operator performs the binary xor between two boolean values. This leads to a

final scrambled point

π(x) := (.b0b1 · · · bd−1adad+1 · · · aN ) (4.4)

(note that if N < d, we have ∀k, k > N, ak = 0).

This means that Owen’s scrambling goes through all digits and swaps the digit ai if its associated

flag is set to 1 in the tree at depth i. Geometrically, swapping a digit ai swaps all samples with

the same a0...ai binary prefix (thus all the samples that geometrically belong to the same

portion of space). Owen’s scrambling in 1-D therefore implies successive permutations between

intervals of points of size 2−i+1. Please refer to [Grü+12] for efficient implementations of this

algorithm.

Note that this scrambling, when applied on a digital net, has the interesting property of both

preserving the Low Discrepancy property of this net (meaning that it preserves its equidistribu-

tion), and of being able in some cases to remove the peaks in its Fourier Spectrum (Fig. 4.3 on

the next page). This removal of the peaks happens with a probability one when the permutation

trees, that control if two subintervals of space are swapped, are filled at random with a high

enough depth d. This leads to a random exchange of samples coordinates, which breaks the

original structure or the net.
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Fig. 4.3.: Owen’s scrambling [Owe95] applied on a Sobol sequence [Sob67]. The measurements were
done on a single realisation of this scrambling.

4.2 Owen’s scrambling, from a random set to a random

sequence

In the previous section, we presented the original Owen’s scrambling algorithm. This algorithm

manages sets of samples. As the depth d of the tree is fixed, this algorithm implicitly assumes

that we have only 2d samples, and therefore, it is not sequential. If one tries to iteratively

increase the size of this tree with randomly chosen flags, maintaining the consistency between

samples would require re-evaluating this tree for all samples, which might move previously

scrambled samples, thus breaking the sequentiality.

Our goal is to be able to iteratively increase this tree without having to re-evaluate this tree for

previously existing samples, while still preserving the consistency of the whole sequence. To do

so, we rely on the two following observations:

• Each boolean tree of depth d has 2d−1 different branches, identified as the binary vector

of the id of their leaf node (a0, a1, . . . , ad−1). Each branch applies to the pair of samples

whose d− 1 first digits are (a0, a1, . . . , ad−2).

• If all the flags along the branch (a0, a1, . . . , ad−1) are 0 values, the samples with coordinate

(.a0a1 . . . ad−20)2 and (.a0a1 . . . ad−21)2 will not be moved by scrambling.

Following those observations, it appears that we can iteratively increase the size of a permutation

tree, creating a new tree of depth d + m, without affecting previously existing samples. To do

so, we need to figure out which branches apply to those samples, and to fill the extensions of

those branches with flags at 0.

For example, the following tree of depth 3:
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B(.)

B(0) B(1)

B(00) B(01) B(10) B(11)

can be extended, while preserving sequentiality, to the following tree of depth 5:

B(.)

B(0) B(1)

B(00) B(01) B(10) B(11)

0 B(··· ) 0 B(··· ) 0 B(··· ) 0 B(··· )

0 B(··· ) B(··· ) B(··· ) 0 B(··· ) B(··· ) B(··· ) 0 B(··· ) B(··· ) B(··· ) 0 B(··· ) B(··· ) B(··· )

Depending on the size of m, only m · 2d flags are required to be 0, leaving the remaining

2d+m −m · 2d flags to be randomly chosen. Note the trade-off regarding the m value, if m is

too small, the point set will not be properly anti-aliased, (Fig. 4.4 on the facing page) if m is

too big, you may end up will evaluating a very deep tree for only a small set of samples.

With this contribution, one can use Owen’s scrambling in a high dimensional sequential context.

However, it still does not generate sets that are Blue Noise. A further extension of Owen’s

scrambling is presented in Section 4.4 on page 84 that allows generating small patterns with

Blue Noise spectrum and Low discrepancy. Before that, we present in Section 4.3 another

contribution that aims at improving the discrepancy of a stochastic pattern.

4.3 From an Anti-aliased to a Low Discrepancy set

In this section, we present a simple method that can be used to reduce the discrepancy of a

pre-existing set. In its current state, our method takes as input a given set (for example from

the BNOT sampler [DG+12]), and optimizes its generalized l2 star discrepancy. Where the

l∞ star discrepancy keeps the maximal observed difference, the generalized l2 star discrepancy

averages all the squared differences observed from the area of anchored boxes and samples:

(D2(Pn))2 :=

(
4

3

)s

− 2

n

n∑

i=1

s∏

j=1

3−
(
x

(i)
j

)2

2
+

1

n2

n∑

i=1

n∑

i′=1

s∏

j=1

[
2−max

(
x

(i)
j , x

(i′)
j

)]
. (4.5)

The main idea, in this section, is to solve the following optimization problem:

Find point set P ∗(n) such that D2(P ∗
n) is minimal.
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Fig. 4.4.: Spectral comparison between Owen’s scrambling, and our adaptation; both applied on the
same Sobol Sequence. We can see that for small m values, artefacts still appear but as m
increases, there is no longer any visible difference between our set and the original Owen.
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We follow a variational approach expressing the variation of the discrepancy as we slightly move

a given point (i.e. its derivative with respect to sample positions). First, we observe that max

terms in Eq. (4.5) cannot be differentiated. We first rewrite (4.5) using a smooth approximation

of the max (sometimes referred as softmax):

Mα(u, v) :=
ueαu + veαv

eαu + eαv
. (4.6)

This smooth approximation tends to the maximum value between u and v as α increases. A

key property is that M can be differentiated with respect to u (similarly to v):

∂Mα

∂u
(u, v) =

eα(u+v)(α(u− v) + 1) + e2αu

(eαu + eαv)2
. (4.7)

Replacing the max by Mα in (4.5) leads to a differentiable definition of the (square of the)

generalized l2 discrepancy. More precisely, for a given 2-D sample x(i) := (xi, yi), we obtain the

explicit gradients of discrepancy at this given point along its components:

∂(D2(Pn))2

∂xi
=− 2 + yi+

2
n∑

j=1

(
2

(
−eαxi

+ eαxi

αxi

eαxi + eαxj +
αeαxi

(eαxi

xieαxj

xj)

(eαxi + eαxj )2

)(
2− eαyi

yi + eαyj

yj

eαyi + eαyj

))
,

(4.8)

∂(D2(Pn))2

∂yi
=− 2 + xi+

2
n∑

j=1

(
2

(
−eαyi

+ eαyi

αyi

eαyi + eαyj +
αeαyi

(eαyi

yieαyj

yj)

(eαyi + eαyj )2

)(
2− eαxi

xi + eαxj

xj

eαxi + eαxj

))
.

(4.9)

We can now combine all independent gradients into a single vector

∇(D2(Pn))2 :=
((

∂(D2(Pn))2

∂xi , ∂(D2(Pn))2

∂yi

))
i=0...n−1

for all points i of Pn to define . For convex

energy function, optimal sample positions P ∗
n would have been obtained solving∇(D2(Pn))2 = 0.

In our context, Eq.(4.5) is not convex and has many local minima. We minimize the non linear

energy using a simple Gradient Descent approach as described in Algorithm 1: we move each

point of a given pattern to the opposite direction of its gradient by a factor (until the gradient

norm is below a given threshold). Many improvements exist using for instance a line search

to find a better λ at each step, or higher order schemes using Newton’s or Quasi-Newton’s

approaches. We just describe here a proof of concept that already gives interesting results.

Again, the fixed point of the algorithm may not be a global minimum but the improvement in

terms of discrepancy is valuable while preserving the spectral properties of the starting point

set.

To compute the gradient at a point x(i) (line 4), we have experimented several strategies:

82 Chapter 4 Optimizing a set

Lowres version



Algorithm 1: Simple gradient descent algorithm to minimize the generalized l2 star
discrepancy.

Input: A 2-D point set Pn to optimize and a threshold τ .
Output: A 2-D point set Pn with a lower discrepancy.

1 repeat
2 l2norm ← 0;
3 forall x(i) ∈ Pn do

4 ∇x(i) ← computeGradient(x(i));
5 x(i) ← x(i) − λ · ∇x(i);
6 l2norm ← l2norm + ‖∇x(i)‖2;
7 end

8 until l2norm < τ ;
9 return Pn;

Explicit smooth gradients: use explicit gradients using Eq. (4.8) and (4.9). As discussed

earlier, we need the smoothing factor α to be large to have a robust approximation of

the max operator. The main issue is that as the number of points increases, we need to

also increase α to refine the approximation. For large point sets (n > 500), we observe

numerical inconsistencies leading to incorrect results or non-convergence of Algorithm 1.

Auto-differentiation of the non-smooth generalized discrepancy: another solution consist

in considering the non-smooth original definition of the Generalized discrepancy (hence

with the max). In that case, the gradient is obtained using automatic differentiation of

the function computing the energy. The auto-differentiation tool ([Dcp]) will differentiate

the singularities around the “if” statements involved in the energy expressions for the max

terms, leading to an expression of the code-based gradient that we can use in the Gradient

Descent1.

Results given below have been obtained using the second approach.

Figure 4.5 on the next page shows how changing the position of a single sample affects the overall

discrepancy. The discrepancy of the point set on the left is computed for various displacements of

the red sample, and the results are plotted on the right. We can see that the lowest discrepancy

is achieved as the red sample moves towards the origin, as intuitively expected when seeing the

point set.

Figure 4.6 on page 85 shows the Fourier spectrum of a Blue Noise set obtained from the BNOT

algorithm [DG+12], and the Fourier spectrum of this same set after optimization. We can note

that a black cross appears in the middle of the spectrum. This cross appears as, to reduce

the discrepancy, the samples aligned on either axis were pushed away from each other by our

optimization.

1Auto-differentiation tools use operators overloading to obtain the derivative h′(y) at a point y

of a code expression h := f(g(k(x))). Basically, the tool uses an automatic chain rule
to compute the derivative at y back-propagating the values through the source code graph
(https://en.wikipedia.org/wiki/Automatic_differentiation)
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Fig. 4.5.: The measured discrepancy when changing the position of the red sample.

Figure 4.7 on page 86 presents the discrepancy of the original BNOT sampler, compared with

its discrepancy after minimizing its generalized l2 discrepancy. This Figure presents two graphs,

showing the evolution of the l∞ star discrepancy, and the evolution of the generalized l2 star

discrepancy.

For now, this method is still limited but we hope that, by combining it with Oztirelli’s method

to fit a point set to a given PCF [OG12], and by porting on the GPU, we could generate very

quickly stochastic low discrepancy sets with a given Fourier spectrum, even for a high number

of samples. We further could add an adaptivity criterion to our sets, using local discrepancies

measures and PCF. But this is all for future work.

4.4 From a Low Discrepancy to an Anti-aliased set

The methods presented in this second section aim at scrambling/generating Low discrepancy

sets to control their Fourier spectrum. We start by presenting an existing method, that op-

timizes generative matrices from exhaustive search (Section 4.4.1). We then present our new

contributions, based on genetic algorithms, to generate Blue Noise sets from Owen’s scrambling

on the Sobol sequence (Section 4.4.2 on page 87).

4.4.1 Generative matrices

To generate Low discrepancy sets, a solution is to generate digital nets in base b. To do so, one

needs s b-ary matrices (one for each dimensions), constrained by the Theorem 1 on page 63.

Then, by computing the matrix vector product of the b vector of the index of samples and the

appropriate matrix for each dimension, one generates a set of s-D samples that form a digital

set.

In [Grü+08], authors aim at generating 2-D digital sets while maximizing the minimal distance

between samples. To do so, they start by exploiting a previously mentioned property of s-D

digital sequences; they can be turned into (s+1)-D digital sets by setting one of their generating

matrices as a mirror identity matrix. In their paper, the authors want to generate (0, k, 2)-nets
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Fig. 4.6.: Top: The original BNOT set, Bottom: Results of our discrepancy optimization. The black
cross in the spectrum is characteristic in sets with lower discrepancy.
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Fig. 4.8.: (0, k, 2)-nets with maximized minimum distance [Grü+08].

maximizing the minimal distance between pairs of samples of the set. They do this by setting

the matrix C1 as a mirror of the identity matrix:

C1 :=




0 0 · · · 0 1

0 0 · · · 1 0
...

0 1 · · · 0 0

1 0 · · · 0 0




. (4.10)

Then, they simply perform an exhaustive search on all the possible generating matrices to find

C0, and keep the matrices that generated sets with the maximal minimal distance. This kind

of exhaustive search limits them to 2-D sets of small size (up to 1024 samples), therefore, they

suggest that those matrices can be increased by padding them with the identity matrix.

Even though they did manage to have a higher minimal distance between samples, we cannot

say that their spectrum is Blue Noise or aliasing free (Fig. 4.8). Their issue is that, to make

their exhaustive search feasible, they enforce the C1 matrix, and, as that they generate digital

nets, the matrix C0 is highly constrained. Thus, they do not have a lot of freedom to generate

their sets of samples.

We tried to alleviate some of those issues in Section 4.4.2 by using genetic algorithms and

Owen’s scrambling to perform our searches.

4.4.2 Genetic algorithms

Our goal is to optimize a Low Discrepancy point set. To do so, one way is to rely on a definition

of this point set using a numerical structure, that can only take a finite number of values.
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In the case of [Grü+08], their point sets were defined by a binary matrix. In our contribution,

we chose to define our sets as a set of Owen’s permutation trees, along with the initial Sobol

set to scramble (each distinct initial set requires distinct permutation trees).

Note that for a s-D point set of size n, we have 2sn possibilities for those permutation trees.

We can thus generate optimal patterns for 2-D sets with a small number n of samples through

an exhaustive search on all the possible Owen permutation trees. But, for merely n = 16 and

s = 2, we need to test 232 possibilities.

This exhaustive search is therefore impossible for higher dimensions or higher n values. Fortu-

nately, the issue of finding the optimal solution in a space way too big to be entirely covered

is well known in many domains, there are many algorithms that can optimize our search. We

chose here to use genetic algorithms.

Our method initializes a population of permutation trees with random values. Each of those

trees, once applied on the input point set leads to a scrambled set, that we will denote as an

individual. Then, we sort those individuals using either the distance between their PCF and a

target PCF, or simply by computing the minimal distance between samples (for Blue Noise).

Once those individuals are sorted, we retrieve the best ones, that will form a set denoted the

elite set. We then create new individuals by either crossing our elite individuals, or generating

new random values. In our experiments, we crossed individuals by exchanging chunks of their

permutation trees. We then keep iterating like this a finite number of times, or until we reached

a good enough individual. This algorithm is given as Algorithm 2 on the next page.

Note that our method can become very expensive as the size of the population and the number

iterations grows. This expensiveness of the method is partly alleviated as trees can be random-

ized. To randomized an optimized tree of depth d, simply keep the first d− 1 levels as they are

and fill the dth level with random values. The movement on samples will be minimal and will

not affect much the quality of the final spectrum.

For small pointsets, we compare the results of this algorithm with the results from an exhaustive

search in Figure 4.9 on page 90. Figure 4.10 shows how our optimization evolves with the

number of iterations. Note that on both those figures, only small point sets are presented. As

it is impossible for such small sets to be characterized using a PCF and a Fourier spectrum, we

used the minimal distance between samples, denoted D. The higher this distance, the better

the point set.

The results of our genetic search for sets with higher number of samples are given in Figure

(Fig. 4.11 on page 90). This figure shows that for larger point sets, we no longer observe any

improvement in the spectrum. This is due to the number of solutions that grows too much for

a naive algorithm such as ours to find anything worthwhile.

Both methods, our genetic algorithms and the matrices from [Grü+08] have the same drawbacks.

They both present results that are an improvement (though but not as good as we would like

them to be), but they are so computationally expensive that they are impossible to use in
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Algorithm 2: Our genetic algorithm to optimize Owen’s permutation trees.
Input: A s-D point set to optimize
Output: A set of Owen’s permutation trees optimizing the input point set

1 sizePopulation ← 100;
2 nbIterations ← 1000;

// Initialize Population.

3 population ← {};
4 repeat
5 individual.trees ← newRandomTrees();
6 individual.score ← 0;
7 population ← population ∪ individual;
8 until i < sizePopulation;

// Iteratively sort and crosses individuals.

9 repeat
10 forall individual ∈ population do
11 individual.score ← evaluateIndividual();
12 end

// The higher the score the better the individual.

13 sortPopulation();
// Creating a set with all the best individuals.

14 elitePopulation ← {};
15 repeat
16 elitePopulation ← elitePopulation ∪ population[i];
17 until i < sizePopulation

10 ;
// Using the elite individuals to create a new set of individuals.

18 forall individual ∈ population do
// We either mutate randomly or acquire genes from a member of

elite individuals.

19 if random() mod 2 = 0 then
20 crossIndividual.trees ← newRandomTrees();
21 else
22 crossIndividual ← getRandomEliteIndividual();
23 end

// Replace part of the individual flags with the flags from

crossIndividual

24 cross(individual,crossIndividual);
25 end

26 until i < nbIterations;
27 return population[0].trees;
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Iteration 1000
D ≈ 0.225

Exhaustive
D ≈ 0.225

Fig. 4.9.: Comparison of the results our genetic algorithm with a point set of 16 samples and an initial
population of 200 random individuals, with the results from the exhaustive search.

Iteration 1
D ≈ 0.0563

Iteration 10
D ≈ 0.0662

Iteration 100
D ≈ 0.0698

Iteration 1000
D ≈ 0.0911

Fig. 4.10.: Evolution of our genetic algorithm with a point set of 64 samples and an initial population
of 200 random individuals.
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Fig. 4.11.: Characteristics of our genetic algorithm.
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practice. In the following chapters, Chapter 5 and Chapter 6, we will present more advanced

methods of the same category (trying to optimize a Low Discrepancy set to generate a Blue

Noise Low Discrepancy set), that generate efficiently sets or sequences with a spectrum of higher

quality.

4.5 Conclusion

All the methods presented in this section aim at solving the same issue, combining an optimal

integration error (as the one of low discrepancy samplers) with the anti aliased properties of

stochastic (and most of all Blue Noise) Fourier spectrum.

The main ideas exposed in Section 4.4 on page 84 follow the same simple idea; finding a

numerical representations for low discrepancy sets or sequences and optimizing this value, either

from optimization algorithms or simple brute force searching. Those methods give very good

results but only for very limited number of samples and dimensions. We definitely believe that

with more advanced optimization algorithms and the use of embarrassingly parallel components

such as GPUs, we could get (in the case of Owen’s scrambling) a very good optimization tree

that could have practical applications. However, such a method is still to be developed.

Therefore, the following Chapters present instead two very specific methods to generate first,

Blue Noise Low discrepancy 2-D sets (Chapter 5 on page 93) and then, a s-D sequential sampler

with Low discrepancy Blue Noise 2-D projections (Chapter 6 on page 107).
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5Low Discrepancy Blue Noise point sets

In Chapter 4 on page 74, we saw how one can transform a Low Discrepancy set to improve its

Fourier Spectrum. However, most of previous methods required exhaustive search or complex

optimization schemes and are thus difficult to use in practice. Fastest algorithms, such as

Owen’s scrambling do improve upon the spectrum but are still far away from the ideal Blue

Noise spectrum.

In this Chapter, we present a more advanced method that efficiently generates Low Discrepancy

and Blue Noise 2-D point sets [Ahm+16b] (s-D sequences will be discussed in Chapter 6 on

page 107). We achieved this by scrambling an input template Low Discrepancy point set to

match its spectrum to the spectrum of a target stratified point set. We use Van der Corput

sequence to create a stratified low discrepancy initial set and then, through coordinate wise

rearrangement, we scramble it without affecting the discrepancy of the original set. In the

following, Section 5.1 presents our input Low discrepancy construction. Then, Section 5.2 on

page 98 presents our scrambling method.

5.1 Initial Stratified Low Discrepancy set

Our method starts with a template low discrepancy (LD) set, that will then be optimized to

acquire a desired spectral profile (BNOT [DG+12], Step [Hec+13], etc). There are many LD

constructions we could have chosen from as our input LD set (Sobol, Halton, Hammersley,

Rank-1, etc.). The issue is that with such sets, it is difficult to identify the neighbourhoods of

the points. As the spectral properties are sensitive to local neighbourhoods [WW11], we need to

devise a new LD construction that addresses this issue, based on stratification. In the following,

we start by formally defining a 2-D stratified point set. Then, we list the conditions to create

a 2-D low discrepancy stratified point set. Finally, we present our choice as the template LD

construction.

5.1.1 Stratification

In this section, we define formally a 2-D stratified point set. Suppose that we have a stratified

point set Pn, with n := k2 samples. We denote such a set as

Pn :=
{

(X + aX,Y , Y + bX,Y ) : X, Y ∈ {0 . . . k − 1};

aX,Y , bX,Y ∈ [0, 1)
}

. (5.1)
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(a, b)

X

Y

Fig. 5.1.: Illustration of Equation 5.1 on the preceding page, representing a stratified point set.

The pair (X, Y ) selects a specific stratum, and an associated pair (a, b) specifies the location of

the sample point within that stratum (Fig. 5.1). Note, that a and b are not necessarily functions

of X and Y ; aX,Y and bX,Y only indicate that each (a, b) is associated to a specific stratum

(X, Y ).

We point out that following this definition, a point set can only contain k2, k ∈ N samples.

Furthermore, such definition generates samples in the domain [0, k)2. To sample the unit domain

[0, 1)2, one can simply scale the point set by 1
k .

5.1.2 LD stratified point set

Stratified point sets are not naturally low discrepancy. Therefore, we need to develop a new

construction that will let us access samples from the coordinates of their stratum while being a

low discrepancy set. To do so, we generate stratified point sets Pn where, for every column X,

we set the offsets values from a 1-D LD sequence {aX,0, aX,1 . . . , aX,k−1}, and similarly for every

row Y , with the 1-D sequence {b0,Y , b1,Y , . . . , bk−1,Y }. We can prove that this new construction

is low discrepancy.

Intuitively, we can observe that the difference between the area of an integer set of strata and

the fractions of samples of Pn that are located into those stratas is 0. Therefore, the discrepancy

of the stratified set only depends on the discrepancy of the sequences used as offset in the rows

and columns.

More formally, we denote by a := {ai} a 1-D sequence of points in [0, 1), a(k) denoting the set of

the first k elements of the sequence. We consider a collection of k such sequences a(X) :=
{

a
(X)
i

}
,

indexed by an integer X; that is, a(X) is the Xth sequence in the collection, while a
(X)
i is the

ith entry in that sequence. We then consider a similar set up for b, b, and Y (b := {bi} and

b(k)) respectively, which gives us the following lemma:
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Lemma 1 If n = k2 denotes the total number of points in a stratified set Pn, Pn being scaled

to [0, 1)s, we have

D∗(Pn) ≤ 1

k

(
max

X,Y ∈{0...k−1}

(
XD∗(b(X)) + YD∗(a(Y ))

)
+ 1

)
. (5.2)

By proving Lemma 1, we will then prove that our construction generates low discrepancy sets,

as long as a and b are Low discrepancy sequences.

Proof 1 We assume that Pn is a 2-D point set defined over the domain [0, 1)2 (note that there

is no loss of generality w.r.t. a point set defined over the domain R2). We remind that the l∞
star discrepancy of Pn is defined as

D∗(Pn) := sup
v∈[0,1)2

|λ(v)− α(Pn, v)| (5.3)

where λ(v) is the Lebesgue measure of the interval [0, v)2, and α(Pn, v) returns the fraction of

points of Pn that belong to the interval [0, v)2. We will denote d(Pn, A) the 1-D discrepancy of

Pn over a 1-D interval A.

Additivity of the Lebesgue measure (s-dimensional volume) and α(Pn, v) leads to the following

property: Let A and B be 1-D disjoint subsets of [0, 1), then

d(Pn, A ∪B) ≤ d(Pn, A) + d(Pn, B) . (5.4)

a := {ai} is a one-dimensional sequence of points in [0, 1). a(k) denotes the set of the first k

elements of the sequence (b := {bi} and b(k), respectively). We consider a collection of c such

sequences a(X) :=
{

a
(X)
i

}
, indexed by an integer X; that is, a(X) is the Xth sequence in the

collection, while a
(X)
i is the i-th entry in that sequence. We consider a similar setup for b, b,

and Y , respectively.

As Pn with n = k2 is a 2-D scaled stratified point set, composed of m low discrepancy sequences

it can be denoted as

Pn :=

{(
X + a

(X)
Y

k
,
Y + b

(Y )
X

k

)
; X, Y ∈ {0 . . . k − 1}

}
. (5.5)

In other words, the abscissa X
k of a given point of the set is shifted by

a
(X)
Y

k , whose numerator

is the Y th element of the sequence a(X). In the following, we simplify the notations of these

sequences to a and b (and their points {ai} and {bi}) in expressions whenever there is no

ambiguity on X and Y values.
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k

X+x
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X+1
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kY +y
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1

JXY

JXy Jxy

JxY

Fig. 5.2.: Notations for Lemma 1 on the previous page.

Let

J := [0, (X + x)/k]× [0, (Y + y)/k] ; x, y ∈ [0, 1) , (5.6)

be an arbitrary interval in I2. It can be partitioned into non-overlapping sub-intervals (see

Figure B.1 on page 176):

J = JXY + JXx + JxY + Jxy (5.7)

where

JXY := [0, X/k)× [0, Y/k) ,

JXy := [0, X/k)× [Y/k, (Y + y)/k] ,

JxY := [X/n, (X + x)/k]× [0, Y/k) ,

Jxy := [X/n, (X + x)/k]× [Y, (Y + y)/k] .

Thanks to the additive property of discrepancy, we have:

d(Pn, J) ≤ d(Pn, JXY ) + d(Pn, JXy) +

d(Pn, JxY ) + d(Pn, Jxy) . (5.8)

Now

d(Pn, JXY ) =

∣∣∣∣
α(Pn, JXY )

n
− λ2(JXY )

∣∣∣∣

=

∣∣∣∣
X · Y

n
− X

k
· Y

k

∣∣∣∣ = 0 . (5.9)

For JXy we have (
X + aY

k
,
Y + bX

k

)
∈ JXy =⇒ bX ≤ y . (5.10)
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If we write Jy to denote the one-dimensional interval [0, y], we observe that

α(Pn, JXy) = α (b(X), Jy) (5.11)

and

λ2(JXy) =
X

k
· y

k
=

Xλ1(Jy)

n
(5.12)

Therefore:

d(Pn, JXy) =

∣∣∣∣
α(Pn, JXy)

n
− λ2(JXy)

∣∣∣∣

=

∣∣∣∣
α(b(X), Jy)

n
− X · λ1(Jy)

n

∣∣∣∣

=
X

n

∣∣∣∣
A(Jy; b(X))

X
− λ1(Jy)

∣∣∣∣

=
X

n
d(b(X), Jy) ≤ X

n
D∗ (b(X)) . (5.13)

Similarly

d(Pn, JxY ) ≤ Y

n
D∗(a(Y )) . (5.14)

Finally, α(Pn, Jxy) is either 0 or 1, and λ2(Jxy) is at most 1/n, therefore

d(Pn, Jxy) ≤ 1

n
. (5.15)

Substituting Eqs. ( 5.9 on the facing page, 5.13, 5.14, and 5.15) into Eq. (5.8):

d(Pn, J) ≤ 1

n
(XD∗(b(X)) + YD∗(a(Y )) + 1) (5.16)

and Eq. (5.2) follows for the upper bound of the star discrepancy of the set Pn.

A regular grid uses a fixed value (typically 0 or 1
2) for all the entries in a and b, hence D∗(b(X))

and D∗(a(Y )) are O(1) and as such D∗(Pn) is O
(√

n
n

)
.

If all of the a’s and b’s are low-discrepancy sequences, that is, D∗(b) is O(log(X)) and D∗(a) is

O(log(Y )), both bounded by O(log(
√

n)), then the resulting point-set is a low-discrepancy point-

set, with discrepancy in O
(

log(n)
n

)
. Note, however, that such a construction does not extend

automatically to higher dimensions.

This lemma bounds the discrepancy of our construction and its corollary

Lemma 2 If D∗(b(X)) has a discrepancy in O(log(n)/n) and D∗(a(Y )) also has a discrepancy

in O(log(n)/n), then D∗(Pn) is in O(log(n)/n).
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allows us to call our construction a low discrepancy set. Note that our construction is only valid

for 2-D point sets.

We can thus construct 2-D low discrepancy stratified point set by picking any 1-D low discrep-

ancy sequence S, and use it to supply the horizontal offsets along the columns:

aX,Y := SY ,

and the vertical offsets along the rows:

bX,Y := SX .

We denote PS a point set obtained using this construction.

5.1.3 Template point set

In practice, we chose the Van der Corput sequence φ (see Section 3.3.2 on page 64). The

resulting template LD point set is then defined by:

Pφ :=
{

(X + φ(Y ), Y + φ(X)) : X, Y ∈ {0 . . . k − 1}
}

. (5.17)

This set, denoted Pφ (Fig. 5.3 on the next page), will serve as our template LD set. Thanks

to the stratification, our construction is inherently indexed in two dimensions, using a pair of

indices. This allows to align our LD set with any stratified set, on a one-to-one basis. This will

be a key element to control the spectral properties of the set.

Following Lemma 2 on the preceding page, Pφ is a low discrepancy point set with discrepancy

O (log(n)/n). It is worth noting that Pφ coincides with the Hammersley construction when the

generated number of points is a power of two; but not otherwise.

Once we have this initial set, we can optimize it by scrambling the samples to match a given spec-

tral target. The critical part of this optimization is to do this without affecting the discrepancy

of the complete set.

5.2 Scrambling

We can randomly scramble our template set by applying a discrepancy-preserving rearrangement

of the sequences S used as offsets for each row and column. Here, the sequence S is the van der

Corput sequence.

Unlike the global bit-wise scrambling techniques in common LD constructions, we randomly

permute the entries of the constituent sequences (in rows and columns) locally within small
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Fig. 5.3.: Our template 2-D stratified low discrepancy point set.

m{
σk(i) } k

Fig. 5.4.: Random scrambling within columns, using chunks of size m = 4

.

chunks (Fig. 5.4). We choose a chunk size, m, and re-order every subsequent m entries of the

input sequence S (we assume that m divides k):

S′
j·m+i =Sj·m+σj(i) ;

j ∈ {0 . . . k/m} ; i ∈ {0 . . . m− 1} , (5.18)

where each σj is a permutation over {0...m− 1}. (Fig. 5.4)

We know that this permutation have little impact on the discrepancy. Any subset of S′ differs

from the corresponding subset of S in at most m points. According to [KN74, Theorem 4.1]

(presented Section 4.1.2 on page 75), the difference in discrepancy of any subsets of length

n > m of the two sequences is then bounded by m/n. Since m is fixed, the difference

|D∗(S′)−D∗(S)|

in discrepancy between the two sequences is O(1/n). Consequently, if S is an LD sequence,

with O(log(n)/n) discrepancy bound, then the shuffled sequence S′ is also an LD sequence.

The parameter m only alters the constant in the O(·) notation, but we want to keep m small

so that we stay close to the discrepancy of S.
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Fig. 5.5.: A 2-D stratified low discrepancy point set obtained from random scrambling of Pφ.

Note that the statement of the mentioned theorem compares corresponding entries in two finite

sequences. But since we are referring to subsets, these can be arranged in any order without

altering their discrepancy. To give an example, the sets (0, 0.25, 0.5, 0.75) and (0, 0.5, 0.25, 0.75)

have different discrepancies as sequences, but the same discrepancy as fixed sets.

To incorporate this 1-D chunk-wise permutation into Pφ, we apply two passes: first along the

X (columns), then along the Y (rows). For each pass, we divide the X (resp. Y ) into chuks

of size m. Then, within each chunk, we reorder the offsets b (resp. a). Note that along the

rows we reorder the vertical offsets and along the columns, we reorder the horizontal offsets.

Algorithm 3 sums up this whole permutation.

At this point, the resulting point set (Fig. 5.5) closely resembles a scrambled LD set like Owen’s

[Owe95] (Fig. 4.3 on page 79). Our localized permutation, however, admits much more control

over the placement of individual points than Owen’s axis-wise scrambling, and it enables real

optimization. Algorithm 3 sums up our random scrambling.

Algorithm 3: Stochastic permutation of PS .

1 for each column X do
2 for each chunk j do

3 Randomly permute the vector {aX,Y }j·m+m−1
Y =j·m ;

4 Write the permuted vector back into the set;
5 end

6 end
7 Repeat with the rows by exchanging the roles of a, X and b, Y , respectively;

5.2.1 Blue Noise scrambling

Instead of considering random permutations, we can construct the permutations such that the

point set Pφ is close to a given reference point set. Consider a stratified t× t point set (t=128

in our experiments), optimized to a specific blue noise profile (BNOT [DG+12], Step [Hec+13],
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Fig. 5.6.: Optimizing the samples placement trough dimension-wise rearrangement, using m = 8

.

Poisson Disk, etc). We assume that t is a multiple of m, so that each row and column of the

point set can be decomposed into chunks of size m.

The main idea is to start with a t×t chunk of the Pφ template set, and to find the permutations

for all 1-D chunks that would transform this point set so that it approximates the reference

set. For each chunk of size m from the template LD set and the reference set, we rearrange the

points of the template set so that the smallest offset a of the template aligns with the smallest

offset a of the reference, the second smallest with the second smallest, and so on. This process

thus minimizes the distance between the two sets. Figure 5.6 illustrates this for a single 1-D

chunk.

The new sequence of indices, is then appropriately encoded and stored in the look up table. For

a given point in a stratum (Xt, Yt) in the t × t domain, the look-up table entry LUT (Xt, Yt)

contains the offset (Xm, Ym) ∈ m ×m, of the new sequence numbers within the m ×m block.

The offset of the sample in (Xt, Yt) cannot however simply be replaced by the offset read from

LUT (Xt, Yt). Doing this would replicate the t × t permuted point set, which would break the

low discrepancy property since several points would project to the same 1-D point on either of

the two axes. To overcome this issue, we define an indexing scheme related to the underlying

1-D LD sequence and the bit-reversal principle.

For a given abscissa X, we define Xt := X mod t, its position in a t × t domain, and Xm :=

X mod m, its position in a chunk of size m within the t×t domain (we assume similar definitions

for Yt and Ym). The final offsets are given by:

a := φ(Y − Ym + LY ) (5.19)

b := φ(X −Xm + LX) , (5.20)

where (LX , LY ) := LUT (Xt, Yt).

Eq. (5.19) and (5.20) perform both the initial offset construction, using the van der Corput

sequence, and the optimized permutation within chunks of size m. More precisely, for a given

X and Y , φ(X) is the vertical offset in the template LD point set (Eq. ( 5.17 on page 98)). The
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Fig. 5.7.: Bitwise representation of Eq. (5.19) and Eq. (5.20)

a b c

Fig. 5.8.: Reordering the template LD set (blue circles) to match a given reference (orange squares),
without loosing its LD property.

optimized permutation is only performed within the size-m vertical and horizontal chunks the

point (X, Y ) belongs to. In a bitwise representation of X, the permutation only occurs in the

least significant log2(m) bits (Fig. 5.7).

By performing those permutations independently along the x-axis, then along the y-axis, for

each m×m block in the point-set, we can create a new pointset PS′ that is still low discrepancy

while presenting the spectral profile of the reference point set.Note that the two passes are

completely independent, and can therefore be parallelized. Figure 5.8 illustrates this algorithm

inside a single m×m block.

Note that the parameter m is a trade-off between the degradation of the discrepancy and the

desired spectral profile. m = 1 reproduces PS ; m = t produces a merely Latinized copy of

the reference set, with limited improvement of its discrepancy. From our experiments, m = 16

is a good compromise. The impact of m on the discrepancy was discussed earlier, following a

theorem from [KN74] (see Section 4.1.2 on page 75. The size of the reference point set, t2, is

a trade-off between the memory footprint of the look-up table, and the quality of the spectral

profile with respect to the reference set when n > t2. Figure 5.11 illustrates how the spectrum

evolves with different values for t and m.
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Fig. 5.9.: Characteristics of the Low Discrepancy Blue Noise sampler with a BNOT [DG+12] target
profile. t = 128, m = 16 [Ahm+16b].
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Fig. 5.10.: Characteristics of the Low Discrepancy Blue Noise sampler with a Step [Hec+13] target
profile. t = 128, m = 16 [Ahm+16b].
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Algorithm 4: Generating an optimized LD set from a reference stratified point set
and our template LD point set.

1 Initialize the output set to PS from Eq. (5.17);
2 for each column X do
3 for each chunk j do

4 Retrieve the vector Lx = {aX,Y }j·m+m−1
Y =k·m from the reference set;

5 Retrieve the corresponding vector, Qx, from the output set;
6 Rearrange Qx so that the smallest entry aligns with the smallest entry in Lx,

the second smallest with the second smallest, and so on;
7 Write the permuted vector Qx back to the output set;
8 end

9 end
10 Repeat with the rows by exchanging the roles of a, X and b, Y , respectively;

Using previous notations, we define our final Low-Discrepancy Anti-Aliased sampler as fol-

lows:

LDBN :=
{(

X + φ(Y − Ym + LY ),

Y + φ(X −Xm + LX)
)}

. (5.21)

Following Lemma 2 on page 97, we can affirm that the LDBN point set defined from van der

Corput sequences in Eq.(5.21) has a discrepancy in O
(

log(n)
n

)
, and is thus a low discrepancy

set.

We further empirically demonstrate in Chapter 7 on page 133 that when optimizing the look-up

table with a reference point set with specific spectral properties (e.g, Step blue noise), LDBN

preserves the low discrepancy of Pφ while presenting a different spectral profile. The result of

this sampler with different spectral profiles are presented in Figure 5.9 on the previous page,

and in Figure 5.10 on the preceding page. Algorithm 4 sums up our optimized permutation.

5.3 Conclusion

On the practical side, LDBN is extremely computationally efficient, since it can be implemented

using only bit manipulations and memory lookups. It is also considerably efficient in storage,

since only integer permutations in [0, m) have to be stored, rather than the actual real-valued

offsets (a, b). If m = 16, then the storage space reduces to only one byte per entry.

However, despite being fast and generating Low Discrepancy sets with controllable spectrum,

this method is still limited. It only operates on 2-D points, and only generates sets of samples.

Following this, Chapter 6 on page 107 present a new construction to generate sequentially low

discrepancy sets in higher dimensions.
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Fig. 5.11.: Fourier spectra from pointsets with 16000 samples obtained using our method with various
values for the table size t and the chunk size m. As can be seen, the bigger the chunks
m, the more Blue Noise the spectra, but if m increases too much, the Low Discrepancy
property degrades. Also, as we increase t, we need less and less replication to generate
our point sets which leads to cleaner spectra but at the cost of an increase in the memory
requirements. In our tests, the parameters m = 16 and t = 128 are a good trade-off.
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6Multi-Dimensional Sequences with

Low-Discrepancy Blue-Noise 2-D

Projections

In this chapter, we detail a new 2-D scrambling that can be applied on projections of the Sobol

sequence. This lets us generate s-dimensional sequences of samples with 2-D projections that are

both low-discrepancy and present a Fourier spectrum approaching the Blue Noise spectrum.

Our tile-based method performs permutations on subsets of the original Sobol sequence. In the

large space of all possible permutations, we choose those which better approach the target Blue

Noise property, using pair-correlation statistics. We pre-calculate such optimized permutations

for each possible Sobol sub-pattern, and store them in a Look-Up Table (LUT) efficiently

accessible at runtime. We provide a complete and rigorous proof that such permutations preserve

Sobol’s net properties and thus the LDS properties of the point set in 2-D projections. Our

muti-dimensional construction is computationally efficient, has relatively low memory footprint

and supports adaptive sampling.

We start by presenting a general overview of our permutation (Section 6.1). Then we will dive

into deeper details (Section 6.2 on page 117), wich will let us formally demonstrate its low

discrepancy and sequentiality (Section 6.3 on page 122).

6.1 Overview

In this section, we provide a high-level, simplified and intuitive explanation of our scrambling.

Rigorous definitions and technical details are provided in Section 6.2 on page 117. Section 6.1.1

presents our 2-D scrambling, which relies on a precomputed set of optimized local permutations.

We then describe how we can build those permutations, along with the performances of the

associated Look-Up Table in Section 6.1.2 on page 110 and 6.1.3 on page 114. Finally, we

will see how this 2-D scrambling can help creating s-D sampling patterns Section 6.1.4 on

page 114.

6.1.1 2-D Scrambling

Our sampler relies on independent scrambling of 2-D projections of the Sobol sequence. In this

section we can therefore start by presenting how this scrambling applies on a single pair of

dimensions without loss of generality.
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Left column: original Sobol point sets (upper row: 161 points; middle row: 162 points; lower row: 163 points),
generated using Sobol polynomials x2 + x1 + 1 and x4 + x3 + 1 for dimensions x and y. Note that all square partitions
delimited by thin blue lines contain exactly 16 points each; this remains true for any power p of 16p sampling points.
Upper row: We generate Pλ for λ = 1. The permutation π0 makes first 16 points of the Sobol sequence more evenly
distributed over the domain [0, 1)2.
Middle row: We generate Pλ for λ = 2, iterating over P1. The permutation π0 applied to 162 points of the Sobol
sequence keeps the first 16 points well-distributed (large colored dots in the middle sub-figure, middle row), whereas
the remaining 240 points (smaller blue dots) are unevenly distributed. Staged π1

i permutations make all first 256
points of the the sequence more evenly distributed (rightmost sub-image, middle row). Pivot points (the first point of
each group of 16 points, according to Sobol’s numbering) are shown as colored larger dots for the first 162 points and
larger red dots for the first 163 points of the sequence. Note that after application of π0 on 162 points, the pivots of
permuted tiles of 16 points match the distribution of the first 16 points after application of π0.
Lower row: We generate Pλ for λ = 3, iterating over P2. Similarly, 3 levels of permutations are needed in order to
obtain even distribution of first 163 points of the sequence. Note that after application of π0 on 163 points, the first 16
points are evenly distributed, as in upper row, whereas staged π1

i applied on 163 points keeps the first 162 points
evenly distributed, as in the middle row. Only three levels of staged permutations are required to achieve an even
distribution of all 163 points (rightmost sub-image, lower row). Please zoom in the sub-figures of the lower row to see
fine details.

Fig. 6.1.: Illustration of our discrepancy preserving 2-D scrambling for spectrum optimization.
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Our construction can be conceptually considered as a set of staged local permutations of tiles of

K2 samples of the initial Sobol LDS (the leftmost column in Figure 6.1 on the preceding page).

The factor K = 2n, n ∈ N is used to determine the number of samples of those tiles. Our basic

2-D scrambling is illustrated in Figure 6.1 on the facing page.

In this illustration, we work with tiled of K2 = 16 samples. Note that similar constructions exist

with tiles of K2 = 64, K2 = 256 or any K2 with K = 2n, n ∈ N∗ samples. In this illustration,

we also used the pair of indices 3 and 7 for the Sobol sequence but note that that other pairs

of indices can be used.

Our construction works by iteratively enriching an initial set. It starts at level λ = 0 with a

set of K2 Sobol samples. For those first K2 points of the initial set (the top row in Figure 6.1

on the preceding page), a good pair of Owen’s permutation trees [Owe95], chosen according

to a given blue-noise criterion, can be found (see Section 6.1.2 on the following page for more

details on how we compute them). Our pattern is then permuted using Owen’s scrambling with

those optimized permutation trees, to produce a more even distribution of sampling points (the

rightmost sub-image of the top row in Figure 6.1 on the preceding page). Note that thanks to

the properties of Owen’s scrambling, this permutation preserves the t factor of the initial Sobol

set of K2 samples. (see Section 6.3 on page 122). In Figure 6.1 on the preceding page, we

denote this permutation π0. Please refer to Section 4.1.3 on page 76 for a detailed description

of Owen’s scrambling.

We then refine our set of K2 samples to create a new set of K2·2 = 256 samples. We do this by

starting over from the Sobol set containing K2·2 = 256 samples (the middle row in Figure 6.1 on

the preceding page). We first apply the same permutation π0 on the entire point set. Then, we

subdivide our domain into K2 tiles, containing K2 samples each (see Section 6.2 on page 117).

For each tile, denoted T λ
i (λ = 1), we apply a new optimized permutation π1

i . This generates an

even distribution of all K2·2 samples, as shown in the rightmost sub-images of the middle row in

Figure 6.1 on the preceding page. Note that after the first stage of permutation π0, the K2 = 16

first samples of the set are the same as the optimized samples from the previous optimized set

(shown as large colored dots in the Q1 and Q2 images from Figure 6.1 on the facing page). As

the second stage of permutations π1
i also does not move those first K2 samples, we will refer to

those points as pivots, because they are immovable samples w.r.t. previous stages.

It then goes similarly for the following iteration (the lower row in Figure 6.1 on the preceding

page). We start with the set of K2·3 = 4096 Sobol samples. We then undergo 3 stages of

permutations, in order to keep first K2 and K2·2 samples well-distributed, and achieve good

distribution of all K2·3 samples. This process can be continued to higher orders λ of K2(λ+1)

samples. Note that the first λ stages of permutations (that keeps the distribution of the first

K2, K4, · · · , K2λ samples) can be applied with a single xoring between the initial Sobol point

set from the previous level Sλ−1 and the optimized point set Pλ−1 obtained from this Sobol

set (this will be detailed in Section 6.2 on page 117). Applying those xor vectors on the initial

Sobol set of the current level Sλ creates a temporary set Qλ,. This set is then locally scrambled

to generate the optimized set Pλ. This process will be detailed in section 6.2 on page 117.
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Algorithm 5: Refining Pλ−1 to Pλ

input : Point Set Pλ−1 at level λ− 1 and the lookup table LUT (·).
output : Point Set Pλ.

// Construct Qλ from Sλ−1, Sλ, and Pλ−1

1 forall tiles T λ
i do

2 s(i) ← Sλ−1 ∩ T λ
i ;

3 p(i) ← Pλ−1 ∩ T λ
i ;

4 vλ
r ← s(i) ⊕ p(i);

5 forall points s ∈ Sλ ∩ T λ
i do

6 Qλ ← Qλ ∪ (s⊕ vλ
i );

7 end

8 end
// Apply local permutations

9 forall tiles T λ
i do

10 {q}λi ← Qλ ∩ T λ
i ;

11 π̃λ
i is randomly selected from LUT({q}λi );

12 {p}λi ← πλ
i (Qλ);

13 Pλ ← Pλ ∪ {p}λi ;
14 end

15 return Pλ

Algorithm 5 sums up the general framework for the application of our optimized Owen’s per-

mutations on Sobol point sets. We will now see how we can carefully choose our permutation

trees, to ensure that our 2-D scrambling will have a spectrum close to the Blue Noise spectrum

while ensuring that our local scramblings will not change the position of the points that were

generated at the previous level (to preserve the sequentiality).

6.1.2 Local permutations with spectral control

In this section, we see how we can choose our 2-D local permutations to ensure that our scram-

bling preserves the discrepancy while creating a Blue Noise spectrum. Our permutations are

based on Owen’s scrambling [Owe95] (Section 4.1.3 on page 76) which means that a 2-D per-

mutation is represented as a pair of Boolean trees. Our goal is thus to figure how to choose

the flags of those trees, in order to both preserve the sequentiality of the whole global set and

create locally Blue Noise distributions of samples. To do so, we follow a method similar in

essence to the one presented in Section 4.4.2 on page 87 (that optimizes the Boolan trees using

genetic algorithms). However, in our particular case of local independant permutations, further

constraints are needed to ensure that the discrepancy of our global set is preserved.

Let us first consider that we have a point set Qλ with the following property: each tile T λ
i

contains K2 samples (we remind that K = 2n, n ∈ N), with a single pivot sample (see Figure 6.1

on page 108). We further assume that Qλ is a (t, λ, 2)-net in base K2, and that each pattern

inside each tile T λ
i of Qλ is a (t, 2n, 2)-net in base 2 (we will come back to this in Section 6.2

on page 117 and 6.3 on page 122).
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To obtain the point set Pλ, we locally scramble the points inside each tile T λ
i of Qλ using

optimized permutations. Each tile T λ
i contains a different set of samples. Each unique set of

samples requires its own permutation πλ
i

To preserve sequentiality and discrepancy of the original 2-D set, each optimized permutation πλ
i

needs to fulfil the three following conditions (see Lemmas 4 on page 126 and 3 on page 125):

(i) πλ
i does not move the pivot sample.

(ii) πλ
i is (t, 2n, 2)-net preserving in base 2.

(iii) πλ
i does not change the 1-D projections of the input pattern.

Property (i) is mandatory to ensure the sequentiality, Property (ii) is mandatory to ensure that

the discrepancy is preserved within each tile, and Property (iii) ensures that the discrepancy of

the global 2-D set is also preserved. We say that a permutation πλ
i is an admissible permutations

for a given pattern of samples if it fulfils the above mentioned constraints.

Our permutation applies an Owen’s scrambling over the point set within T λ
i . If we consider

any set of s static Boolean trees of depth m, Owen’s scrambling is known to be (t, m, 2s)-net

preserving in base 2. Therefore, any permutation with s = 2 and m = 2n, validates property

(ii).

However, it does not necessarily preserve the 1-D projections of samples (property (iii)) when

coordinates are expressed on more than m digits, or when there are fewer than 2m samples. To

alleviate this, we apply the scrambling on the first m bits and exchange the trailing ones in

order to preserve the 1-D projections (see Section 6.2 on page 117). As a consequence, for each

tile T λ
i , any such tree with m = log(K)2 induces a permutation πλ

r satisfying (ii) and (iii).

To satisfy (i), we need to be able to scramble the point set while preserving the position of the

pivot sample. This can be done using Owen’s scrambling. If we list all the possible branches

within the permutation tree, each of them will apply on a single pair of samples. Therefore,

if along the path leading to the pivot sample, we set all the flags to 0, this sample will not

be permuted when all others will move. We thus have m flags set to 0, while the remaining

K2 − 1−m flags are free, which gives us enough degrees of freedom to still have a control over

the Fourier spectrum.

Using such admissible permutations, we can generate a multidimensional sequence with low

discrepancy 2-D projections presenting a stratified spectrum (Fig. 6.2 on the following page).

The computations of such random permutation trees is quite efficient as we simply fill the tree

with random values apart from a branch that is fixed to 0. Furthermore, applying such is as

computationally efficient as the original Owen’s scrambling with finite small permutation trees.

However, it does not lead to the Blue Noise spectrum we expect.
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Fig. 6.2.: Characteristics of our sequence using admissible permutations

We will denote an ad-hoc permutation for a given pattern as an admissible permutation for this

pattern that leads to a Fourier spectrum as close as possible to a Blue Noise spectrum.

Identifying such permutations among the set of all admissible permutations of a pattern can be

very challenging. We look for transformations that optimize the spectral content of the point

set, e.g. by increasing the minimum distance between points or obtaining a pattern who is as

close as possible to a blue noise one. To characterize a pattern as a realization of a stationary

and ergodic stochastic point process, we consider its pair correlation functions (PCF) which

can be related to the spectral content of the point set (Section 2.3.1 on page 26 and [Ill+08]).

To evaluate the quality of a pattern with respect to a blue noise one, we compute the l∞ or l2

norm of the two PCFs as discussed in [OG12] (in our experiments, both measures give similar

results).

In dimension 2 for a given K, the point set {q}λ
i (defined as the sub set of samples from Qλ

that belong to a tile T λ
i , formally {q}λ

i = Qλ ∩ T λ
i ) contains K2 sample. For each tile, the

permutation is encoded with s Boolean trees of depth m with (K2 − 1 − m) free flags. This

gives us a total of 2K2−1−m permutations among which we want to find the ones that lead to

the best Blue Noise spectrum.

As an example, for K = 4, we have 20482 different admissible permutations to explore for

a single pattern. This lets us perform an exhaustive listing of all those permutations on the

GPU and keep the best one (which takes about 1 second on a GeForce GTX 760). For each

permutation, we evaluate its quality using its PCF. We compare its PCF to the PCF of Blue

Noise, and measure the l∞ distance between the two. The one with the lowest distance is

kept.

For K = 4 (16 points), an exhaustive search is possible. For K > 4, we optimize exhaustively

the first 16 bits of the permutation tree and fill the underlying digits at random. As our GPU

implementation performs this search in 1s, we can brute force the last digits to ensure that,

even when randomly chosen, they do not harm the quality of the pattern. This whole process

takes up to 2s, still on a GPU GeForce GTX 760.
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Fig. 6.3.: Characteristics of our sequence using ad-hoc permutations and K=4. Note how a hierarchical
construction increases the width of the black cross in the spectrum, this is due to the fact
that the unaligned samples from the previous levels are more and more spaced out as we
refine.
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Fig. 6.4.: Characteristics of our sequence using ad-hoc permutations and K=8.

Figure 6.3 and 6.4 present the characteristics of our scrambling when using ad-hoc permutations

(for K = 4 and K = 8). Note that applying a given permutation is still very efficient. However,

computing this permutation has become quite costly. Especially if you point out that generating

K2n samples implies that we have 1 + K2 + K4 + · · ·+ K2(n−1) tiles to scramble. However, as

will be detailed in Section 6.1.3 on the following page, the recursive structure of Sobol implies

that several tiles present similar sets of samples, allowing to reuse at times previously optimized

permutations. A smaller K value increases the amount of similarity within tiles.

Once we have computed the set of ad-hoc permutations regarding a specific pattern, we store

them in the lookup table, indexed by the pattern {q}λ
i . Note that multiple ad-hoc permutations

can be stored for the pattern {q}λ
i . This allows us to randomize the scrambler by randomly

picking a good permutation (see Algorithm 5 on page 110). The number of entries in the LUT

is the number of distinct {q}λ
i patterns.
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6.1.3 Look Up Table

The LUT stores the ad-hoc permutations for each pattern {q}λ
i in order to generate the set Pλ.

Since the set Qλ is defined from Pλ−1 (Fig. 6.1 on page 108), we fill the LUT while following

the hierarchical construction. We start from λ = 1, and we generate successive Pλ and Qλ sets.

Each time we have to permute a pattern {q}λ
i , whose optimized permutation is not in the LUT,

we explore admissible permutations and add the best one to the LUT (see Section 6.1.2 to see

how we pick this best one).

All patterns {q}λ
i have the same number of points K2. The total number of possible distinct

patterns, (and thus the upper bound on the LUT size) is difficult to estimate (e.g. O((K2!)2) if

we enumerate the set of Latin hypercube configurations, from which we must remove non-dyadic

sets). However, as we start from the Sobol sequence which present a very repetitive structure,

the number of distinct sets is limited. Empirically, as λ increases, the number of entries in the

lookup table stabilizes quickly. As shown in Figure 6.5 on the next page, for K = 2 only 12

configurations exist up to 107 samples (λ = 10). For K = 4, only 512 configurations exist up to

106 samples (λ = 6). For K = 8, we found up to 1899 configurations for about 2.105 samples

(λ = 3), but the table does not seem to have reached saturation (Fig. 6.5 on the facing page)).

In 2-D, a permutation is defined by 2 Boolean trees with K2− 1 nodes for K := 2n. Hence, for

K = 4 (resp. K = 8), a straightforward encoding of a permutation πλ
i requires 30 bits (resp.

126 bits). Each entry in the lookup table is indexed by a pattern containing K2 samples, each

sample being encoded onto 2 · 2 ·n bits. If we allow the LUT to contain m ad-hoc permutations

for each pattern, we need

K2 · 4 · n + m · 2(K2 − 1)

bits.

For K = 4 and m = 1, the LUT size is 512 · (86 + 30) = 59392 bits which is about 7 kbytes

(about 485 kbytes for K = 8).

Note that this LUT contains optimized permutations for 2-D sampling patterns only. Unfortu-

nately, our scrambling does not properly extend to higher dimensions (more details in Section

6.2). Therefore, to use our method with s-D point set, we can only use our optimized scrambling

in some 2-D projections.

6.1.4 Using Our Sampler in Higher Dimensions

In many rendering applications, higher dimensional samples may be required. The permutation

described above is only defined in 2-D. However, even though it only performs operations that

are perfectly defined in s-D, our construction cannot be straightforwardly extended to s-D, as it

would no longer preserve the discrepancy. The condition (iii) for admissible permutations only

holds for 2-D samples. We instead extend our method to s-dimensions by relying on independent

scrambling of several 2-D projections (see Figure 6.6 on page 116). In short, we can use a s-D
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Fig. 6.5.: Size of our lookup table in number of entries need to generate a certain amount of samples,
depending on the K factor used. Please note that this is in logarithmic scale.

Sobol sequence, optimize some 2-D projections with respect to pre-computed lookup tables and

perform an on-the-fly random permutation of the remaining dimensions. Such an approach

is made possible since the initial sequence is consistent through the dimensions and has LD

properties. The selected 2-D projections will have low discrepancy properties and an optimized

spectra. In rendering applications, selected projections could be the image plane, the lens, area

lights, etc.

In order to have the (t, λ, 2)-net in base K2 property on the optimized pair of dimensions, we

need each set {s}λ
r

:= Sλ∪T λ
i to be a (t, ns, 2)-net in base 2 in these dimensions (see Prop. 4 on

page 126). In our implementation, we have used certain combinations of primitive polynomials’

indices, found empirically. When K=4, we used for our 4 dimensions the indices (1, 2) and the

indices (3, 7). When K=8, we used for our 6 dimensions the indices the indices (1, 4), (2, 3) and

the indices (5, 7). Note that as K increases, more and more dimensions can be optimized.

For the remaining dimensions, when the number of samples is fixed, one can use a classical

Owen’s scrambling of the point coordinates with a tree of fixed depth (Fig. 6.7 on the next

page). In our hierarchical setting when the number of points is unknown and increases on the

fly, we simulate a tree of infinite depth by iteratively expanding a tree of fixed depth, as detailed

in Section 4.2 on page 79.

From here, you should have all the intuitions required to understand how our method works and

why it works. However, to formally prove how our scrambling preserves the Low Discrepancy

property of Sobol projections, we need a much more formal and detailed description of our

sampler. This will be the focus of the next section.
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dims

(x, y)

dims

(u, v)

Fig. 6.6.: 4-D point set generated with our system, together with two 2-D projections and their Fourier
power spectra. Note that subsets of 16 points that occupy the same strata in one projection
(red subsets in {(x, y)} projections and green subsets in {(u, v)} projections), occupy different
strata in the other projection.

Dimensions (1, 2),
using Sobol
Indices (1, 2)

Dimensions (3, 4),
using Sobol
Indices (3, 7)

Dimensions (5, 6),
using Sobol
Indices (4, 5)

Dimensions (7, 8),
using Sobol
Indices (6, 8)

O
ri

gi
na

l
So

b
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P
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m
ut

ed

Our permutation Our permutation Owen’ Owen’

Fig. 6.7.: Comparison between an original 8-D Sobol set and this point set scrambled using our method.
Note that we used K = 4, and thus can only apply our scrambling to the the indices (1, 2)
and (3, 7). The remaining dimensions were permuted using Owen’, as described in Chapter 4
on page 74.
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We will further validate our method in Chapter 7 on page 133 by performing spectral/discrepancy/aliasing

analysis of the achieved distributions, and provide variance analysis for several target integrands

of theoretical and practical interest.

6.2 Technical description

In this section, we will present our method in much deeper details. Thanks to those formal

definitions, we will be able to demonstrate that it preserves the discrepancy of the samples in

Lemmas 3 on page 125 , 4 on page 126 and 5 on page 129 (Section 6.3 on page 122). Note that

we will detail our method in a supposedly s-D context, but in practice, it only preserves the

discrepancy for 2-D point sets. We also stress that all illustrations in Section 6.2 and 6.3 are

given for K = 2 (4 samples per tile), to ease understanding. In practice, our method is usually

applied with K = 4 and K = 8.

As a short preliminary, we remind that we denote the binary representation of a sample as

follows. Any s-D sample x ∈ [0, 1)s can be expressed as (x1, x2, . . . , xs) with

xd :=
∞∑

i=1

xi
d2−1−i

xd = .x1
dx2

dx3
d . . . ,

where xi
d is the ith bit of xd. Note that the samples are defined in [0, 1)s, therefore, x1

d is the

most significant bit, meaning x1
d corresponds to 0.5, x2

d to 0.25, . . .

We stress that the proofs in this section require knowledge of the notations and definitions of

(t, k, s)-nets and sequences that were presented in Section 3.3 on page 57.

6.2.1 Domain subdivision

Our scrambling considers a regular subdivision of the domain [0, 1)s with a subdivision factor

K := 2n, n ∈ N∗. We denote λ the level of subdivision of the domain (Fig 6.8 on the following

page).

This subdivision leads to square tiles. Each time we subdivide the domain, we subdivide the

tiles at level λ by the factor K, creating K(λ+1)s new tiles at level λ + 1. A tile T λ
r

is a s-D

interval of space defined at a level λ spanning over
[

rd

Kλ , rd+1
Kλ

)s
. The union of all the tiles at a

level λ forms a partition of the domain [0, 1)D (Fig 6.9 on the next page).

To sample the domain subdivided at a level λ, we generate the first Ks(λ+1) = 2ns(λ+1) samples

from the Sobol sequence [Sob67] (Fig 6.10 on the following page).
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K = 2, λ = 0 K = 2, λ = 1 K = 2, λ = 2

Fig. 6.8.: Subdivision of the domain [0, 1)s with increasing λ.

T λ
r{1

Kλ

r

Fig. 6.9.: λ = 2, K = 2, s = 2. Each interval T λ
r

will contain Ks samples.

T 0
r { T 1

r { T 2
r {

S0, 4 samples S1, 16 samples S2, 64 samples

Fig. 6.10.: s = 2, K = 2. Generating the first Ks(λ+1) samples of the Sobol sequence with t = 0 fills
each tile T λ

r
with Ks samples.

By definition of the Sobol sequence, Sλ is a (t, k, s)-net in base b = 2 (Section 3.3 on page 57).

Since Sλ contains 2ns(λ+1) samples, we have bk = 2ns(λ+1) and therefore Sλ is a (t, ns(λ + 1), s)-

net in base b = 2. Our set Sλ (defined as the set containing the first Ks(λ+1) samples of the

sobol sequence with K := 2n) is a (t, ns(λ + 1), s)-net in base b = 2. In our case, we assume

that the value t of our (t, k, s)-nets is the minimal possible value, for which (and over which)

all intervals are guaranteed, we have the following property:

Property 1 ∀λ ∈ N, if Sλ is a (t, ns(λ + 1), s)-net in base b = 2, Sλ is a (e t
nsd, λ + 1, s)-net

in base Ks, with K := 2n.

From Property 1, we have that if the t value for the Sobol sequence verifies t ≤ ns, we are

guaranteed to have Ks samples inside each tile T λ
r . If t > ns, we can still have Ks samples in

each tile, there is just no guarantee for it. Note that in practice, we also never have t ≤ ns.
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Sλ−1

T λ−1
r {

r {s}λ−1,λ
r

T λ
r {

Sλ

T λ
r {

r {s}λr

T λ
r {

Fig. 6.11.: s = 2, K = 2, λ = 2. {s}λ
r

is the intersection between Sλ and the tile T λ
r

. Similarly, {s}λ−1,λ
r

is the intersection between Sλ−1 and the tile T λ
r

.

0
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9
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13

14

15

3

5

9

15r

Sλ {s}λr
Fig. 6.12.: s = 2, K = 2, λ = 1. Indices of the samples in Sλ and of the samples in {s}λ

r
.

We now define {s}λ
r := Sλ ∩ T λ

r the set of samples from Sλ that belong to the tile T λ
r . We

also define {s}λ0,λ1
r := Sλ0 ∩ T λ1

r the set of sample from Sλ0 that belong to the tile T λ1
r (see

Figure 6.11).

It is important to note that since the samples of Sλ come from the Sobol sequence, they are

indexed [Sob67]. We will denote s(i) the ith sample of the sequence Sλ. A reader familiar with

the Sobol sequence may note that the samples of {s}λ
r are also indexed but their indices i are

not consecutive (Fig 6.12).

We then permute the samples from Sλ, where Sλ is a set containing the first Ks(λ+1) samples

of the Sobol sequence. We do this in such a way that the newly generated set of samples Pλ in

[0, 1)s has the following properties:

• If s = 2, ∀λ, if Sλ is a (t, λ + 1, s)-net in base Ks, Pλ is a (t, λ + 1, s)-net in base Ks

(Lemma 5 on page 129).
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• ∀λ, Pλ presents a user defined Fourier spectrum.

• ∀λ > 0, Pλ−1 ⊂ Pλ (otherwise P wouldn’t be a sequence), and the samples in Pλ are

indexed (Lemma 6 on page 129).

To ensure those properties, our algorithm creates a set Pλ by permuting the set Sλ while taking

as input the two sets, Pλ−1 and Sλ−1. Note that we define P−1 as the point set containing a

single sample s = 0, and S−1 = P−1. The sets Sλ and Sλ−1 are coming from the same specific

Sobol sequence, with indices chosen such that Sλ will be stratified ∀λ. The use of the Sobol

sequence also ensures that Sλ−1 ⊂ Sλ.

Then, our permutation is done in two steps (Fig. 6.1 on page 108)

1. A first permutation, denoted Ψ, applies local digital shifts on Sλ to create a new point

set Qλ such that Pλ−1 ⊂ Qλ.

2. A second permutation, denoted Π, applies local permutations πλ
r on Qλ to create a new

point set Pλ such that it presents the targeted Fourier spectrum.

6.2.2 Creating Qλ from Sλ and Pλ−1

The aim of our first permutation Ψ is to create a set Qλ from Sλ, so that Pλ−1 ⊂ Qλ. To

achieve this, we first compute a set of vectors, such that each vector represent the displacement

between each sample of Sλ−1 and Pλ−1. Since the samples are indexed, both in Sλ and in Pλ,

we can match those sets on a one to one basis. This will let us xor each sample of Sλ−1 with

its corresponding sample in Pλ−1 (the one with the same index).

Therefore, our new vector set, denoted Vλ−1 is also ordered, and its ith vector, denoted v(i) is

formally defined as

v(i) := s(i) ⊕ p(i), (6.1)

where s(i) is the ith sample of Sλ−1 and p(i) is the ith sample of Pλ−1.

Sλ−1 is stratified with a single sample inside each tile T λ
r . Thus, each vector v(i) is associated

with one and only one tile T λ
r

. As each vector v(i) is composed from a sample s(i), which

uniquely belongs to a tile T λ
r

. We denote vλ
r

the vector v(i) associated with the tile T λ
r

. We can

now define formally Vλ−1 as

Vλ−1 :=
⋃

r

[
vλ

r

]
, (6.2)

which is illustrated Figure 6.13 on the facing page.

This leads to the formal definition of Qλ as

Qλ :=
⋃

r

{{s}λ
r
⊕ vλ

r
}, (6.3)
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15 T λ
r {

Sλ−1 Pλ−1 {v(i)}

Fig. 6.13.: s = 2, K = 2, λ = 2. Each vector v(i) is made by xoring the samples s(i) ∈ Sλ−1 and
p(i) ∈ Pλ−1

where we define the ⊕ operation between a set of sample X and a single vector v as X ⊕ v :=

{x(i) ⊕ v} where x ∈ X . This is illustrated Figure 6.14.

Sλ, Pλ−1 Vλ−1 Qλ, Pλ−1

Fig. 6.14.: s = 2, K = 2, λ = 2. The set Qλ is made by xoring each samples of each set {s}λ
r

with the
vector vλ

r
associated to the tile T λ

r

We also note that each pattern {s}λ
r

is xored with a single vector to create {q}λ
r
, thus, as the

xor operator is net preserving [Lem09], we have the following property for Qλ

Property 2 If ∀T λ
r

, N({s}λ
r
), is a (t, ns, s)-net in base 2, then ∀T λ

r
, N({q}λ

r
), is a (t, ns, s)-net

in base 2.

Then, from the point set Qλ, we can create our optimized point set Pλ by locally scrambling

the samples.

6.2.3 Creating Pλ from Qλ

Then, we permute the samples inside each tile T λ
r

of Qλ to create Pλ. Note that there are Ks

samples of Qλ inside T λ
r , forming a point set denoted {q}λ

r . Each set {q}λ
r contains a unique

sample p such that p ∈ Pλ−1.

Note that each set {q}λ
r

contains samples with coordinates that only cover the tile T λ
r

(Fig. 6.15

on the following page). We denote N({q}λ
r ) the operation that scale this set to the domain

[0, 1)s, with N−1(N({q}λ
r
)) = {q}λ

r
.
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{q}λr N({q}λr ) πλ
r (N({q}λr )) {p}λr :=

N−1(πλ
r

(N({q}λ
r

)))

Fig. 6.15.: s = 2, K = 2, λ = 2. We permute each tile T λ
r

from Qλ to create a new arrangement of
samples within each tile with the desired spectral properties.

Once we have this set, scaled to the domain [0, 1)s, we can associate with each tile T λ
r

a

permutation πλ
r , that have the following properties (denoted as (i), (ii) and (iii) in Section

6.1):

Property 3 If N({q}λ
r ), is a (t, k, s)-net in base 2, N(πλ

r ({q}λ
r )) is also a (t, k, s)-net in base

2.

Property 4 If p ∈ {q}λ
r and p ∈ Pλ−1, p ∈ πλ

r ({q}λ
r ).

Property 5 πλ
r preserves the 1-D projections of {q}λ

r .

We can now formally define Pλ with

Pλ :=
⋃

r

N−1(πλ
r (N({q}λ

r ))) (6.4)

An possible construction algorithm to generate admissible permutations π is given in Section 6.1

on page 107 and is detailed in Section 6.3.6 on page 130.

6.3 Proofs

We will now prove that our scrambling preserves the net properties of Sλ. We will first define

some notations, and then we will prove that both Ψ and Π are (t, λ+1, 2)-net preserving in base

Ks. Finally, we will prove that Pλ does contain the samples of Pλ−1, identically indexed.
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6.3.1 Notations

In this section we present all the notations that we use in the following proofs. Please note

that even though our permutation is valid in s-D, it only preserves the net properties in 2-D.

Therefore all those notations consider a 2-D domain.

Each 2-D sample (x, y) in a point set X , where all the samples in X are defined on ns(λ + 1)

bits, and where X is a (t, λ + 1, 2)-net, can be expressed in binary as

x =

ns(λ+1)∑

i=0

xi2−1−i,

y =

ns(λ+1)∑

i=0

yi2−1−i,

where xi is the ith bit of x and yi is the ith bit of y.

x =
ns(λ + 1)

x0

{

xi

{

y =
ns(λ + 1)

y0{ yi {

Fig. 6.16.: Binary representation of a sample (x, y) ∈ [0, 1)s

We define x|a (resp. y|a) as a binary truncating of the x (resp. y) coordinate of a sample (x, y)

where

x|a =
a∑

i=0

xi2−1−i,

x|a =
ns(λ + 1)

xa

{

Fig. 6.17.: Binary representation of x|a

We extend this definition to (x, y)|a, for (x, y) ∈ X in a specific way. We thus define (x, y)|a
as

(x, y)|a = (x|a, y|ns(λ+1−t)−a)

This means that we truncate a total of ns(λ + 1− t) bits from (x, y), truncating a bits from x

and ns(λ + 1− t)− a bits from y.

Finally, we define X|a as {(x, y)|a,∀(x, y) ∈ X}, meaning that X|a contains truncated samples

from X .
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xa

{

yns(λ+1)−a

{

(x, y)|a =

ns(λ + 1)

{
Fig. 6.18.: Binary representation of (x, y)|a

Each elementary interval J q0 of X , is of size 1
Ksq0

, 1
Ks(λ+1−t−q0) , with 0 ≤ q0 ≤ λ + 1− t,

q0 + q1 = λ + 1− t

⇔ q1 = λ + 1− t− q0.

It can thus be encoded in binary with nsq0 bits for x and ns(λ+1−t−q0) = ns(λ+1−t)−nsq0

for y. Therefore, for all sample (x, y) ∈ X , their truncated version (x, y)|nsq0 is equivalent to

the minimal corner of the elementary interval J nsq0 that contains it.

Following this, a point set X is a (t, k, 2)-net in base Ks if each sample (x, y)|nsi is present Kst

times in the set X|nsi, with 0 ≤ i < k − t.

(x, y)

(x
,

y
)|

n
s

q
0

(x, y)

(x, y)|nsq0

q0 = 0 q0 = 1

Fig. 6.19.: K = 2, n = 1. Q0 is a (0, 1, s)-net in base 22 iff ∀q0 ∈ N with 0 ≤ q0 ≤ 1, each sample
(x, y)|2∗2∗q0 , (x, y) ∈ Q0 appears exactly one time in Qλ|2·2·q0 .

The direct corollary is that any permutation Π is (t, k, 2)-net preserving if ∀a ∈ N, a ≤ k− t,

Π(X )|a = X|a. (6.5)

Finally, we have one last major property, illustrated Figure 6.20 on the next page.

Property 6 ∀(x, y) ∈ [0, 1)2, if (x|a, y|a′) = (x′|a, y′|a′) then ∀b ≤ a and ∀b′ ≤ a′, (x|b, y|b′) =

(x′|b, y′|b′)

This property means that if we truncate the x coordinate (resp. y) of the samples of a set to

a (resp. b) digits, and if this truncated set is equal to the truncated set from another point

set, then the subsets of those sets that are more truncated, with a′ < a (resp. b′ < b), are also

equal.
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{x|a, y|a′} {x|b, y|b′}

Fig. 6.20.: Geometric illustration of Property 6

6.3.2 Our permutation Π is (t, λ + 1, 2) preserving in base K2

Lemma 3 For s = 2, if Qλ is a (t, λ + 1, 2)-net in base K2, Pλ is a (t, λ + 1, 2)-net in base

K2.

Proof 2 The point set Pλ is defined as Π(Qλ), where Π applies a scrambling πλ
r over each set

N({q}λ
r
) from Qλ (Equation 6.4 on page 122). The operator N removes the first nλ bits of the

samples in {q}λ
r . Therefore, those first nλ bits will be unaffected by the permutation. We apply

N−1 by re-adding the first nλ bits of {q}λ
r .

In our particular case, the permutations πλ
r are not any random permutation but are part of a

set of admissible permutations (see Section 6.1.2 on page 110 for details). Each permutation

πλ
r
∈ Π has two important properties.

First, πλ
r

preserves the net properties of N({q}λ
r
), and second, each set N({q}λ

r
) is a (t′, ns, 2)-

net in base 2 as it comes from the Sobol sequence. From here, we can translate property 3 on

page 122 in binary as

(x|nλ+q′
0
, y|nλ+ns−t′−q′

0
) = Π

(
(x|nλ+q′

0
, y|nλ+ns−t′−q′

0
)
)

(6.6)

∀q′
0, q′

0 ∈ N, 0 ≤ q′
0 ≤ ns− t′, q′

0 + q′
1 = ns− t′ ⇔ q′

1 = ns− t′ − q′
0.

Furthermore, since πλ
r

preserves the 1-D projections of samples we have for q′
0 = 0,

(x|ns(λ+1), y|nλ+ns−t′−q′
0
) = πλ

r

(
(x|ns(λ+1), y|nλ+ns−t′−q′

0
)
)

(6.7)

and

(x|nλ, y|ns(λ+1)) = πλ
r

(
(x|nλ, y|ns(λ+1))

)
. (6.8)

In 2-D, the elementary intervals in Qλ for q0 + q1 = λ + 1 − t are of size 1
2nsq0

× 1
2nsq1

with

q1 = λ + 1 − t − q0. This means that each elementary interval can be encoded using nsq0

bits for x and ns(λ + 1 − t − q0) bits for y. As Qλ is a (t, λ + 1, s)-net in base Ks, each

sample (x, y)|nsq0 , (x, y) ∈ Qλ appears exactly Kst times in Qλ|nsq0 . Therefore, ∀q0 ∈ N with

0 ≤ q0 ≤ λ + 1− t, each sample from the set Qλ|nsq0 stands for an elementary interval.
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From here, we have 3 possibilities

• Either nsq0 ≤ nλ, in which case from 6 on page 124 and equation 6.8 on the preceding

page, we have Qλ|nsq0 = Pλ|nsq0

• Either ns(λ + 1− t− q0) ≤ nλ, in which case from 6 on page 124 and equation 6.7 on the

preceding page, we also have Qλ|nsq0 = Pλ|nsq0

• Or nsq0 ≥ nλ and ns(λ + 1− t− q0) ≥ nλ. In which case, we seek if there is a q′
0 such

that Qλ|nsq0 = Qλ|nλ+q′
0
, meaning such that nsq0 = nλ + q′

0 and ns(λ + 1 − t − q0) =

n(λ + s)− t′ − q′
0

nsq0 = nλ + q′
0

⇔q′
0 = n(sq0 − λ)

then

n(λ + s)− t′ − q′
0 = n(λ + s)− t′ − n(sq0 − λ)

= n(λ + s− sq0 + λ)− t′

= n(2λ + s− sq0)− t′

= ns(λ + 1− t′

ns
− q0)

which means that for t′ = nst, from equation 6.6 on the previous page and property 6 on

page 124, Qλ|nsq0 = Pλ|nsq0 . Note that as t′′ is the minimal value such that N({q}λ
r
) is a

(t′′, ns, 2)-net, if t′′ ≤ nst, we have that N({q}λ
r ) is a (t′, ns, 2) with t′ = nst.

Therefore from Eq ( 6.5 on page 124), Π preserves the net properties of Qλ and thus if Qλ is a

(t, λ + 1, 2)-net in base Ks, Π(Qλ) = Pλ is a (t, λ + 1, 2)-net in base K2.

6.3.3 The permutation Ψ is (t, λ + 1, 2) preserving in base K2

Lemma 4 For s = 2, if Sλ is a (t, λ + 1, 2)-net in base K2, Qλ is a (t, λ + 1, 2)-net in base

K2.

Proof 3 Qλ is a (t, λ + 1, s) if ∀(x, y) ∈ Sλ and ∀(x′, y′) ∈ Qλ we have

(x|nsa0 , y|ns(λ+1−t−q0)) = (x′|nsa0 , y′|ns(λ+1−t−q0)), (6.9)

∀q0 ∈ N and 0 ≤ q0 ≤ λ + 1.

From Eq ( 6.3 on page 120), we have

Qλ :=
⋃

r

({s}λ
r
⊕ vλ

r
) (6.10)
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For simplicity, we will extend the xor operator ⊕ to indexed sets, by defining that for two indexed

sets P, P ′, defined at a subdivision level λ, with p ∈ P , and p′ ∈ P ′ with Card(P ) = Card(P ′),

P ⊕ P ′ =
⋃

p(i) ⊕ p′(i)

where p(i) and p′(i) belong to the same tile T λ
r .

Furthermore, we will define the operator φλ
λ′ . This operator takes as input a stratified point set

at a level λ′ ≤ λ, and duplicates the vector inside each tile T λ′

r , in order to repeat this vector

inside all the subtiles T λ
r of T λ′

r .

More formally, we define φλ
λ′ so that for two ordered sets, Sλ,Sλ′

, where Card(Sλ) = KxsCard(Sλ′
),

x ∈ N, and with s ∈ Sλ, s′ ∈ Sλ−1,

Sλ ⊕ φλ(Sλ−1) =
⋃

r

({s}λ
r ⊕ {s′}λ

r ) (6.11)

where as Sλ−1 is stratified at level λ− 1, {s′}λ
r is a singleton.

This operator will let us denote easily the xoring between two point sets defined at different

subdivision level (thus with different cardinalities).

From here, we can rewrite Equation 6.10 on the preceding page as

Qλ := Sλ ⊕ φλ
λ−1Vλ−1, (6.12)

since the set Sλ contains Ks(λ+1) samples. From Equation 6.2 on page 120, the set Vλ−1 contains

Ksλ elements, one for each tile T λ
r

.

With those new definitions, we denote

πλ−1 = Vλ−1 ⊕ φ(Vλ−2),

we can thus derive from Vλ−1:

πλ−1 = Vλ−1 ⊕ φλ−1
λ−2(Vλ−2)

⇔Vλ−1 = πλ−1 ⊕ φλ−1
λ−2(Vλ−2)

⇔Vλ−1 = πλ−1 ⊕ φλ−1
λ−2(πλ−2)⊕ φλ−1

λ−3(Vλ−3)

⇔Vλ−1 = ⊕λ−1
i=0 φλ−1

i (πi)

with V−1 = 0.
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Therefore, Qλ is made from the set Sλ through successive ⊕ with φ(πi). From here, we derive

∀λ′, 0 < λ′ ≤ λ,

Sλ′−1 ⊕ Pλ′−1 = Vλ′−1

⇔Sλ′−1 ⊕ φλ′−1
λ′−2(Vλ′−2)⊕ Pλ′−1 = Vλ′−1 ⊕ φλ′−1

λ′−2(Vλ′−2)

⇔Qλ′−1 ⊕ Pλ′−1 = πλ′−1

⇔Pλ′−1 = πλ′−1 ⊕Qλ′−1

⇔Π(Qλ′−1) = πλ′−1 ⊕Qλ′−1

Therefore, xoring Qλ′
with πλ′

is similar to applying the permutation Π that created Pλ′
from

Qλ′
.

From Lemma 3 on page 125, if (x, y) ∈ Sλ and (x′, y′) ∈ Sλ ⊕ φ(πλ′
),

(x|nsq′
0
, y|ns(λ′+1−t′−q′

0)) = (x′|nsq′
0
, y′|ns(λ′+1−t′−q′

0)) (6.13)

Furthermore, since πλ′
= Qλ′ ⊕ φ(Pλ′

), when written in binary we have for p ∈ πλ′−1

pd =

ns(λ′+1)∑

i=0

pi
d2−1−i

where pd is the dth coordinate of p and pi
d is the ith bit of pd. We note that ∀i > ns(λ′), pi

d = 0.

Geometrically, xoring with πλ′
means that we move all samples that belong to an elementary

interval J q′
0 to another J q′

0 . However, since all digits of p ∈ πλ′
are 0 when i > ns(λ′), all

samples in intervals that are smaller than 1
2ns(λ′) on every dimension, meaning all samples from

intervals such that nsq0 > nsq′
0 and ns(λ + 1− q0) > ns(λ′ + 1− q′

0), are preserved.

(x|nsq0 , y|ns(λ+1−t−q0)) = (x′|nsq0 , y′|ns(λ+1−t−q0)) (6.14)

Furthermore, since we xor with 0 for every digit > ns(λ′), similarly to the previous proof, we can

always reduce the size of the interval on a single dimension, leading to the following equations

(x|nsq′
0
, y|ns(λ+1)) = (x′|nsq′

0
, y′|ns(λ+1)) (6.15)

(x|ns(λ+1), y|ns(λ′+1−t′−q′
0)) = (x′|ns(λ+1), y′|ns(λ′+1−t′−q′

0)) (6.16)

∀q0 ∈ N, 0 ≤ q0 ≤ ns(lvl + 1)− n(λ′ + 1).

From here we have several possibilities for q0

• q0 = q′
0, then equation 6.13 equals equation 6.9 on page 126.
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• nsq′
0 > nsq0 and ns(λ′ + 1− t′ − q′

0) > ns(λ + 1− t− q0) then from property 6 on

page 124, equation 6.9 on page 126 is implied by 6.13 on the facing page.

• nsq′
0 < nsq0 and ns(λ′ + 1− t′ − q′

0) < ns(λ + 1− t− q0) then 6.14 on the preceding

page applies.

• nsq′
0 > nsq0 and ns(λ′ + 1− t′ − q′

0) < ns(λ + 1− t− q0) (or the opposite), equa-

tion 6.15 on the facing page (or 6.16 on the preceding page) can be used jointly with

Property 6 on page 124 to imply 6.9 on page 126

6.3.4 Pλ is a (t, λ + 1, s)-net in base Ks

Lemma 5 For s = 2, if Sλ is a (t, λ + 1, 2)-net in base K2, Pλ is a (t, λ + 1, 2)-net in base K2.

Proof 4 Pλ is made from Sλ by successively applying two permutations. First, the Ψ permu-

tation is applied, creating a point set Qλ, which is a (t, λ + 1, 2)-net in base K2 from Lemma 4

on page 126. Then, we create Pλ by applying Π to Qλ, and as from Lemma 3 on page 125, Π

preserves the net properties of Qλ, Pλ is a (t, λ + 1, 2)-net in base K2.

6.3.5 The samples from Pλ−1 are also into Pλ

Lemma 6 Pλ−1 ⊂ Pλ

Proof 5 Since Sλ−1 is a (t, λ + 1, s)-net in base KD from property 1 on page 118 with t < ns

and both Qλ−1 and Pλ−1 are (t, λ+1, s)-nets in base KD from Lemmas 4 and 3, for t = 0, each

of those sets contains one and only one sample inside each tile T λ
r

.

Sλ−1 =
⋃

r

{s}λ−1,λ
r

(6.17)

Qλ−1 =
⋃

r

{q}λ−1,λ
r (6.18)

Pλ−1 =
⋃

r

{p}λ−1,λ
r (6.19)

For the same reason, we have that Sλ contains Ks samples inside each tile T λ
r . As Sλ−1 ⊂ Sλ

from [Sob67], we have that {s}λ−1,λ
r ∈ Sλ.
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From Eq ( 6.3 on page 120), we have

Qλ =
⋃

r

{s}λ
r ⊕ vλ

r (6.20)

where vλ
r is a singleton defined as

vλ
r

= {s}λ−1,λ
r

⊕ {p}λ−1,λ
r′ (6.21)

with {s}λ−1,λ
r

the ith sample in Sλ−1 and {p}λ−1,λ
r′ the ith sample in Pλ−1.

Therefore

{s}λ
r
⊕ vλ

r
= ({{s}λ

r
/{s}λ−1,λ

r
} ⊕ vλ

r
) ∪ ({s}λ−1,λ

r
⊕ vλ

r
)

= ({{s}λ
r /{s}λ−1,λ

r } ⊕ vλ
r ) ∪ ({s}λ−1,λ

r ⊕ {s}λ−1,λ
r ⊕ {p}λ−1,λ

r′ )

= ({{s}λ
r /{s}λ−1,λ

r } ⊕ vλ
r ) ∪ ({p}λ−1,λ

r′ )

Therefore, Pλ−1 ⊂ Qλ.

Then, from equation 6.4 on page 122 we have

Pλ :=
⋃

r

N−1(Πλ
r
(N({q}λ

r
))) (6.22)

and by property 4 on page 122, we know that Π preserves the position of the samples from Pλ−1.

Therefore, is Pλ−1 ⊂ Qλ, Pλ−1 ⊂ Pλ.

6.3.6 Our local permutations are admissible permutations

In this section, we demonstrate that the set of permutation {πλ
r } built by our method (See

Section 6.1.2 on page 110) is a subset of the admissible set of permutation Π.

Lemma 7 The local permutations {πλ
r } as defined in Section 4.1 of the main article define an

admissible Π.

Proof 6 We already explained how our permutation can preserve the position of a given marked

sample (constraint (i) leading to Lemma 6 on the previous page). We give here more details

on how we exchange the trailing bits, to demonstrate that we preserve the net properties of the

initial set and its 1-D projections.
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A

B C

D

Initial set Our permutation

When we remove the trailing bits of a sample, i.e. when we quantize this sample to the corner of

its elementary interval T λ
r (gray cells in above figure), we do not change the LD net properties

at level λ. We then apply Owen’s scrambling on this quantized set, which is also net-preserving

([Owe95], Proposition 1). And finally, when we reapply the trailing bits, even if we exchange

those bits between the samples, those bits are not significant enough to take a sample out of

its elementary interval. As an example, if Owen’s scrambling at level λ swaps rows containing

A :=(x,y) and B :=(x,y), we construct the points C :=(x,y) and D :=(x,y). This exchange of

trailing bits is then net-preserving, and therefore our permutation is net-preserving.

Finally, if the initial set is a (t, k, s)-net, when we quantize it on k digits, all combinations of

bits are present. Since Owen’s scrambling is net-preserving, after scrambling, all combination of

bits will still be represented. Then, simply by reapplying the trailing bits with the proper initial

bits, we are guaranteed to preserve the 1-D projections of samples.

So our set {πλ
r } is a subset of the admissible set of permutation.

6.4 Conclusion

Following those proofs, we can fairly say that our new method scrambles Sobol sets to generate

2-D projections with proven Blue Noise and Low discrepancy property. By independently scram-

bling projections, we also allow the generation of s-D point sets with improved discrepancy and

spectrum, as shown in Chapter 7 on page 133. Furthermore, our method is sequential, which

would let us iteratively refine the approximation of an integrand if needed.

This projection-wise scrambling is not so much of a drawback for rendering as we solve a

recursive set of independent integrands. However, only some particular pairs of Sobol indices

can be scrambled with our method, which limits its usage to low dimensional sets (s < 10).

Note that this can be alleviated with our sequential Owen’ method (Section 4.2 on page 79),

but the spectrum will present a lower quality. Another limitation of our method (which is

inherent to the combination of Blue Noise and Low Discrepancy), is that it presents a proper

spectrum and discrepancy only for sets of size K2n, n ∈ N (this is further discussed in Chapter 7

on page 133).

Still, despite the amount of possible future work, our scrambling is the first known solution

to create sequential sampling patterns with low discrepancy and improved spectrum in higher

dimensions.
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7Experiments

In this section, we present the results of all experiments we performed when characterizing sam-

plers and validating our methods. All of our evaluations were performed on uniform sampling

patterns, the settings for each particular experiments are detailed within the sub sections.

We start by presenting graphs measuring the behaviour of the discrepancy and of the integration

error. Those measures are presented for our methods and are thoroughly compared with the

state of the art. Then, we present reconstructions and renderings obtained from our methods

and some state of the art methods. Unfortunately, due to the complexity of modern rendering

systems, this analysis is less thorough but is still very informative. Our final section presents a

table of timings for the main samplers.

All those experiments were computed using tools from the UTK Framework [Utk]. For all state

of the art samplers, we used, when available, their implementation within the UTK framework.

For other samplers, we used code provided by the authors. Note that for all non-trivial samplers,

their implementation within the UTK Framework is a copy of the authors code that was merely

adapted to the UTK API. We compare those previously existing samplers to the new methods

proposed in Chapter 5 on page 93 and Chapter 6 on page 107, also implemented in the UTK

API.

7.1 Discrepancy

In this section, we compare the discrepancy of many samplers. Our main interest is to measure

how their discrepancy evolves as the number of sample increases, the faster it converges to 0,

the better. We start by presenting the l∞ star discrepancy measure, for 2-D samplers. Then,

we will present the l2 star discrepancy for the same 2-D samplers, and for some 4-D sampling

patterns.

7.1.1 l∞ star discrepancy

In this subsection we present the l∞ star discrepancy computed using the exact O(ns) algorithm

described in Section 2.1.1 on page 17. The following graphs present the evolution of this

discrepancy for many samplers. We first see how Low discrepancy samplers behave (Fig. 7.1

on page 135), then similarly for Blue Noise samplers (Fig. 7.2 on page 135), and finally for

samplers that are neither Blue Noise nor Low Discrepancy (Fig. 7.3 on page 136). Then, the

discrepancies of the main samplers will be compared to the discrepancy of our new methods
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(Fig. 7.4 on page 136). Note that all those measures were done with 2-D samplers. On the

following graphs, we also plotted the theoretical discrepancies for the 2-D Whitenoise sampler,

O(1/n), and for 2-D Low Discrepancy samplers O(log(n)/n).

The first graph (Fig. 7.1 on the facing page) presents the discrepancy of various Low Discrepancy

samplers. As expected, all curves show the same convergence speed, following the theoretical

curve in O(log(n)/n). It is interesting to note how the discrepancy of the Faure [Fau82] and

Sobol [Sob67] samplers increases and decreases periodically. This is due to the fact that those

sequences generate digital nets in base 2. Thus, any number of samples that is not a power of

two cannot fill properly the net as there are not enough samples with respect to the number

of congruent boxes (see Section 3.3.2 on page 59). For all samplers defined in a base b, we

denote octaves the sets presenting bk samples, k ∈ N. Note that in base 2, the Faure and

Niederreiter sequences [Nie88] are similar to the Sobol sequence (with a different ordering of

samples). Therefore, we plotted the Neiderreiter sequence in base b = 3 here. Also note that in

further graphs, we may no longer show the discrepancy outside the octaves.

Now if you look at the l∞ star discrepancy of Blue Noise samplers (Fig. 7.2 on the facing page),

it can be seen that for many such samplers, the discrepancy is close to the Whitenoise theoretical

curve. Note that for such samplers, as they are stochastic, the discrepancy was presented a the

maximal discrepancy over around 20 realisations. However, for some methods such as BNOT

[DG+12], CVT [Du+99] or CapCVT [Che+12], the computational time is really expensive and,

for higher number of samples, we sometimes are not able to generate more than one or two

sets, hence the increase in variance for the discrepancy measures. In the case of CVT and

CapCVT, it can be seen that passed 10000 samples, the discrepancy seems to stop decreasing

as the number of samples increases. At this time, we are still not sure to why we observe this

behaviour. There are two possible explanations to this phenomenon, either the implementation

we have for such samplers (provided by the authors) is slightly flawed, or we are not configuring

it properly. If this is not the case, this could be also explained by a unperceived shifting of the

points, leading to visually perfect sets, but that is sufficient to affect the discrepancy (similarly

to what happens with the sampler from [Fat11], as mentioned in Section 3.2.2 on page 44)

Then, the third graph presents the discrepancy of other samplers. It can be seen that as expected,

the Whitenoise sampler has a discrepancy in O(1/n), similarly to the discrepancy of regular

and hexagonal grids (due to samples alignment). The N-Rooks sampler has an interesting

behaviour, as its discrepancy seems to increase as the number of samples increase. That is

most likely because N-Rooks shuffles a canonical arrangement to preserve its 1-D projections,

and as the number of samples increases, samples are getting closer and closer to each other in

those projections. Furthermore, in the 2-D plane, there is nothing that prevents samples from

clumping. Thus, the discrepancy gets closer and closer from the discrepancy of the Whitenoise

sampler as the number of samples increase. Another interesting point on this graph is the

discrepancy of stratified sets, that is surprisingly good. Thanks to the stratification of samples,

clumping is partly alleviated and aligning samples are less likely. Hence the improvements in

the discrepancy.
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Fig. 7.1.: l∞ Star Discrepancy of various 2-D Low Discrepancy samplers.
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Fig. 7.2.: l∞ Star Discrepancy of various 2-D Blue Noise samplers.

Finally, our last graph presents how our new samplers (described Chapter 5 on page 93 and

Chapter 6 on page 107) behave regarding state of the art samplers. It can be seen that, as

expected, they experimentally behave as Low Discrepancy Samplers. They thus present a

better discrepancy than Blue Noise and Historical samplers.

However, Graph 7.5 on page 137 presents that, for our second method, the discrepancy is very

degraded between the octaves. The size of such octaves depends on the subdivision factor K

of our tile based system. A point set is therefore low discrepancy only if its size n verifies

n = a2K

, a ∈ N. Therefore, the higher the K, the more difficult to obtain a set that is Low

discrepancy. On the other hand, the higher the K, the more Blue Noise our sets can be. This

will be discussed further in the Chapter 8 on page 165.
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Fig. 7.3.: l∞ Star Discrepancy of various 2-D samplers.
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Fig. 7.4.: Comparing the l∞ Star Discrepancy of our samplers with reference 2-D samplers.
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Fig. 7.5.: Comparing the l∞ Star Discrepancy of our projection scrambling, outside the octaves, with
reference 2-D samplers.

7.1.2 l2 star discrepancy

As the l∞ star discrepancy is not tractable for large sets in more than 2-D, we need another

measure to compare how the discrepancy of a sampler evolves as the dimension increases. To

do so, we used the l2 star discrepancy measure, as described Section 2.1.2 on page 19. This

discrepancy was computed from the Generalized L2 Discrepancy tool from UTK. This tool takes

as input a pointset Pn, and computes its generalized l2 star discrepancy using the following

formula (previously given Equation 2.13)

(D2(Pn))2 :=

(
4

3

)s

− 2

n

n∑

i=1

s∏

j=1

3−
(
x

(i)
j

)2

2
+

1

n2

n∑

i=1

n∑

i′=1

s∏

j=1

[
2−max

(
x

(i)
j , x

(i′)
j

)]
. (7.1)

This lets us compute this discrepancy with a O(sn2) algorithm.

Similarly to the l∞ star discrepancy, we first present the evolution of the l2 star discrepancy

for state of the art Low discrepancy samplers (Fig. 7.6 on the next page), then for Blue Noise

samplers (Fig. 7.7 on the following page), and finally for other samplers (Fig. 7.8 on page 139).

Then, the discrepancies of the main samplers will be compared to the discrepancy of our new

methods (Fig. 7.9 on page 139).

On all those graphs, we presented, for comparison, the theoretical convergence speeds of the l∞
star discrepancy. Note that we do not expect the convergence speeds of the l2 star discrepancies

of samplers to follow those curves. However, it can still be noted that the measurements are

quite close from those curves.

Graph 7.6 on the next page presents the l2 star discrepancy of low discrepancy samplers. It

shows that the convergence speed is still the same for all those samplers, and we see the same
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Fig. 7.6.: l2 Star Discrepancy of various 2-D Low Discrepancy samplers.
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Fig. 7.7.: l2 Star Discrepancy of various 2-D Blue Noise samplers.

periodical increase in the discrepancy of Sobol [Sob67] and Faure [Fau82] in between the octaves,

as was observed for the l∞ star discrepancy.

For Blue Noise samplers, presented Graph 7.7, we note that we no longer observe the weird

behaviours that we could see with the l∞ star discrepancy. This is most likely due to the

fact that the l∞ star discrepancy keeps the maximal difference between box area and fraction

of samples in this box (Section 2.1.1 on page 17). Thus, this discrepancy is highly sensitive

to outliers, if a single measure fails, the whole discrepancy behaves abnormally. The l2 star

discrepancy on the other hand averages the differences for all boxes. Outliers are thus invisible

in the final measure.

The last two graphs, presenting the l2 star discrepancy of other samplers (Graph 7.8 on the

facing page), and comparing our methods to state of the art methods (Graph 7.9 on the next

page), lead to roughly the same conclusions as the ones from l∞ star discrepancy graphs.
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Fig. 7.8.: l2 Star Discrepancy of various 2-D samplers.
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Fig. 7.9.: Comparing the l2 Star Discrepancy of our samplers with reference 2-D samplers.
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Fig. 7.10.: Comparing the l2 Star Discrepancy of our Multi-dimensional sampler (Chapter 6) with
reference 4-D samplers.

Contrary to the analysis of 2-D point sets using the l2 star discrepancy, for higher dimensional

sets, we cannot present measurements over Blue Noise samplers as those samplers are of very

limited dimensionality. Figure 7.10 thus only present the evolution of the l2 star discrepancy

of state of the art 4-D samplers compared with the 4-D discrepancy of our higher-dimensional

method (Chapter 6).

We see in Figure 7.10 that, as expected, our projection scrambling does not preserve the full

4-D discrepancy. However, its discrepancy is still better than the discrepancy of a stratified

sampler for lower number of samples. It seems that each stage of scrambling messes up the 4-D

discrepancy of the set a little bit more, and that as the number of samples increases, our set

has a discrepancy with a similar behaviour as the stratified sampler.

7.2 Integration error

In this section, we compare how various samplers perform when used for the Monte Carlo

estimation of a given integrand.

On the following graphs however, we did not plot the integration error as

∆ = |In − I|. (7.2)

Plotting this function for a single integrand would have led to very noisy curves and would have

prevented an easy reading of the graphs. Instead, we used the theorem from [Pil+15] that states

that for unbiased stochastic samplers, their integration error is equivalent to the square root of

the variance in integration error. Plotting this measure leads to much smoother curves, even for

a single integrand. For deterministic samplers, we use the Cranley-Patterson shift (Section 4.1

on page 74) to randomize them, and also plotted their variance. This is possible since this
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Fig. 7.11.: Integration MSE and Variance measured on a Disk with the Sobol and Stratified samplers,
with and without Cranley-Patterson shift.

Fig. 7.12.: Cornered Gaussian function without and with shifting. Discontinuities appear on the shifted
function that did not exist in the original function.

particular randomization does not affect the Fourier spectrum nor the discrepancy of the set.

Graph 7.11 presents a comparisons of the MSE measured when integrating from a single Sobol

and a single Stratified sets and the MSE measured from averaging 25 Cranley Patterson shifted

realisation of those sets. Those graphs show that, apart from the smoothness of the curves, no

notable differences can be observed between the MSE of a set and the averaged MSE of this set

with Cranley Patterson shift.

Note however that integrating a single function with a Cranley-Patterson shifting of samples

can be seen as integrating a Cranley-Patterson shifted function with a single set of samples.

This may, in particular cases, create discontinuities in the function that were not present in

the original integrand (Fig. 7.12). Graph 7.13 on the next page presents a comparisons of

the MSE measured when integrating a cornered Gaussian function from a single Sobol and a

single Stratified set and the MSE measured from averaging several Cranley-Patterson shifted

realisation of those sets. Such integrand when shifted creates discontinuities which changes

the frequency radial profile of the function. In all those integrands used for our following test,

discontinuities were already present in the original integrand and thus, shifting it has no impact

on the MSE.
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Fig. 7.13.: Integration MSE and Variance measured on a Cornered Gaussian with the Sobol sampler,
with and without Cranley-Patterson shift.

We observed that integration errors for functions with higher exponents (in absolute value) in

their mean spectral profile are similar for all samplers. This is consistent with the results from

[Pil+15], as a higher exponent means that the radial power spectrum from the integrand will

be zero almost immediately and thus only the very low frequencies will be present. As a vast

amount of samplers try to be as close to 0 as possible in the low frequencies the Fourier spectrum

of all those samplers will have a similar impact on the observed error. Therefore, measuring a

difference between those samplers for such integrands is difficult. The differences appear when

integrating over functions having a mean spectral profile with a higher exponent.

We start by presenting this measured integration error when integrating an analytical 2-D disk

and analytical 4-D spheres. Then, we present how samplers perform when integrating over a

discretization of a natural scene, given as a HDR image. Finally, we present a new tool (still at

an early development stage) to allow analytical integration of complex arrangements, that we

hope may, with further work, allow to simulate the spectral properties of natural scenes, but

with an analytical representation.

7.2.1 Integration over analytical functions

We start by integrating an analytical 2-D disk defined with

fDisk(x) :=





4√
π

if |x| < 0.25,

0 otherwise.
(7.3)

This Disk is an interesting analytical integrand as it presents discontinuities which are very

common in rendered scenes. One could also use a Triangle or a Square, but their Power spectra

converge faster than the Power spectrum of the Disk, which converges in O(ρ−3).
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Fig. 7.14.: Variance of Monte Carlo estimators from Blue Noise samplers when integrating an analytical
2-D disk.

We can see on Figure 7.14 that not all Blue Noise samplers are equal for Monte Carlo estimators.

Consistently with what was observed for the discrepancy of the CVT [Du+99] and CapCVT

[Che+12] samplers, their integration error suddenly increases drastically as the number of sam-

ples gets too high. Similarly for the discrepancy, we do not know at this time why this behaviour

occurs but we assume it is either due to a misprogramming/misusage of the code (we are using

the code from the original authors), or to a very minor shifting of the samples that may not be

visible to the eye but that causes the integration error (and discrepancy) to increase drastically.

It can also be noted that the Poisson Disk sampler, consistently with the results of [Pil+15],

performs quite poorly. Similarly, the FPO sampler has a higher integration variance. This is

still unexplained but our hypothesis is that this is due to similar reasons as for the Poisson Disk

sampler.

When looking at the integration error of Low discrepancy samplers, Figure 7.15 on the next

page, we can note that all samplers performs very well. This is consistent with the Koksma-

Hlawka theorem which bounds the convergence of the integration error of 2-D Low discrepancy

samplers to O(log(n)/n).

The graph Figure 7.16 presents the results from other samplers. The behaviour of Whitenoise

and stratified samplers are consistent with their theoretical convergence. However, the be-

haviours of NRooks and of the Hexagonal grid are surprising. For NRooks, this is most likely

due to the regular canonical input that, once shuffled, does not allow for a covering of the final

set as uniform as a White noise set. For the Hexagonal grid, the high variance observed within

the variance values themselves prevents a proper analysis of what happens, but it seems to suffer

from a different issue than the NRooks sampler as its discrepancy behaved perfectly well.

Finally, Figure 7.17 on page 145 compare the behaviour of our methods with respect to the main

state of the art samplers. It can be seen that our integration error converges as fast as for usual

Low discrepancy samplers, which was to be expected as our samplers are Low discrepancy.
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Fig. 7.15.: Variance of Monte Carlo estimators from Low Discrepancy samplers when integrating an
analytical 2-D disk.
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Fig. 7.16.: Variance of Monte Carlo estimators from various samplers when integrating an analytical
2-D disk.
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Fig. 7.17.: Comparing the variance of Monte Carlo estimators of our samplers with reference samplers
when integrating an analytical 2-D disk.

We also performed measurements for the integration error of a 4-D sphere, with 4-D samplers.

The results are given Figure 7.18 on the next page. It can be seen that, despite not being a

Low Discrepancy 4-D sampler, our sampler performs very well, as, in the worst case, our set

resumes as a 4-D stratified set which has a good performance regarding the integration error.

7.2.2 Integration over discrete natural scenes

In this section, we show our results when integrating over HDR images. We chose two HDR

images with very different Fourier spectra profiles. Natural images spectra can be roughly

categorized into two categories [TO03]: The ones showing man made scenes (buildings, streets,

etc.) and the ones showing natural scenes (forests, grass, etc.). Man made structures have a

much more anisotropic spectra and present a mean spectral profile in O(ρ−1.8) while natural

images are much more isotropic with a mean spectral profile in O(ρ−2). The two gray scale HDR

images are taken from the sIBL archive with a size of 1600x1600. Figure 7.19 on the following

page presents those images along with their Fourier spectrum, radial profiles, and exponent.

The results from this section are similar to the results observed for analytical integrands. They

are presented in Figures: 7.21, 7.20, 7.22, 7.23, 7.25 on page 149, 7.24, 7.26 and 7.27 on the

following pages. Note that as the exponent of their radial profile is lower, distinction between

samplers is made easier.

7.2.3 Integration over analytical arrangements

In this section, we present a new integration test. When integrating from natural HDR images,

we only have so many images we can integrate from. Furthermore, those images are already

discretized and we do not have any analytical expression for the integrand. Here, our final goal
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Fig. 7.18.: Comparing the variance of Monte Carlo estimators of our samplers with reference samplers
when integrating an analytical 4-D sphere.
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Fig. 7.19.: Spectral characteristics of HDR integrands.
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Fig. 7.20.: Variance of Monte Carlo estimators from Low Discrepancy samplers when integrating the
inset hdr image.
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Fig. 7.21.: Variance of Monte Carlo estimators from Blue Noise samplers when integrating the inset
hdr image.
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Fig. 7.22.: Variance of Monte Carlo estimators from various samplers when integrating the inset hdr
image.
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Fig. 7.23.: Comparing the variance of Monte Carlo estimators of our samplers with reference samplers
when integrating the inset hdr image.
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Fig. 7.24.: Variance of Monte Carlo estimators from Low Discrepancy samplers when integrating the
inset hdr image.
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Fig. 7.25.: Variance of Monte Carlo estimators from Blue Noise samplers when integrating the inset
hdr image.
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Fig. 7.26.: Variance of Monte Carlo estimators from various samplers when integrating the inset hdr
image.
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Fig. 7.27.: Comparing the variance of Monte Carlo estimators of our samplers with reference samplers
when integrating the inset hdr image.
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Fig. 7.28.: Spectral properties of complex analytical arrangements. It is clearly visible in log scale that
compared to the natural image from Figure 7.19, we still lack high frequencies.

is to generate random synthetic analytical images, with a controllable profile spectrum, with

arrangements of boxes and triangles.

We therefore generate randomly 2-D boxes (or triangles) of various sizes within a given domain.

By controlling the number of shapes of a given size, we can control the amount of higher/lower

frequency in the final image. This control could be made finer by using white,blue,pink or green

distributions of shapes to increase a given range of frequencies. As each shape is analytically

integrable, we have the analytical integrand for the first shape, which is simply updated each

time we add a new shape within the arrangement. Technically, we do this using the CGAL

library [Cga], which provides efficient tools to handle such 2-D arrangements.

However, in our current implementation, to create integrands with a radial profile similar to

natural images (between O(ρ−1.5) and O(ρ−2)), we need to generate very complex arrangements

(containing around 15000 elements of various sizes and orientations (Fig. 7.28)). Unfortunately,

when used for integration, such arrangements lead to biased results. We do not know for sure

today what causes this bias but it seems that the analytical evaluation of those arrangements

leads to numerical errors.

In this section we present integration error as measured for simpler and unbiased analytical

arrangements. Figure 7.29 on the next page, with radial profiles between O(ρ−2) and O(ρ−2.5)

(Fig. 7.29 on the following page).

The Box arrangement presents more anisotropy than the Triangle arrangement and emphasizes

the behaviour of samplers when integrating axis aligned discontinuities. When using those

synthetic images to measure convergence speed in integration, we get consistent results as those
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Fig. 7.29.: Spectral properties of simpler analytical arrangements.

that would be obtained from true HDR images (Figures 7.30 on the next page and 7.31 on

the facing page). Note that, as computing those arrangements takes some time, in this section

we plotted the true MSE instead of the variance over several randomized realisations of the

samplers/the integrands, hence the noisy curves.

7.3 Aliasing

In the previous sections, we studied how approximating a single integrand converges. However,

this is insufficient in a rendering context, where many integrands are solved (one for each pixel),

and where the set of all approximations values are then reconstructed into a full image. We

study in this section how the integration error from each samplers is distributed within this full

image. A stochastically distributed error leads to noise, and a regularly distributed error leads

to aliasing.

We present here results from reconstructing a 2−D function with a wide range of frequencies,

and results of various samplers in a true rendering context.

7.3.1 Zoneplate

Our first test to measure this is the reconstruction of the 2-D Zoneplate function. This re-

construction is done by sampling the function with a 2-D sampling pattern and then using a

Mitchell-Netravali filter [MN88] to retrieve the original function from all the measured discrete
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Fig. 7.30.: Comparing the MSE of Monte Carlo estimators of our samplers with reference samplers
when integrating synthetic box arrangements.
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Fig. 7.31.: Comparing the MSE of Monte Carlo estimators of our samplers with reference samplers
when integrating synthetic triangle arrangements.
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values. See Appendix A on page 168 for more informations. This Zoneplate function fZ is

illustrated Figure 7.32 and is formally expressed by

fZ(x, y) := sin(x2 + y2). (7.4)

It is interesting to us as this function presents a very wide range of frequencies, which is very

difficult to capture when discretizing. Aliasing becomes obvious when using this function, and

its relationship to the Fourier spectrum is also easily visible.

Fig. 7.32.: Ground truth reconstruction of the Zoneplate function.

The zoneplate images from Figure 7.33 show that Blue Noise samplers allow for a good recon-

struction up to a certain frequency. Above that frequency, the reconstruction turns to noise.

Among this noise, an arc of stronger noise artefacts appears. This arc is due to the peak in

the Blue Noise fourier spectrum. Similarly, in Figure 7.34, the Low discrepancy samplers would

perform a very good reconstruction, as no noise is visible. The issue is that instead, it turned

this noise into very visible artefacts. Those artefacts actually align with the peaks in the Fourier

spectrum of the sampling pattern used to do this reconstruction. Finally, the samplers presented

in Figure 7.35 usually generate more noise than Blue Noise sampling patterns, and the lattice

samplers present artefacts stronger than the ones from the Low discrepancy samplers.

In Figure 7.33, the zoneplate reconstruction from the samplers of our methods are presented.

Those reconstructions are very similar to the ones from classical Blue Noise sampler, which was

to be expected as our methods present a Blue Noise Fourier spectrum.

7.3.2 Renderings

In this section, we present the performances of our second method (Chapter 6 on page 107)

in a rendering context. All our rendering examples were performed using the PBRT engine

[Pha+16]. For this whole section, we strongly advise the reader to refer to the pdf version of

this document as the printing may have degraded the quality and readability of the results.

To use our sampler within this engine, we generated a set of N s-D samples (usually with

N = 218 or N = 220), and tiled this set so that each pixel is covered by the expected number of

samples. We could have instead generated independently but this would have led to correlation
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Fig. 7.33.: Zoneplates of various Blue Noise samplers, using 262144 samples to reconstruct a 256x256
image.
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Fig. 7.34.: Zoneplates of various Low Discrepancy samplers, using 262144 samples to reconstruct a
256x256 image.
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Fig. 7.35.: Zoneplates of various samplers, using 262144 samples to reconstruct a 256x256 image.
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Fig. 7.36.: Zoneplates of our samplers, using 262144 samples to reconstruct a 256x256 image.
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between pixels that would have led to very disturbing artefacts. We chose to tile our sampler

as, for implementation simplicity, we are reading the samples from an input file instead of

having them generated on the fly by the system. Thus, to avoid reading and storing huge files,

we chose to tile a smaller set instead. We also used this method to perform renderings from

Owen’s scrambled Sobol sets.

We compared our sampler to Sobol and Halton, which are both generated using the same global

stretching of N samples. The only difference being that as Sobol and Halton are defined ana-

lytically, it is possible to generate billions and billions of samples and thus no tiling is required.

On the contrary, the Stratified sampler renders a scene by generating a new independent set of

samples within each pixel.

We rendered several scenes, and compared the mean squared error (MSE) of the rendered scene

to the ground truth scene. Note that the MSE given here is not the same as the MSE given in

Section 7.2 on page 140. Section 7.2 on page 140 measures the error/variance when integrating

a single scene, returning a single value as the integrand of the whole scene. The rendered scenes

here are made from an aggregation of approximated integrand values, one for each pixel. The

MSE measured here can therefore be perceived a sum of all the MSE from all the integration

errors from all pixels. It does not take into account how the error is distributed, and is not

affected by aliasing artefacts.

In Figure 7.37, we start by using our sampler solely for 4 dimensions. This scene uses 8

dimensional samples: 2 for the image plane, 2 for the point on the light, 2 for the light scattering,

and 2 for the object reflectance function. We rendered it using various samplers to sample the

2D image plane and the 2D light source, while all other dimensions sampled using the Sobol

sequence. Since the Sobol sequence is deterministic, differences between the images are only due

to the difference in sampling for the image and light and therefore allow for an easy comparison

of the different samplers. It can be seen that our sampler has a MSE similar to Sobol, but no

longer presents aliasing in the shadow. Note that we used our sampler with 64 samples per tile

(K = 8), and the Sobol indices (1, 4) and (2, 3).

In Figure 7.38, we render a complex scene with various samplers. In the case of our sampler,

we used 64 (K = 8) samples per tile and optimized 3 2-D projections, suing the Sobol indices

(1,4), (2,3) and (5,7). Those optimized projections were used for the image plane, the light and

the lens (for the depth of field effect). We used our hierarchical Owen’ scrambling (Section 4.2

on page 79 for the remaining dimensions. Similarly to Figure 7.37, we note that our approach’s

MSE is better than most methods as is is similar to Sobol’s. However, we present much less

aliasing.

Figure 7.39 presents the difference in renderings when using 16 (K = 4) or 64 (K = 8) samples

per tile on a very complex scene requiring 20-D samples. We used the same setup as for Figure

7.38, which is optimizing the projections for the image plane, the lens, and the light and filling

the other dimensions with Owen’ scrambling. Note that when using 4 samples per pixel, the

crown appears darker. This phenomenon is still unexplained.
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Ground Truth image

Stratified
(MSE:

0.00224369)

Halton
(MSE:

0.00240355)

Sobol
(MSE:

0.00180466)

Owen
(MSE:

0.00178673)

MultiProj
K=8

(MSE:
0.00181866)

Fig. 7.37.: Direct lighting (single light bounce) with 16 samples per pixel. The deterministic Sobol
sampler is used on every dimension apart from the light plane. This dimension was sampled
using various samplers, allowing to compare the impact of each of them and compare it
with our sampler.
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Ground Truth image

Stratified
(MSE: 0.0017922)

Halton
(MSE: 0.00140106)

Sobol
(MSE: 0.00158493)

Owen
(MSE: 0.00167052)

MultiProj K=8
(MSE: 0.00131348)

Fig. 7.38.: s-D Renderings with 16 samples per pixel and various samplers. The scene rendered presents
depth of field effect, and uses a single light bounce. When using our sampler, the three
optimized projections affect the sampling of the image plane, the sampling of the lens for
the Depth of Field effect, and the light plane.
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Ground Truth image
K = 4 K = 8

4spp
(MSE: 0.0307906)

16spp
(MSE: 0.011869)

4spp
(MSE: 0.0304804)

16spp
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(MSE: 0.00603495)

256spp
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(MSE: 0.00368442)

256spp
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Fig. 7.39.: Renderings with our sampler when K = 4 and K = 8 with a various number of samples
per pixel. The scene rendered presents depth of field effect, and uses 3 light bounces. The
optimized projections affect the sampling of the image plane, the sampling of the lens for
the Depth of Field effect, and the sampling of the light plane.
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Sampler 10 102 103 104 105 106

Low Discrepancy Samplers

Faure 0.00000s 0.00002s 0.00028s 0.00383s 0.05199s 0.64523s
Halton 0.00000s 0.00002s 0.00020s 0.00287s 0.03884s 0.48352s

Hammersley 0.00000s 0.00000s 0.00001s 0.00014s 0.00132s 0.01135s
Niederreiter 0.00009s 0.00009s 0.00019s 0.00120s 0.01064s 0.10320s

Owen 0.00024s 0.00038s 0.00147s 0.01899s 0.23139s 2.93118s
Sobol 0.00005s 0.00003s 0.00007s 0.00049s 0.00534s 0.04965s

Blue Noise Samplers

CVT 0.02736s 0.14151s 1.52076s 24.34502s 392.36278s
CapCVT 0.02611s 0.13227s 1.49233s 25.00627s 386.62341s

FPO 0.01995s 0.01957s 0.30386s 7.92847s 419.76541s
BNOT 0.05781s 0.76544s 15.77232s 577.65501s

Other Samplers

CMJ 0.00002s 0.00001s 0.00005s 0.00037s 0.00362s 0.03723s
HexagonalGrid 0.00003s 0.00000s 0.00004s 0.00019s 0.00172s 0.01453s

NRooks 0.00000s 0.00001s 0.00006s 0.00051s 0.00674s 0.10854s
Rank1Fibo 0.00000s 0.00000s 0.00002s 0.00029s 0.00371s 0.01691s

RegularGrid 0.00007s 0.00001s 0.00006s 0.00010s 0.00093s 0.00690s
Stratified 0.00005s 0.00002s 0.00008s 0.00031s 0.00301s 0.02819s

Whitenoise 0.00000s 0.00000s 0.00002s 0.00021s 0.00229s 0.01978s
Step 0.93656s 0.83110s 7.32909s 620.91383s

Our Samplers

BNLDS 0.01423s 0.00139s 0.00806s 0.14148s 2.78297s 2.78475s
LDBN 0.02936s 0.01231s 0.01199s 0.01315s 0.01409s 0.02416s

Tab. 7.1.: Timings table

7.3.3 Timings

In this section we present timings measured from the samplers implementation from the UTK

framework. Table 7.1 presents the times in seconds need for a sampler to generate a given

amount of samples. it can be noted that the analytical Low discrepancy samplers are very

efficient, when the Blue Noise samplers based on optimization cannot generate more that 105

samples. All those tests were performed on a CPU Intel® Core™ i5-4440 CPU @ 3.10GHz ×

4.
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7.4 Conclusion

The experiments presented in this chapter led to the following conclusions. First, they exper-

imentally confirm our intuition regarding the Koksma Hlawka theorem. Meaning that despite

that our scenes are not of finite variations in the sense of Hardy and Krause (as required by the

original Koksma Hlawka theorem), the discrepancy seem to still be related to the integration

error as an upper bound. We observe thar the Low discrepancy samplers present an integra-

tion error that is related to their discrepancy, and decreases in O(log(n)/n) (in 2-D). It also

confirmed the theoretical convergence speeds of various stochastic samplers from [Pil+15] and

listed in Table 3.1 on page 70. The Zoneplate test allowed to see the strong aliasing artefacts

that occurs when peaks are visible in the Fourier spectrum, and the renderings allow to see how

a structured sampler leads to a structured repartition of the error in rendering. For all those

experiments, our samplers performed as expected. Meaning that their Low Discrepancy gives

them a convergence speed in O(log(n)/n) (in 2-D), and their Blue Noise spectrum removes all

structured error from the renderings. This confirms that our new proposed solutions, contrary

to previous sampling patterns, performs well both for aliasing and integration error.
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8Conclusion

Generating a photo-realistic image on a computer is a complex problem, that involves solving

high dimensional recursive integrands. Unfortunately, those integrands cannot be solved analyt-

ically. Instead, we rely on a numerical approximation of the integrand, evaluated using a Monte

Carlo estimator. Roughly, such estimators sample the integrand, generating several discrete

values, and deduce the integration result as a sum of all those values. There are several ways to

chose which sample of the integrand should be taken, each leading to different results. In this

PhD, we have studied many sampling patterns and evaluated how they perform in a rendering

context. A sampling pattern is considered a good sampling pattern if the Monte Carlo approx-

imation converges as fast as possible to the true integration value, and if the integration error

is not structured in the final image (if there aren’t any aliasing artefacts).

It was shown that samplers that are said to be Low Discrepancy are the ones with the fastest

convergence (in the worst theoretical case). However, they usually also come with a very regular

structure, which also structures the error in the final image. Furthermore, the Low discrepancy

guarantees a uniform coverage of the domain only asymptotically. As example, the Sobol

sequence is Low discrepancy, but may present a distribution of samples aligned on the diagonal

when the number of samples taken is too low.

On the other hand, the better non-aliased sampling patterns are the Blue Noise patterns. Such

samplers ensure a better covering of the domain by forcing all samples to be equidistant from

each other. However, they asymptotically converge slower than Low Discrepancy samplers.

Our contributions aimed at developing samplers that would be Low Discrepancy, and present a

Blue Noise spectrum. We demonstrated that from this association we have sampling patterns

that have an optimal convergence speed in integration, and an absence of aliasing in the final

rendered image. Furthermore, compared to pure randomization of a low discrepancy set, the

Blue Noise spectrum improves the approximation by ensuring a more uniform covering of the

domain, even for a given low number n of samples, where the asymptotic low discrepancy

property cannot apply.

Our first contribution (Chapter 5 on page 93), aimed at providing the theoretical and empir-

ical proof that a Blue Noise spectrum is not incompatible from a Low Discrepancy property.

However, this contribution is limited to 2-D point sets.

Our second contribution (Chapter 6 on page 107), allows to scramble specific 2D projections of

a Sobol sequence to generate higher dimensional patterns with Blue Noise and Low discrepancy

properties in those projections. Therefore, during rendering, the integration error decreases
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quickly, and no aliasing appears in the final image. Furthermore, our method generates se-

quences of samples.

However, this contribution still leaves the path open future work. First, the K factor is a difficult

trade off. As noted in Section 7.1.1 on page 133, our projections are only low discrepancy for sets

of size n = a2K

, a ∈ N. Therefore, the higher the K value, the more degraded the discrepancy.

But on the other hand, with a higher K, we can hope for a better spectrum for the final

set. An aware reader may have already noted that this drawback is due to the fact that our

method generates (0, a, 2)-nets in base 2K . This choice of a higher basis was motivated by the

intuition that that the Sobol sequence is the only existing (0, 2)-sequence in base 2 (modulo

the order of the samples). As I could not find formal proof of this, this is still conjecture.

Nonetheless, creating Blue Noise sequences from digital nets seems to require looking among

sequences defined in basis b > 2.

Still, the main reason we aim at having a Blue Noise spectrum comes from the fact that, for

a long time, aliasing was considered worse that stochastic noise as it is much more noticeable

to the human eye. However, such artefacts only occur for non-converged renderings, and such

renderings are most the time used as input for denoising algorithms (such as the one from

[Sch+17]). Such algorithms denoise images generated with as little as 1 sample per pixel.

Therefore, choosing the type of noise to generate in an image should maybe be weighted against

what denoising algorithms can efficiently remove, instead of what the human eye perceives.

With their structured error, aliased low discrepancy samplers may be in fact easier to denoise

than stochastic samplers.

Finally, in the particular case of rendering, many approaches rely on importance sampling to

adapt the density of samples pixel-wise, depending on the complexity of the scene behind those

pixels. Such methods have been further improved through the use of deep learning, leading to

impressive results [DK17]. In our contributions, we either have no adaptivity, or an adaptivity

constrained by the precomputed optimized sets within each tile. To accommodate importance

sampling, such samplers need to be made more adaptive, maybe using optimization based

techniques as the one presented in Section 4.3 on page 80, assuming such methods could be

performed in real-time.
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ADiscretization and Reconstruction of a

continuous signal

In this section, we present the theoretical basis to reconstruct a signal from a set of evaluations.

We will start by defining what is a signal, and how we can discretize a continuous signal. Then,

we will see under which conditions we can properly reconstruct the original signal from its

discrete form.

All the notations we use regarding signal theory follow the ones from [Gla95]. We start by

properly defining what is a continuous signal, and how it differs from a discrete signal. We

denote continuous signals as continuous-time (CT) signals. Those signals (despite their name,

which stands mostly for historical reasons) do not necessarily have anything to do with time.

They are the family of signals defined from analytic functions; if f is a continuous signal, then an

infinitesimal difference in x leads to an infinitesimal difference in f(x). Note that those signals

are not necessarily differentiable everywhere. Those signals are often used to modelize the real

world and correspond to theoretical definitions. As their domain of definition is infinite, as soon

as you try to evaluate such signals with a computer, you have to turn then into discrete-time

(DT) signals.

A DT signal can be seen a set of s-dimensional samples with their associated values. It is not

continuous, not defined on a infinite domain, and not differentiable. Since a computer cannot

represent the infinite amount of existing numbers (due to the floating precision limit), they

are the only kind of signals manageable on a computer. Numerizing a CT signal implies that

this signal will be discretized over a set of computer-representable values. Even though most

often this is ignored as this floating point precision is higher than what we consider negligible

error, we will see that when handling signals with an infinite maximal frequency, this becomes

a problem. The difference between CT and DT signals is illustrated Figure A.1.

t t(a) (b)

Fig. A.1.: (a) A 1-D CT signal f(t) and (b) its equivalent DT signal ḟ(t)
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t

Fig. A.2.: Dirac impulse δ(t).

T t

Fig. A.3.: Dirac Comb IIIT (t).

A DT signal is obtained from a CT signal by computing the product of the CT signal with

particular signals, namely the Dirac impulse and the Dirac comb.

A.1 Discretization

The Dirac impulse (Fig. A.2) is a CT signal defined as

δ(t) = 0 if t 6= 0, (A.1)

with ∫ −∞

∞
δ(t)dt = 1. (A.2)

The issue here is that δ(0) has therefore an undefined value. Since the point 0 is infinitely small,

to ensure both Equation ( A.1) and Equation ( A.2), we need to have δ(0) such that δ(0)
∞ = 1

which is undefined. To solve this issue, the Dirac impulse can be redefined as a DT signal with

δ(t) :=





1, if t = 0

0, otherwise .
(A.3)

We define a Dirac comb (Figure A.3, sometimes also called Dirac train) from a set of equally

spaced Dirac impulses as:

IIIT (t) :=
∑

k

δ(t− kT ), (A.4)

where T is the interval between the Dirac impulses. What makes such signals so important

is that to discretize a CT signal, we compute the product of this signal with a Dirac comb

(Fig. A.4 on the following page).

A discrete signal can also be reconstructed back to a CT signal, but only under some conditions.

To understand those conditions, we need to look at what happens in the frequency space when

we discretize a signal.
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t × t = t
f IIIT f(t) · IIIT

Fig. A.4.: Discretizing a signal in spatial space

ω ⊗ ω = ω
Ff FIIIT

= III 1
T

Ff ⊗ III 1
T

Fig. A.5.: Discretizing a signal in frequency space

A.2 Spatial and Frequency spaces

Any CT or DT signal can be expressed with many different forms. The ones that will interest

us here are its spatial-representation and its frequency-representation. Those forms are strictly

equivalent, and represent the same signal in a different space (space is to be understood here as a

choice of referential basis and not as a geometric space). The spatial-representation of a signal is

its expression in the spatial-space, which is the most common one. The frequency-representation

of a signal is its expression in the frequency space, where the referential is composed of complex

exponentials [BB86].

The frequency representation of a signal is often referred to as its Fourier spectrum. To transform

a signal from its spatial to its frequency representation, we use the Fourier transform. We

denote Ff , the frequency representation of a spatial signal f , obtained from computing the

Fourier transform of f . The inverse operation can be done using the Inverse Fourier transform.

We denote F−1
g the spatial representation of a frequency signal g, obtained from computing the

Inverse Fourier transform of g. Note that f = F−1
Ff

. We will not get into much more detail here

as this is explained thoroughly Section 2.2.1 on page 20.

Even though those representations are strictly equivalent, applying an operator onto a signal in

spatial space is not equivalent to applying the same operator to this signal in frequency space.

The property that interests us here is that a product applied in the spatial space is equivalent

to applying a convolution in the frequency space, and vice versa. More formally,

f · g = Ff ⊗Fg

Ff · Fg = f ⊗ g,
(A.5)

where ⊗ denotes the convolution operator.
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ω × ω = ω
Ff Fsinc = BH Ff · BH

Fig. A.6.: Reconstructing a discretized signal in frequency space

This convolution operator performs the product of every value of a function f with every value

of a function g

(f ⊗ g) (t) :=

∫

Θ
f(θ)g(t− θ)dθ, (A.6)

where Θ is the support for the function f .

Furthermore, we will note that we have the following properties for the Dirac impulse and Dirac

comb: a Dirac impulse in spatial space transforms to a Dirac impulse in frequency space, and

similarly, transforming a Dirac comb only inverts the frequency of its set of impulses. More

formally,

δ = Fδ (A.7)

IIIT = FIII 1
T

. (A.8)

This means that computing the product of a CT signal f with a Dirac comb IIIT in the spatial

space (to discretize it) resumes in the frequency space as a convolution of the Fourier transform

of f with the Fourier transform of IIIT . One of the consequence of this operation is that it

repeats the signal creating aliases of the original signal in frequency space (Fig. A.5 on the

facing page). It can be seen that in frequency space, if the frequency of the Dirac comb is too

high (which means, if the frequency of the Dirac comb is too low in spatial space), the aliases

will cover each other, leading to a different representation of the signal in the frequency space

(Fig. A.10 on page 173). When reconstructing our signal, this will have a huge impact.

A.3 Reconstruction

In spatial space, we can reconstruct our signal by convolving it with a chosen reconstruction

filter. This means, computing the product of the frequency representation of our signal with the

frequency representation of our filter. As computing this product is much easier than performing

a convolution, we will focus on what happens in the frequency space. We recall that we have a

discretized version of our signal in frequency space, which

contains several aliases of the frequency representation of the original signal (Fig. A.5 on the

facing page). Our goal is therefore to fully retrieve the original alias and only the original alias.
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t ⊗ t
= t

f sinc f(t)⊗ sinc

Fig. A.7.: Reconstructing a discretized signal in spatial space

t t t

(a) Box Filter (b) Tent Filter (c) Gaussian Filter

Fig. A.8.: Usual filters in their spatial representation

The easiest way to do so is to compute the product of our signal in frequency space with a box

function BH defined as:

BH(t) =





1
H , if t ∈ [−H

2 , H
2 ]

0, otherwise .
(A.9)

This lets us reconstruct the frequency signal from the original CT signal, which can be turned

into the spatial original CT signal using the inverse fourier transform (Fig. A.6 on the previous

page).

In spatial space, this means that we would have computed the convolution between a cardinal si-

nus function, sinc(x) := sin(x)/x, whose frequency counterpart is the box function (Fig. A.7).

However, most of the time, we work in spatial space and as the cardinal sinus is a function

of infinite support, it can thus hardly be used in practice as a reconstruction filter. Usual

reconstruction filters in spatial space are a Box, Tent or Gaussian filter for the simplest ones.

One also often uses a Mitchell-Netravali filter [MN88] as a more advanced solution.

The chosen reconstruction filter and the interval T chosen for the Dirac comb impacts greatly

the consistency of the DT signal with its CT counterpart. The Shannon and Nyquist theorem

ω ω ω

(a) Box Filter (b) Tent Filter (c) Gaussian Filter

Fig. A.9.: Usual filters in their frequency representation
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ω ω

(a) Ff ⊗ III 1
T ′
· BH (b) Ff ⊗ III 1

T
· BH′

Fig. A.10.: Failure in the reconstruction process due to (a) undersampling or (b) poorly chosen filter

tells us that for all CT signals with a maximal frequency ω, their DT counterpart only allows

a perfect reconstruction of the original CT signal if

T ≥ 2ω. (A.10)

We call this limit the Nyquist limit. If a function has been discretized with T < 2ω, it is said

to be undersampled. It is easy to see that in frequency space, this causes the interval of the

frequency Dirac comb to be too small; the aliases will cover each other, creating what are called

aliasing artefacts. Aliasing might also occur on properly sampled signals, if the reconstruction

process fails to capture correctly the Fourier spectrum of the original function (Fig. A.10).

All this theory allows proper reconstruction of a 2-D image from a set of discrete radiance values.

However, computing those radiance values in itself is also a challenge, as detailed in Chapter 1

on page 1.
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BInteractive Curvature Tensor

Visualization

B.1 P.h.D. Context

In this appendix, we present a contribution we made in a very different field. During this PhD,

we focused mainly on solutions to numerically approximate the rendering equation. However,

we also worked on solutions to analytically simplify this equation, in particular cases when the

surface follow a given statistical distribution. In those cases, the integration sums up as the CDF

of the distribution characterizing the surface. Such methods did not give the expected results,

but we were able to reuse this work for the particular case of digital curvature estimation.

In this appendix, we introduce what is curvature estimation of digital objects, and how thanks

to the capacity of modern GPUs we could perform this computation in real time. Along with

this, we also perform an on the fly triangulation of the digital object, with proper level of details,

to ensure a good rasterization of the triangles (where there never are two triangles projecting

into the same pixel).

B.2 Introduction

Volumetric objects are being more and more popular in many applications ranging from object

modeling and rendering in Computer Graphics to geometry processing in Medical Imaging or

Material Sciences. When considering large volumetric data, interactive visualization of those

objects (or isosurfaces) is a complex problem. Such issues become even more difficult when

dynamic volumetric datasets are considered. Beside visualization, we are also interested in

performing geometry processing on the digital object and to explore different parameter settings

of the geometry processing tool. Here, we focus on curvature tensor estimation (mean/Gaussian

curvature, principal curvatures directions. . . ). Most curvature estimators require a parameter

fixing the scale at which the computation is performed. For short, such parameter (integration

radius, convolution kernel size. . . ) specifies a scale for analyzing the object surface, and is

naturally related to the amount allowed perturbations on input data. As a consequence, when

using such estimators, exploring different values of this parameter is mandatory. However, this

is usually an offline process, due to the amount of computations that need to be done.

Contributions In this work, we propose a framework to perform interactive visualization

of complex 3D digital structures combined with a dynamic curvature tensor estimation. We

define a fully data parallel process on the GPU (Graphics Processor Unit) to both efficiently
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extract adaptive isosurface and compute per vertex curvature tensor using Integral Invariants

estimators. This system allows us to visualize curvature tensor in real-time on large dynamic

objects. Our approach combines a GPU implementation of pointerless octrees to represent the

data, an adaptive viewpoint-dependent mesh extraction, and a GPU implementation of integral

invariant curvature estimators.

Related works Extracting and visualizing isosurface on volumetric data has been widely

investigated since the seminal Marching Cubes approach by Lorensen and Cline [LC87]. This

approach being data parallel, GPU implementation of this method is very efficient [Tat+07].

However, such technique generates a lot of triangles which is not well suited to large digital

data. Hence, adaptive approaches have been proposed in order to optimize the triangulated

mesh resolution according to the object geometry or the viewpoint. In this topic, many solutions

have been developed in Computer Graphics [Shu+95; SW04; LO10; Lew+10; Lob+14]. The

method developed by Lengyel et al. [LO10] suits best our needs. It combines an octree space

partitioning with new Marching Cubes configurations to generate adaptive meshes on CPU from

static or near static data. We propose here a full GPU pipeline inspired by this method, that

maintains a view dependent triangulation. Our high framerate allows us to inspect dynamic

3D data in real-time.

Curvature estimation on discrete or digital surface has also been widely investigated.

In [Coe+14], authors propose digital versions of Integral Invariant estimators [Pot+07; Pot+09]

in order to estimate the complete curvature tensor (mean/Gaussian curvatures, principal curva-

tures, principal curvature directions, normal vector field) on digital surfaces. Such approaches

are based on an integration principle using a ball kernel of a given radius. Additionally, authors

have demonstrated that these estimators have multigrid convergence properties. In this article,

we also propose an efficient GPU implementation of such estimators to visualize such curvature

fields in real-time and to interactively change the value of the kernel radius.

In this paper, we first present the previous works on curvature tensor estimation. Then, we

propose an efficient GPU approach to extract a triangulated isosurface from a digital object.

Finally, we propose a fully-parallel GPU pipeline to compute curvature tensor in real-time and

present our results.

B.3 Curvature Tensor Estimation

In our context, we consider digital shapes (any subset Z of Zd) and boundaries of digital shapes

Bd(Z). We denote by Gh (X) the Gauss digitization of a shape X ⊂ Rd in a d−dimensional

grid with grid step h, i.e. Gh (X) := {z ∈ Zd, h · z ∈ X}. For such digitized set Z := Gh (X),

[Z]h is a subset of Rd corresponding to the union of hypercubes centered at h · z for z ∈ Z with

edge length h. By doing so, both ∂X and ∂[Z]h are topological boundaries of objects lying in

the same space (see Fig. B.1 on the next page-b). Note that the combinatorial digital boundary

Bd(Z) of Z made of cells in a cellular Cartesian complex (pointels, linels, surfels, . . . ), can be

trivially embedded into Rd such that it coincides with ∂[Z]h.

B.3 Curvature Tensor Estimation 175

Lowres version



×x
BR (x)

∂X
X

h · z ∈ X ∩BR (x)

BR (x)

×x

h
∂X ∂[Z]h

Fig. B.1.: Integral invariant computation (left) and notations (right) in dimension 2 [Coe+14].

In [Coe+13], authors define a 2D digital curvature estimator κ̂R and a 3D digital mean curvature

estimator ĤR based on the digital volume estimator V̂ol(Y, h) := hdCard(Y ) (area estimator

Ârea(Y, h) in dimension 2):

Definition 1 Given the Gauss digitization Z := Gh (X) of a shape X ⊂ R2 (or R3 for the 3D

mean curvature estimator), digital curvature estimators are defined for any point x ∈ R2 (or

R3) as:

∀0 < h < R, κ̂R(Z, x, h) :=
3π

2R
− 3Ârea(BR/h (x/h) ∩ Z, h)

R3
, (B.1)

ĤR(Z, x, h) :=
8

3R
− 4V̂ol(BR/h (x/h) ∩ Z, h)

πR4
. (B.2)

where BR/h (x/h) is the ball of digital radius R/h centered on digital point (x/h) ∈ Z.

Such curvature estimators have multigrid convergence properties [Coe+13]: when the digital

object becomes finer and finer, i.e. when the digitization step h tends to zero, the estimated

quantities on ∂[Gh (X)]h converges (theoretically and experimentally) to the associated one on

∂X in O
(
h

1
3

)
for convex shapes with at least C3-boundary and bounded curvature (setting

R := kh
1
3 for some k ∈ R).

In [Coe+14], authors have also defined 3D digital principal curvature estimators κ̂R
1 and κ̂R

2 on

Z ⊂ Z3 based on digital moments:

Definition 2 Given the Gauss digitization Z := Gh (X) of a shape X ⊂ R3, 3D digital principal

curvature estimators are defined for any point x ∈ R3 as:

∀0 < h < R, κ̂R
1 (Z, x, h) :=

6

πR6
(λ̂2 − 3λ̂1) +

8

5R
, (B.3)

κ̂R
2 (Z, x, h) :=

6

πR6
(λ̂1 − 3λ̂2) +

8

5R
, (B.4)

where λ̂1 and λ̂2 are the two greatest eigenvalues of the covariance matrix of BR/h (x/h) ∩ Z.

The covariance matrix needs to compute digital moments of order 0, 1 and 2 (see Equation 20

of [Coe+14] for more details). These estimators are proven convergent in O
(
h

1
3

)
when setting

the ball radius h in R = kh
1
3 , where k is a constant related to the maximal curvature of the shape,

on convex shapes with at least C3-boundary and bounded curvature [Coe+14]. Additionally,
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eigenvectors associated to λ̂1 and λ̂2 of the covariance matrix are principal curvature direction

estimators ŵR
1 and ŵR

2 . The smallest eigenvector corresponds to the normal direction n̂R at x.

Convergence results can be found in [Lac+16].

It has been shown that the radius of the ball depends on the geometry of the underlying shape.

In [Lev+14], a proposal was made for a parameter-free estimation of the radius of the ball by

analyzing the shape w.r.t. the local shape geometry using maximal digital straight segments

of the digital boundary. In [Lev+15], these estimators have been analyzed in scale-space (for

a range of radii) for a given digital shape. This allows to detect features of the shape thanks

to the behavior of estimators on singularities. As a consequence, for all these integral invariant

based approaches, we need to consider different ball radius which could be time consuming

when implemented on CPU. We propose here a fully parallel implementation on GPU allowing

us to change the radius and thus update the estimated quantities in real-time.

B.4 Isosurface Extraction on GPU

In this section, we detail the adaptive isosurface extraction algorithm. The proposed approach

uses an octree representation of the input object on which an adaptive Marching Cube builds

the isosurface efficiently. Such hierarchical representation of the object allows us to handle large

datasets and to locally adapt the level of details w.r.t. the geometry or camera position. We

first present the octree representation and then the isosurface extraction.

B.4.1 Linear Octree Representation

xy0

xy2

xy1

xy3

0 1

32

x0 x1

x2 x3

220

20

0 1

3
21

23
223222

221

Fig. B.2.: Morton codes associated to cells of a linear quatree. Each morton code of a child cell is
obtained by adding a suffix to its parent code (left). The adaptive representation consists of
quadtree cells whose depth is view point dependent (middle). Finally, adaptive Marching
Cubes is used to generate the triangulation (right).

Representing a hierarchical structure on GPU is usually challenging since such a data parallel

component is unable to handle recursivity. Efficient spatial tree encoding can be achieved using

pointerless structures such as linear quadtrees or octrees Gargantini [Gar82]. This structure

indexes each cell by a Morton code: the code of children cells are defined by the code of the

parent suffixed by two bits (in dimension 2, three bits in dimension 3) (see Figure B.2-left).

A cell’s code encodes its position w.r.t. its parent cell and its complete path to the tree root.

Hence, the tree is fully represented as a linear vector of its leaves. Furthermore, cell operations

such as subdivision, merging can be efficiently implemented using bitwise operations on the
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Morton code. In the following, we use the GPU friendly implementation proposed by Dupuy

et al. [Dup+14].

B.4.2 Data parallel and adaptive mesh generation

Using this spatial data structure, a triangulated mesh can be constructed using Marching

Cubes [LC87] (MC for short): the triangulation is generated from local triangle patches com-

puted on local cell configurations. Such approach is fully parallel and easy to implement on

the GPU. However, since adjacent cells may not have the same depth in the octree, original

Lorensen and Cline’s rules need to be updated (see Figure B.2 on the previous page-right).

Many authors have addressed this problem both for primal and dual meshes [Shu+95; SW04;

LO10; Lew+10; Lob+14].

In the following, we use the algorithm proposed by Lengyel et al. [LO10]. First, this approach

forces the octree structure to make sure that the depth difference between any two adjacent

cells is at most one. Then, Lengyel et al. introduce the concept of transition cells. Those

cells are defined to be inserted between two neighboring octree cells of different depth. With

specific MC configurations for their triangulation, a crack free mesh can be extracted.

Similarly to original MC algorithm, this approach is well suited to a GPU implementation:

given a set of cells (a vector of morton codes), each triangle patch can be extracted in parallel

for both regular cells and transition cells.

B.4.3 Level of Details Criteria and Temporal Updates

As illustrated in Figure B.2 on the preceding page-middle, we propose a viewpoint dependent

criterion to decide if a cell needs to be refined: the closer we are to the camera, the finer the

cells are. Such a criterion is also well suited to GPU since it can be evaluated independently on

every cell. Figure B.3 on the next page illustrates our level of details (LoD for short) criterion.

In dimension 2, if α denotes the viewing angle, an object at a distance d from the camera has a

projected size on screen of 2 · d · tan(α). (see Figure B.3 on the facing page-left). Our distance

criterion is based on the ratio (visibility ratio in the following) between the cell diameter l(c)

(power of 2 depending on the depth), and its projected size. For a given cell c, split and merge

decision are based on this visibility ratio:

• c is split if its children cells have a visibility ratio greater than constant k ;

• c and its sibling cells are merged if their parent cell c′ has a visibility ratio lower than k ;

• otherwise, the cell c stays for the next frame.

Using such a criterion, split and merge decisions are computed in parallel from the morton codes

of all cells.
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α dc

l(c)

Fig. B.3.: Notations (left) and adaptive meshing in dimension 2 using the LoD distance and angular
criterion (right).

Once decisions have been made, a new set of cells is sent to the mesh generation step described

above. Finally, before constructing the triangulation from remaining cells and transition cells,

geometrical culling is performed in order to skip the triangle patch construction for cells that

are not visible. Figure B.4 illustrates the overall fully data parallel pipeline.

Octree t+1

Regular Cells

Transition Cells

Update

Culling
TriangulationOctree t Curvature Tensor

Fig. B.4.: GPU pipeline summary. Data buffers are represented in green and computations in red.
Each computation retrieves data from a buffer and fills a new one.

B.5 Interactive Curvature Computation on GPU

We first present design principles for the GPU implementation and then present our approaches.

The general idea is to perform an Integral Invariant computation on GPU at each vertex of the

generated triangulated mesh. Since GPU have massively parallel architectures, we can do all

those computations in parallel to obtain a very efficient implementation. Please note that when

the LoD criterion is removed, each MC vertex is exactly centered at a surfel center. At different

depth of the octree, MC vertices still correspond to surfel centers of subsampled versions of

the input object. Hence, Integral Invariant framework defined in Section B.3 on page 175 is

consistent with the triangulated surface obtained on GPU: triangles are used for visualization

purposes but all computations are performed on the digital object Gh (X) for estimators ( B.1

on page 176), ( B.2 on page 176), ( B.3 on page 176) and ( B.4 on page 176).

To implement the integration on BR (x) ∩ X (Fig. B.1 on page 176), several strategies have

been evaluated.
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Fig. B.5.: Here are the three approaches we used to evaluate the integrand. (left) is the naive approach,
where we sum all the digital points that are inside the integrand domain (middle) shows
the hierarchical decomposition of the ball, thus limiting the number of texture probes to do.
(right) illustrates the dynamic approach, we probe the textures at a higher resolution and
we refine it at each frame until we reach the finer level.

B.5.1 Per Vertex Real-time Computation on GPU

Naive Approach. A first simple solution consists in scanning all digital points, at a given reso-

lution, lying inside the integration domain (Fig. B.5-left) and then estimating the geometrical

moment as the sum of the geometrical moments of each elementary cubes lying in the inter-

section (see Eq. ( B.1 on page 176) to ( B.4 on page 176)). This is exactly similar to what

is done on the CPU. On the GPU, we can exploit mipmap textures to obtain multi-resolution

information. If the input binary object is stored in a 3D texture, GPU hardware constructs a

multi-resolution pyramid (mipmap) such that 8 neighboring voxel intensities at level l are aver-

aged to define the voxel value at level l +1. If the level 0 corresponds to the binary input object,

at a given level l, a texture probe at a point (x, y, z) returns the fraction of Gh (X) belonging

to the cube of center (x, y, z) and edge length 2l. As a consequence, we can approximate the

volume of BR (x) ∩ X by considering mipmap values at a given resolution l (Fig. B.5-right).

In this case, errors only occurs for cells lying inside X (with density 1) not entirely covered by

BR (x). Furthermore, the mipmap texture can be used to design, using a single texture probe,

a fast inclusion test of a given cell c at level l into the shapes: we say that c is in X if its density

(retrieved from the texture probe at level l) is greater than 1/2. The idea here is to mimic a

kind of adaptive Gauss digitization process.

Hierarchical Decomposition. Using the hierarchical nature of the mipmap texture, we could

also consider hierarchical decompositions of BR (x). The idea is to decompose the ball into

mipmap cells of different resolution in order to limit the number of texture access (important

bottleneck on GPU hardwares) and to get better approximated quantities. On the GPU, com-

puting a hierarchical decomposition of BR(x) at each point x is highly inefficient since the

hardware optimizes the parallelism only when the micro-program described in the shader has

a predictive execution flow. Hence, implementing the recursive algorithm (or its de-recursified

version) requires a lot of branches (conditional if tests) in the flow. We have thus considered

a fast multi-resolution approximation as illustrated in Fig. B.5-middle: for a given radius R,

we precompute a hierarchical decomposition of BR. Such decomposition is made of octree cells
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at different resolutions. At a given MC vertex x, the algorithm becomes simple since we just

scan the ball cells and estimate the area (or other moments) from the mipmap values asso-

ciated to this cell. Note that these precomputed cells in the BR decomposition may not be

aligned with mipmap cells. However, we can use GPU which interpolates mipmap values if we

probe at non-discrete positions. For a given radius R, the expected number of cells in BR is in

O(log R). Implementation details on the hierarchical octree representation can be found in the

supplementary material (see Section B.7 on page 183).

Dynamic Refinement. In this last approach, we want to optimize the interactivity and the

execution flow or parallelism on GPU. The integration is simply computed using a regular

grid at different resolution l (Fig. B.5 on the preceding page-right). The shader code becomes

trivial (simple triple loop) and a lot of texture fetches are involved, but interactivity can be

easily obtained. Indeed, we consider the following multi-pass approach:

1. When the surface geometry has been computed, we set the current level l at an high level

l := lmax of the mipmap pyramid.

2. We compute the integrals (and the curvature tensor) at the mipmap level l and send the

estimated quantities to the visualization stage.

3. If the user changes the camera position or the computation parameters, we return to step

1.

4. If the current framerate is above a given threshold, we decrease l and return to step 2 if

the final l0 level has not been reached yet.

A consequence of the multi-pass approach is that when there is no interaction (camera settings,

parameters), the GPU automatically refines the estimation. Even if step 2 is quite expensive, in

O

((
R
2l

)3
)

, the interactive control in step 3 considerably improves the interactive exploration

of the tensor with fast preliminary approximations which are quickly refined.

Compared to the hierarchical approach, no precomputation is required for a given radius R.

As a consequence, we could even locally adapt the ball radius to the geometry (for instance

following the octree depth of the current MC vertex). In the next section, we evaluate the

performances of both approaches.

B.6 Experiments

B.6.1 Full resolution experiment

We first evaluate curvature estimations on a full-resolution geometry obtained by disabling

the LoD criterion at the mesh generation step. Figure B.6 on the following page-top shows
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Fig. B.6.: First row: Mean and Gaussian curvature estimation, (zoom of) first and second principal
directions estimation on “OctaFlower” with a digital domain of 1303. Second row: Mean
curvature computed in real-time (around 20 FPS) on a dynamic object.

results of curvature tensor estimation (mean, Gaussian, first and second principal directions)

on “OctaFlower” at level l0 (considered as our ground truth in the following). Figure B.6-bottom

shows mean curvature estimation in real-time on a dynamic object. For this case, we simply

evaluate the implicit expression at each vertex of a cell to decide if such cell is included or not

into BR (x) ∩X instead of updating the mipmap texture of densities at each time step. For all

illustrations, we use directly normal vectors computed by algorithm discussed in Section B.3 on

page 175.

Then, we compare the approximations made by computing curvature from level l ≥ l0 in

Figure B.7 on the next page. We can see that results using approximation seems to quickly

converge to ground truth results. Table B.1 on the facing page shows numerical results of

L∞ error (maximal absolute difference for all vertices) and L2 error (mean squared errors of all

vertices), as well the number of mipmap texture fetches. We can also see that the number of texel

fetch, required to compute the curvature, reduces drastically when computing approximations.

However, at higher levels, approximation errors become more important. Those levels are thus

never used in practice, they are presented here to illustrate how the refining process converges

to the l0 level.

We also compare them with the hierarchical algorithm (as discussed in Section B.5.1 on

page 180). This method introduces a higher error when compared with l0. This is due to

the precomputation of the subdivision that no longer ensures to fetch data at the center of a

mipmap cell. The GPU interpolation reduces the bias, but it does not remove it.

B.6.2 Fully adaptive evaluation

When dealing with large datasets, we cannot expect real-time curvature tensor estimation if we

consider the full resolution geometry, due to the huge amount of data to process. By computing

a dynamically refined approximate curvature tensor estimation joined with an adaptive triangu-

lation (as discussed in Section B.5.1 on page 180), we manage to maintain a real-time framerate

by giving control over the amount of data to process at each frame. In Figure B.8 on page 184,

we compare timings (in logarithmic scale) for a triangulation that is dynamically refined accord-

ing to its distance to the camera. We measured those timings using the multiresolution regular

and the hierarchical algorithm.
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H l4 l3 l2 l1 l0

Number of
texture
fetches

R = 8 1468 2 28 260 2104
R = 16 5706 2 28 90 2120 17080

L∞ error
(w.r.t. l0)

R = 8 0.051 0.306 0.085 0.047 0
R = 16 0.053 0.146 0.041 0.017 0.005 0

L2 error
(w.r.t. l0)

R = 8 3.51e-05 2.67e-04 7.57e-05 2.02e-05 0
R = 16 4.43e-05 1.39e-04 4.16e-05 1.57e-05 2.07e-06 0

Tab. B.1.: Comparison of number of texture fetches, L2 and L∞ error obtained on “OctaFlower” with
a digital domain of 1303 when computing mean curvature with two radii: 8 and 16, with
hierarchical algorithm (H) and l ≥ l0 approximation algorithms. The object is triangulated
at full resolution with a regular grid and contains 282,396 vertices.

First we can note that the required time to compute the ground truth curvature for an object

is usually as high as the time required to extract its geometry and to compute all of the above

levels. Using approximations is thus mandatory. Another advantage with approximations is

that it allows us to get a visualization of our object as soon as we run the application. This

allows for real-time interactions with the object, required in order to change the visualized

quantity, curvature radius, etc.

It is also visible in Figure B.8 on the following page that a hierarchical decomposition greatly

reduces the curvature computation time, especially with big radii. However, due to the precom-

putation and the current hierarchical structure, this algorithm is biased and creates an error

(presented in Table B.1) that needs to be considered. Figure B.9 shows curvature computation

Fig. B.7.: Illustration of mean curvature computation on “OctaFlower” (digital domain of 1303) using
mipmap approximation with different levels: l3, l2, l1 and l0 (i.e. no approximation).

and exploration in real-time on large datasets: “XYZ-Dragon” (with digital domain of 5123)

and “Snow microstructures” (2333).

B.7 Conclusion and Discussion

In this article, we have proposed a fully data parallel framework on GPU hardware which com-

bines an adaptive isosurface construction from digital data with a curvature tensor estimation at

each vertex. Using this approach, we can explore in real-time different curvature measurements

(mean, Gaussian, principal directions) with different ball radii on potentially large dynamic

dataset. Our proposal relies on both a linear octree representation with Morton codes and an

efficient integral computation on GPU. The source code and additional material (video, . . . )

are available on the project website (https://github.com/dcoeurjo/ICTV).
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Fig. B.8.: Timings in milliseconds (in logscale) obtained while visualizing an adaptive triangulation
on three objects – “OctaFlower” (digital domain of 1303), “Snow microstructures” (2333)
and “XYZ-Dragon” (5103) – by computing the curvature with a regular grid (left) and with
hierarchical algorithm (right), with two different radii for each object. In orange color : time
required to extract the triangulation. In blue color : time required to compute the curvature
tensor at different levels: from l4 (light blue) to l0 (dark blue). Timings are given using a
NVIDIA GeForce GTX 850M GPU.

Tutu
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Fig. B.9.: Left column: Mean curvature, first and second principal directions and normal vector field
estimation on “Snow microstructures” (2333 and R = 8). Right column: Mean curvature,
first and second principal directions and normal vector field estimation on “XYZ-Dragon”
(5103 and R = 8). Normal vectors are colored with a mapping of their component to RGB
color space.
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