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Abstract

We propose a new spectral analysis of the variance in Monte Carlo
integration, expressed in terms of the power spectra of the sampling
pattern and the integrand involved. We build our framework in the
Euclidean space using Fourier tools and on the sphere using spher-
ical harmonics. We further provide a theoretical background that
explains how our spherical framework can be extended to the hemi-
spherical domain. We use our framework to estimate the variance
convergence rate of different state-of-the-art sampling patterns in
both the Euclidean and spherical domains, as the number of sam-
ples increases. Furthermore, we formulate design principles for
constructing sampling methods that can be tailored according to
available resources. We validate our theoretical framework by per-
forming numerical integration over several integrands sampled using
different sampling patterns.
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1 Introduction

Numerical integration schemes such as Monte Carlo methods are
widely used in high quality production rendering (e.g., to estimate
per pixel radiance). This estimation is error-prone, as Monte Carlo
methods provide an approximation of the true integral. Specifically,
the quality of integration depends strongly on the sampling pattern.
For example, regular structures in sampling can result in strong
aliasing (structured artifacts) in the final rendered image. However,
by using appropriately placed stochastically-generated samples, this
aliasing in rendered images can be transformed into less objection-
able noise [Crow 1977; Dippé and Wold 1985; Cook 1986; Mitchell
1987; Shirley 1991], which is tightly related to variance in Monte
Carlo integration.

In this work, we study variance from the sampling perspective and
propose a mathematical framework that predicts variance in Monte
Carlo integration. Our framework shows that the variance in in-
tegration is directly related to the power spectra of the sampling
pattern and the integrand under study. We build our mathemat-
ical framework in the Euclidean space and later extend it to the
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(hemi-)spherical domain, which is crucial in light transport estima-
tion. To our knowledge, this is the first theoretical and computational
analysis of variance in Monte Carlo integration on the sphere and the
hemisphere. To study variance in integration we perform spectral
analysis of various sampling patterns in both the Euclidean and the
(hemi-)spherical domains, using Fourier anlysis for Euclidean space
and spherical harmonics for the (hemi-)sphere.

1.1 Contributions

Our primary contribution is a mathematical framework that estab-
lishes a direct relation between the variance in Monte Carlo in-
tegration in the Euclidean and (hemi-)spherical domains with the
power spectra of the sampling pattern and the integrand. We use our
mathematical framework to study:

Spectral analysis of sampling patterns We perform spectral
analysis of various state-of-the-art sampling patterns on Euclidean
and spherical domains. We provide theoretical insights to perform
similar analysis on hemispherical domain using spherical harmonics.

Monte Carlo convergence We extend our theoretical framework
to analyze the best- and worst-case variance convergence rates—
for a given class of functions—in Monte Carlo integration in the
Euclidean and the (hemi-)spherical domains.

The remainder of this paper is split into two main parts. In the first
part, we study the relation between the error in integration and the
frequency content of the integrand and the sampling pattern. We
define the notion of homogeneous sampling (Sec. 3.1) that allows
expressing error only in terms of variance in MC integration. By
restricting our analysis to homogeneous sampling, we derive the
closed-form expression for variance in MC integration in terms of
power spectra of the integrand and the sampling pattern. We show
that this relation holds in the Euclidean (Sec. 4.2) and the spherical
(Sec. 5.2) domains. All mathematical notations and symbols used
in our mathematical formulation can be found in Table 1. In the
second part, we directly use our variance formulation to study the
MC integration convergence rates of various theoretical sampling
patterns with well-defined spectral profiles (Sec. 7). We then use
these theoretical convergence rates to build a taxonomy to classify
existing sampling methods. We show empirical results (Sec. 8) to
support our theoretical study and present future directions (Sec. 9)
for further exploration.

2 Related work

Sampling in Euclidean domain To improve the quality of im-
age synthesis, researchers have studied various Monte Carlo [Crow
1977; Dippé and Wold 1985; Cook 1986; Mitchell 1987] and Quasi-
Monte Carlo based [Niederreiter 1992; Lemieux 2009; Keller et al.
2012] sampling patterns. Many algorithms have been proposed to
improve the quality of sampling by studying their spectral properties.
Ulichney [1987] was the first to provide qualitative characteriza-
tion of a good sampling pattern, which is now commonly called
Blue Noise. Mitchell [1991] has also pointed out that energy in
low-frequency part of the Fourier spectrum of the sampling pattern
should be avoided. Since then, different algorithms [Balzer et al.
2009; Schlömer et al. 2011; de Goes et al. 2012] and tile-based
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Symbol Definition

D, N sampling domain (toroidal unit square T d, unit sphere S2, unit hemisphere H2), with number of samples N .

µ(D) Lebesgue measure of domain D

θ, φ colatitude θ ∈ [0, π] and longitude φ ∈ [0, 2π], on the sphere or the hemisphere

l,m degree and order of spherical harmoincs, both values are integers with l ≥ 0 and m ∈ [−l, l].

Y m

l
(θ, φ) Spherical harmonic function of degree l and order m whose inner product over the sphere is 4π

Pm

l
(cos θ) associated Legendre polynomial of degree l and order m.

Θ the Fourier domain without the DC peak.

Φ the Fourier domain with the DC peak.

G(x) arbitrary integrable function on D.

PG(·) power spectrum of G in the toroidal domain or angular power spectrum of G in the spherical domain.

P̆G(·) radial mean of the expected value of PG in the toroidal domain or expected value of PG in the spherical domain.

g, ‖g‖ conjugate and magnitude operators for a complex variable g, respectively.

〈·, ·〉 inner product operator

〈·〉 , Var (·) expectation and variance operators

E–·, S–· equation numbering notation used to refer to the Euclidean (E) and spherical (S) domains, respectively.

X bold face letter represents a random variable.

Table 1: Notations and mathematical symbols used in this paper. Note that, G and g are dummy variables which get replaced by symbols
applicable in respective domains based on the context in the paper.

methods [Cohen et al. 2003; Kopf et al. 2006; Ostromoukhov 2007]
have been proposed to achieve the blue noise quality of stochastic
sampling patterns. Recently, researchers [Zhou et al. 2012; Heck
et al. 2013; Öztireli and Gross 2012] have proposed methods for
generation of distributions with the desired power spectra in order
to reduce the variance of the Monte Carlo integration. Wachtel and
colleagues [2014] presented a first tile-based method that allows
advanced spectral control. However, these works do not provide any
closed-form relation between the variance and the sampling power
spectra that could leverage spectral control in variance reduction. In
this work, we derive an explicit expression relating the variance in
MC integration with the power spectra of the sampling pattern and
the integrand, showing how variance can be controlled or predicted
directly from the power spectra.

Sampling in spherical domain Sphere sampling has been well
studied in various domains [Górski et al. 2005; McEwen and Wiaux
2011; Choirat and Seri 2013; Cui and Freeden 1997]. In computer
graphics, spherical sampling has been actively studied for rendering
purposes [Arvo 1995; Arvo 2001]. Ureña and colleagues [2013]
proposed an area preserving spherical rectangle parametrization to
reduce variance in scattering computation from planar rectangular
emitters. Marques and colleagues [2013] introduced spherical Fi-
bonacci lattices to improve QMC sampling in the spherical domain.
Li and colleagues [2010] performed sphere sampling using planar
warpings while Bowers and colleagues [2010] directly generate sam-
ples on manifolds and studied their spectral properties. A relaxation
based method was proposed by Xu and colleagues [2012] to gen-
erate blue noise samples directly on the surface of the sphere. Our
focus in this work is to analyze existing stochastic sampling patterns
and their spectral properties in the spherical domain and to better
understand their consequences in light transport simulation.

Variance analysis of integration Recent papers have conducted
a comprehensive analysis of variance in Monte Carlo integration.
In particular, Durand [2011] investigated error in integration and
related error to the spectral properties of the associated sampling
patterns. Ramamoorthi and colleagues [2012] focused specifically
on visibility to assess error due to sampling patterns in soft shadow
rendering. Subr and Kautz [2013] proposed a mathematical formu-
lation that relates the variance in Monte Carlo integration directly
to the variance of sampling Fourier coefficients taken over multiple

realizations. In this work, we go one step further, and relate the
variance in MC integration directly to the power spectrum of the
sampling pattern. Using this relation, we can predict the variance of
integration and tailor new sampling patterns according to an individ-
ual application’s requirements. We further extend our analysis to the
(hemi-)spherical domain.

Convergence analysis Convergence rate of various sampling
methods in numerical integration has been extensively studied on
the unit sphere [Hesse et al. 2010]. A rich literature on QMC in-
tegration [Brauchart et al. 2014], can also be found for the worst-
case error in the spherical domain. In image synthesis, Marques
and colleagues [2013] studied the worst-case error for spherical
Fibonacci point sets for illumination integrals. Ramamoorthi and
colleagues [2012] analytically studied convergence rate of jittered
sampling, while Mitchell [1996] obtained similar convergence rates
empirically. Recently, Subr and colleagues [2014] studied conver-
gence of various importance based samplers. In this work, we per-
form our variance convergence analysis on state-of-the-art stochastic
(non-adaptive) samplers in both the Euclidean and spherical do-
mains.

Spherical harmonics in graphics Spherical harmonics (SH)
has been widely used in computer graphics, for inverse render-
ing [Ramamoorthi and Hanrahan 2001], precomputed radiance trans-
fer [Sloan et al. 2002], and shape analysis [Kazhdan 2007]. SH are
also used for importance sampling of spherical functions [Jarosz
et al. 2009] and for performing arbitrary BRDF shading for low-
frequency lighting [Kautz et al. 2002]. In our work, we use spherical
harmonics to derive our theoretical formulations and to study the
spectral properties of different sampling patterns on the sphere and
the hemisphere.

3 Monte Carlo estimator

Monte Carlo (MC) integration is a numerical method for estimating
the integral, I of a function F . The MC estimator, IN , averages
over N stochastic samples taken over the integrand in a given sam-
pling domain D. We consider samples {s1, ..., sN} as a set of equi-
weighted random variables (Fig. 1). The resulting MC estimator is
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Figure 1: Illustration of the random nature of the Fourier coefficients of a 1D white noise sampling pattern. (a) Three realizations, S0, S1

and S2 of the sampling pattern S. (b) The real and imaginary parts of the Fourier transform of these realizations. Points on the dashed line
correspond to the three possible values of the Fourier transform for a given frequency ω0. (c) Distribution of values of FS(ω0) in the complex
plane for 1024 realizations. The first three realizations are shown in their respective colors. Note that homogeneous sampling patterns have
random Fourier coefficients that are uniformly distributed on each concentric circle in the complex plane.

defined as:

IN :=
µ(D)

N

N
∑

k=1

F (sk) , (1)

where µ(D) represents the Lebesgue measure of D. Here, a sam-
pling pattern can be written as a random signal S made of N Dirac
functions located at sample positions—S(x) =

∑

δ(x − sk) for
k = 1 : N—which can be represented in continuous form [Durand
2011] as:

IN =
µ(D)

N

∫

D

S(x)F (x)dx . (2)

To build our analysis we consider sampling patterns which are ho-
mogeneous.

3.1 Homogeneous sampling

A homogeneous sampling pattern has statistical properties invari-
ant to translation over the domain D. The notion of homogeneous
distribution of points is commonly used in physics [Hansen and
McDonald 1990] for compound gases. In the computer graphics
community, this notion is similar to the “widesense stationary pro-
cess” described by Dippé and Wold [1985] which is discussed only
for Poisson sampling. However, in our mathematical formulation,
we extend the domain of application of this widesense stationary
notion by making any kind of sampling pattern translation invariant,
that is, homogeneous. In MC integration, the consequence is that
a homogeneous sampling pattern produces no bias, so that error
only arises from the variance. For more details, please refer to Ap-
pendix A. Given this property, we can restrict our error analysis to
variance only.

Many state-of-the-art sampling methods such as White noise, Pois-
son Disk, and all optimization-based methods starting from a white
noise distribution (e.g., the methods of Schlömer et al. [2011] and de
Goes et al. [2012]) are homogeneous. Surprisingly, jittered sampling
and Latin hypercube sampling are non-homogeneous. This can be
explained by the fact that both methods rely on a subdivision of the
sampling domain that is fixed over all realizations. However, any
sampling method can be transformed into a homogeneous sampling
by uniformly and randomly translating each realization of the sam-
pling pattern. Analogously, sampling patterns on the unit sphere
(S2) can be made homogeneous by uniformly and randomly rotating
the distribution.

4 MC variance analysis for Euclidean space

In this section, we perform variance analysis in (d-dimensional) Eu-
clidean space. We represent variance in terms of the power spectra of
both S and F . For this purpose, we first represent the MC estimator
in the Fourier domain. Then, we derive the variance expression in
the Fourier domain using the homogeneity of the sampling patterns.
We perform a similar analysis on the sphere (S2) and hemisphere
(H2) domains in Sec. 5. Without loss of generality, we consider our
sampling domain to be a toroidal unit square [0, 1[d, denoted T d.

4.1 Monte Carlo estimator in Fourier domain

The MC estimator IN (Eq. (2)) can be characterized in the Fourier
domain (Φ) using the fact that dot-product of functions (the in-
tegral of the product) is equal to the dot-product of their Fourier
coefficients. This makes the MC estimator, (Eq. (2)):

IN =
µ(T d)

N

∫

Φ

FS(ω)FF (ω)dω , (E–3)

where FS and FF represent the Fourier transform of S and F , re-
spectively.

4.2 Variance in spectral form in Euclidean domain

To perform variance analysis, we follow a similar approach to Du-
rand [2011] and, Subr and Kautz [2013]. We use the spectral
form of the MC estimator (Eq. (E–3)) in the definition of variance,

Var (IN ) :=
〈

‖IN‖2
〉

− ‖〈IN 〉‖2, giving:

Var (IN ) =
µ(T d)

2

N2

∫

Φ×Φ

〈

FS,F (ω, ω
′)
〉

dωdω′ − ‖〈IN 〉‖2 ,

(E–4)

with:

FS,F (ω, ω
′) := FS(ω) · FF (ω) · FS(ω′) · FF (ω

′) , (E–5)

which gives us a closed-form expression for variance. However,
unlike Subr and Kautz [2013], who relate the variance in integration
with the variance of the underlying sampler, we provide an explicit
closed-form relation of variance with the power spectra of both
the sampling pattern and the integrand. To derive this relation, we
first simplify Eq. (E–4) by restricting our analysis to homogeneous
sampling patterns which are unbiased. As a result, the second
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term in Eq. (E–4)—that is, ‖〈IN 〉‖2—becomes equal to the square-
norm of the integrand. Given that the integral of the integrand is
equal to FF (0) and the DC peak of the weighted (by N ) sampling

pattern is equal to 1, the second term (‖〈IN 〉‖2) gets cancelled
out with the FS,F (0, 0) term. This restricts the integral over the
Fourier domain without the DC peak frequency, denoted by Θ. Since
the homogeneous sampling patterns, mentioned in Sec. 3.1, have
statistical properties that are invariant to translation, it is equivalent
to study the variance generated by the translated version of each
realization, with the average taken over all translations. Formally,
we can treat the torus as the group of translations, so that τ(S)
denotes the translation of S by an element τ ∈ T d. Then, averaging
equation Eq. (E–4) over all translations of S, we get:

Var (IN ) =
µ(T d)

N2

∫

T d×Θ×Θ

〈

Fτ(S),F (ω, ω
′)
〉

dωdω′
dτ

(E–6)

=
µ(T d)

N2

∫

T d×Θ×Θ

〈

FS,F (ω, ω
′)
〉

ei2πτ ·(ω′−ω)
dωdω′

dτ ,

(E–7)

where the exponential derives from the translation of the sampling
pattern by a vector τ in the Fourier domain. When ω 6= ω′, the
integral of the exponential part equals zero, so that only the case
ω = ω′ contributes to the variance. Thus, we can remove one
integral over Θ:

Var (IN ) =
µ(T d)

N2

∫

Θ

〈FS,F (ω, ω)〉
∫

T d

dτdω (E–8)

=
µ(T d)

2

N2

∫

Θ

〈

‖FS,F (ω, ω)‖2
〉

dω . (E–9)

Finally, denoting by PF to the power spectrum of the integrand and
by PS to the power spectrum of the sampling pattern normalized
by N , and leveraging the fact that ‖FS,F (ω, ω)‖2 = ‖FS(ω)‖2 ·
‖FF (ω)‖2, we get:

Var (IN ) =
µ(T d)

2

N

∫

Θ

〈PS(ω)〉 PF (ω)dω . (E–10)

This gives us the expression for the variance of the MC integration
in terms of the power spectra of both the sampling pattern and the
integrand in the toroidal domain.

Isotropic sampling If homogeneous sampling is isotropic (i.e.,
the power spectrum is radially symmetric), then the variance can
be computed from the radial mean power spectrum of the integrand
and the sampling pattern. For this, we first rewrite the integral in
Eq. (E–10) in polar coordinates (n, ρ):

Var (IN ) =
µ(T d)

2

N

∫ ∞

0

ρd−1

∫

Sd−1

〈PS(ρn)〉 PF (ρn)dn dρ ,

(E–11)
where Sd−1 is a (d− 1)-dimensional unit sphere in R

d. Since the
sampling pattern is isotropic, we can replace 〈PS(ω)〉 by its radial

mean, denoted by P̆S(ω). Please note that the expected value is
contained in this symbol. Then, the radial power spectrum no longer
depends on n, and thus:

Var (IN ) =
µ(T d)

2

N

∫ ∞

0

ρd−1P̆S(ρ)

∫

Sd−1

PF (ρn)dn dρ ,

(E–12)

where the inner integral corresponds to the definition of the radial

mean of the integrand power spectrum (PF ), denoted by P̆F (ρ),
giving the variance as:

Var (IN ) =
µ(T d)

2
µ(Sd−1)

N

∫ ∞

0

ρd−1P̆S(ρ)P̆F (ρ) dρ ,

(E–13)
in terms of the radial mean spectra of both S and F .

Here, µ(Sd−1) = 2
√
πd/Γ(d/2) is the surface area of the

(d− 1)-dimensional unit sphere. The Lebesgue measure of the
toroidal domain will be ignored in the rest of this paper when we
refer to Eq. (E–13), since it is equal to one. In the next section, we
show that a similar variance expression can also be obtained in for
the sphere and hemisphere.

5 MC variance analysis for S2 and H2

To perform variance analysis in the spherical domain (S2), we follow
the definition of MC integration from Eq. (2), with the domain of
integration (D = S2) being the unit sphere (with the Lebesgue
measure µ(S2) = 4π). This allows to rewrite the MC estimator as:

IN =
µ(S2)

N

∫

S2

S(x)F (x)dx . (S–14)

Before proceeding, we review some background on spherical har-
monics, used as an analog for the Fourier basis for performing
spectral analysis on the sphere. We then represent the MC estimator
(Eq. (S–14)) in spectral form using the spherical harmonics.

5.1 Background

The spherical harmonics (SH) are a basis for functions on the
sphere [Groemer 1996; Wieczorek and Simons 2005]. The (l,m)-th
basis function is given by:

Y m
l (θ, φ) :=

√

(2− δ0m)
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ) eimφ .

(S–15)
Here, δij is the Kronecker delta function, Y m

l (θ, φ) is the complex
spherical harmonic basis function of degree l ≥ 0 and order m ∈
[−l, l] with Pm

l (x) denoting the associated Legendre Polynomials,
for x ∈ [−1, 1]. The spherical harmonics are orthonormal and any
integrable function F on S2 can be decomposed into SH components.
The inner product between any two arbitrary functions, G(x) and
F(x) defined over a unit sphere, is related to its spectral coefficients
by:

∫

S2

G(x) F(x) dx =

∞
∑

l=0

l
∑

m=−l

SG(l,m) · SF(l,m) , (S–16)

where SG(l,m) = 〈G, Y m
l 〉 is the (l,m)-th spherical harmonic

coefficients of G(x).

5.2 Variance in spectral form in spherical domain

We are now ready to express the MC estimator from Eq. (S–14) in
its spectral form using SH:

IN =
µ(S2)

N

∞
∑

l=0

l
∑

m=−l

SS(l,m) · SF (l,m) . (S–17)
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As in Sec. 4.2, by plugging the spherical MC estimator
from Eq. (S–17) in the definition of variance, we obtain a closed-
form expression of the variance in the spherical domain, similar
to Eq. (E–4):

Var (IN ) =
µ(S2)

2

N2

∞
∑

l,l′=0

〈

SS,F (l, l
′)
〉

− ‖〈IN 〉‖2 , (S–18)

where:

SS,F (l, l
′) :=

l,l′
∑

m=−l

m′=−l′

SS(l,m) · SF (l,m) · SS(l′,m′) · SF (l
′,m′) .

(S–19)

Analogously, we simplify this variance expression (Eq. (S–18)) by
restricting our analysis to homogeneous sampling patterns which
are unbiased (i.e., 〈SS(l,m)〉 = 0 ∀ l,m 6= 0 following Subr and
Kautz [2013]). This makes the second term in Eq. (S–18)—i.e.,

‖〈IN 〉‖2—non-zero only at the DC peak (l = 0) and which gets
eliminated by the SS,F (0, 0) term. As a result, the contribution of
components with l = 0 in the variance Eq. (S–18) becomes zero.
This allows us to represent the variance in Eq. (S–18) using only
the terms of SS,F (l, l

′) with non-zero frequencies. Similar to the
Euclidean case, we can leverage homogeneity by averaging over all
rotations of the sampling pattern, τ(S):

Var (IN ) =
µ(S2)

2

N2

1

µ(SSO(3))

∞
∑

l,l′=1

〈

∫

SO(3)

Sτ(S),F (l, l
′)dτ

〉

,

(S–20)

where τ ∈ SO(3) represents a rotation. To simplify the integral
part in Eq. (S–20) we employ the representation theory which has
been briefly explained in our supplementary material, Section 2. By
using the fact that the span of the l-th frequency spherical harmonics,

V l = Span{Y −l
l , · · · , Y l

l }, is a (2l + 1)-dimensional irreducible
representation for the SO(3) group and applying Propositions 2.1
and 2.2 from Section 2 of our supplementary material, we have:

∫

SO(3)
〈τ(G), Y m′

l′ 〉 〈Y m
l , τ(G)〉 dτ

µ(SSO(3))
= δll′ δmm′ PG(l) ,

(S–21)

for any function G(x) ∈ S2. Here, 〈·, ·〉 is the (complex) inner-
product operator on the space of function with PG(l) as the angular
power spectrum of the l-th spherical frequency of G, which is de-

fined as PG(l) :=
1

2l+1

∑l

m=−l ‖SG(l,m)‖2. Using the results

from Eq. (S–21) and the definition of the angular power spectrum
in (S–20), we get:

Var (IN ) =
µ(S2)

2

N2

∞
∑

l,l′=1

〈

PS(l)
l
∑

m=−l

SF (l,m) · SF (l,m)

〉

(S–22)

=
µ(S2)

2

N2

∞
∑

l=1

〈PS(l)〉
(

l
∑

m=−l

||SF (l,m)||2
)

. (S–23)

Using the definition of angular power spectrum for F and normaliz-
ing 〈PS(l)〉 in Eq. (S–23) by N/µ(S2), we get:

Var (IN ) =
µ(S2)

N

∞
∑

l=1

(2l + 1) P̆S(l)PF (l) , (S–24)

where P̆S(l) denotes the expected value of PS(l), which is 〈PS(l)〉),
from Eq. (S–22). This gives the final closed-form expression for vari-
ance in the spherical domain. As for Euclidean space, the variance
depends on the angular power spectrum of S and F .

Variance in spectral form on H2 A similar mathematical frame-
work can be developed for the hemisphere (H2) using spherical
harmonics. For this purpose, we associate the hemisphere with
projective 2-space (more details in Section 3 of the supplementary
material). The only assumption here is that we restrict our analysis
to functions on the hemisphere with G(x) = G(−x) for all points
on the equator. This allows us to represent all hemispherical signals
as even functions on the sphere and study their spectral properties
using spherical harmonics. In the following sections, we will use
our mathematical framework to obtain convergence rates of various
state-of-the-art sampling patterns.

6 Best and worst case variance

Using the framework derived in the Euclidean (Sec. 4.2) and spher-
ical (Sec. 5.2) domains, we have shown that the variance in MC
integration is related to the power spectra of the integrand and the
sampling pattern. This implies that if we know the sampling and
integrand power spectra then we can predict the variance and the cor-
responding variance convergence rate, as a function of the number
of samples N , in MC integration. In practice however, the power
spectrum of an integrand is unknown. Therefore, we restrict our
analysis to a particular class of functions. We follow the work of
Brandolini and colleagues [2001], and restrict our analysis to in-
tegrable functions of the form F (x)χΩ(x) with F (x) smooth and
Ω a bounded domain with smooth boundary (where, χΩ(x) is the
characteristic function of Ω). We consider a best-case function and
a worst-case function, both from this class of functions to derive the
best- and worst-case variance convergence rate, as the number of
samples N increases.

Conversely, analytical models for the sampling power spectra are
often available [Gabrielli and Torquato 2004]. We show that these
power spectra can be used in our framework to predict the variance
of an integrand. We bound the variance convergence rate of these
samplers—with known power spectra—by simply imposing bounds
on the sampling power spectra in MC integration. For sampling
power spectra with no analytical formulations, we provide tools for
bounding the power spectra in Sec. 7.

To perform our variance convergence rate analysis, we consider
power spectra that are homogeneous and isotropic, and that can
bound any homogeneous sampling power spectrum. First, we per-
form our theoretical convergence analysis in the Euclidean (toroidal)
domain, following Eq. (E–13), where the variance is characterized
by the radial mean power spectra of both sampling pattern and
integrand signal.

Euclidean domain First, we derive theoretical convergence rates
of the variance for the best- and the worst-case functions. We define
our best-case integrand directly in the spectral domain with the

radial mean power spectrum profile P̆F (ρ) which is a constant cF
for (ρ < ρ0), and zero elsewhere. The constant cF comes from the
fact that the power spectrum is bounded. We provide a proof of this
statement in the supplementary material, Section 4.1). The variance
corresponding to the best-case can be obtained using Eq. (E–13) as
follows:

Var (IN ) ≤µ(Sd−1)

N
cF

∫ ρ0

0

ρd−1P̆S(ρ) dρ . (E–25)
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For the worst-case, we consider our integrand to exhibit a radial
mean power spectrum:

P̆F (ρ) ≤
{

cF if ρ < ρ0
c′F ρ

−d−1 otherwise.
(E–26)

where cF and c′F are non-zero positive constants. This spectral pro-

file P̆F (ρ) has a decay rate O
(

ρ−d−1
)

for ρ > ρ0. This matches
the worst-case spectral decay rate of the given class of functions
derived by Brandolini and colleagues [2001]. The corresponding
worst-case variance can be obtained using Eq. (E–13) as follows:

Var (IN ) ≤µ(Sd−1)

N
cF

∫ ρ0

0

ρd−1P̆S(ρ) dρ

+
µ(Sd−1)

N
c′F

∫ ∞

ρ0

ρ−2P̆S(ρ) dρ . (E–27)

We use Eq. (E–25) and (E–27) in the next section (Sec. 7), to analyze
the variance convergence rate of various sampling patterns in the
Euclidean domain and to develop a theoretical tool that can be used
in the design of new sampling patterns. For our experiments (Sec. 8),
we consider a 2D disk function, as it falls into the given class of
functions. The characeteristic function of a disk in 2D exhibits a
radial power spectral profile with a decay rate of order O

(

ρ−3
)

.
For a mathematical derivation of this decay rate, please refer to our
supplementary material, Section 4.2.

Spherical domain Analogously, in S2, we choose our best-case

integrand with an angular power spectrum P̆F (l), which is a constant
aF for (l < l0) and zero elsewhere. The corresponding variance
can be obtained using Eq. (S–24):

Var (IN ) ≤ aF µ(S2)
2

N

l0
∑

l=1

P̆S(l) , (S–28)

where aF is a non-zero positive constant, that can be derived by
plugging in the best-case angular power spectrum.

From the class of functions provided by Brandolini and col-
leagues [2001], we define our worst-case integrand to be a sum
of zonal harmonics, SF (l,m) = 0 ∀m 6= 0, with spectral ampli-
tude square zonal coefficients ‖SF (l, 0)‖2 exhibiting a decay rate
of order O

(

l−2
)

for l > l0. The corresponding worst-case angu-

lar power spectrum profile exhibits a decay rate of order O
(

l−3
)

,
which can be used in Eq. (S–24) to obtain the worst-case variance:

Var (IN ) ≤ µ(S2)
2
a′
F

N

∞
∑

l=0

P̆S(l)

l2
, (S–29)

where a′
F is a non-zero positive constant that can be derived by plug-

ging in the worst-case angular power spectrum. For our experiments,
we consider a spherical cap as our worst-case integrand as it falls
into the given class of functions. The corresponding power spectrum
exhibits a decay rate of order O

(

l−3
)

, whose derivation is given in
our supplementary material, Section 4.3.

7 Theoretical convergence analysis

In the previous section (Sec. 6), we consider a class of functions
with the corresponding best- and worst-case (integrand) power
spectra. We then obtain the best- and worst-case variance, in
the Euclidean (Eq. (E–25) and (E–27)) and spherical (Eq. (S–28)
and (S–29)) domains, as a function of the sampling power spec-

trum P̆S(·). In this section, we study the effects of different shapes

of P̆S(·) on the variance in MC integration for both the best- and
worst-case integrands. We use simple shape profiles (quadratic,

polynomial, step) for P̆S(·) and derive the variance convergence rate
associated with each sampling power spectra. Then, we classify the
existing state-of-the-art sampling power spectra—with respect to the
shape of the low frequency zone of these power spectra—in terms
of these profiles. We also obtain corresponding upper and lower
bounds on the sampling power spectra in terms of these profiles.

To analyze the variance convergence rate of a sampling pattern we
first identify, which part of our variance formulation (Eq. (E–25)
and (E–27) and, Eq. (S–28) and (S–29)) depends on N . Since the
distribution of distances in a sampling pattern gets affected by the
sampling density, the mean neighborhood distance between samples
can be approximated as the d-dimensional root of the representa-
tive area of each sample. In the Fourier domain, the corresponding

frequency of this mean distance is
d
√
N , which corresponds to the

first peak in the power spectrum of a regular grid pattern, and also,
approximatively, to the first bump of the typical blue-noise spectrum.
As N increases, the low frequency region of the sampling power
spectrum becomes more and more significant with respect to the
integrand power spectrum. This explains the noticeable variance re-
duction observed for sampling patterns exhibiting no low-frequency
content. Mathematically, this means that PS(ω) is dependent on a

factor
d
√
N . In the following subsections, we use this factor (

d
√
N )

to derive variance convergence rates.

7.1 Convergence analysis in Euclidean space

We start our analysis in the Euclidean space, and use our framework
to derive the convergence rate of existing stochastic sampling meth-
ods. We cover classical stochastic samplers, from the simplest one
(White noise) to the most sophisticated ones [Schlömer et al. 2011;
de Goes et al. 2012]. We classify different sampling patterns with
respect to the shape of their corresponding power spectra as follows:

Constant power spectra The simplest sampling profile is the

constant function P̆S(ρ) := γ. Since the power spectrum is constant

and P̆F (ρ) does not depend on N , we can simplify Eq. (E–13) to
obtain a convergence rate of order O

(

N−1
)

:

Var (IN ) =
µ(Sd−1)γ

N

∫ ∞

0

ρd−1P̆F (ρ)dρ

= O

(

1

N

)

. (E–30)

Step power spectrum The step profile corresponds to a constant
power spectrum without the low-frequency part from ρ = 0 to

α d
√
N for a given α ∈ R

+/{0}, where α is used to quantify the
range of energy-free frequency with respect to the mean frequency:

P̆S(ρ) :=

{

0, if ρ < α d
√
N

γ, otherwise .
(E–31)

For N > ρd0/α
d, the variance of MC integration of the best-case F

is zero. For the worst-case, we obtain:

Var (IN ) ≤ µ(Sd−1)c′F
N

∫ ∞

α
d
√
N

1

ρ2
dρ

= O

(

1

N d
√
N

)

. (E–32)

More generally, the variance generated by a step profile only depends
on the rate of decay of the integrand in the frequency domain. If the
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Figure 2: Summary of theoretical power spectra and their convergence rate for the best case and worst cases of integration. From left to
right: Constant power spectrum, polynomial power spectrum with b less than 1, polynomial power spectrum with b greater than 1 and step
power spectrum.

signal is bandwidth-limited, then it can be perfectly integrated. If
not, the variance decreases as a function of the rate of decay of the
power spectrum of the integrand.

Polynomial power spectra A more general radial power spec-
trum can be constructed from a polynomial ramp: from the frequency

zero to α d
√
N , the power spectrum is a polynomial ramp of degree

b. Above frequency α d
√
N , the radial power spectrum is a constant

function, γ, similar to the constant and step power spectrum. More
formally:

P̆S(ρ) :=











γρb

αb d
√
N

b
if ρ < α d

√
N

γ otherwise.

(E–33)

For b = 0, the polynomial power spectrum is equivalent to the
constant power spectrum, and for b → ∞, the power spectrum is
equivalent to the step power spectrum. Following Eq. (E–25), the
variance of the best-case is given by:

Var (IN ) ≤ µ(Sd−1)γcF

αbN d
√
N

b
ρd+b
0

= O

(

1

N d
√
N

b

)

. (E–34)

For the worst-case integrand, we obtain

Var (IN ) ≤ µ(Sd−1)γcF

αbN d
√
N

b

∫ ρ0

0

ρd−1+b
dρ

+
µ(Sd−1)γc′F

αbN d
√
N

b

∫ α
d
√
N

ρ0

ρb−2
dρ

+
µ(Sd−1)γc′F

N

∫ ∞

α
d
√
N

1

ρ2
dρ . (E–35)

Hence, when b is between 0 and 1, the convergence rate for the worst-

case is of order O(N−1− b

d ). Additionally, when b is greater than 1,

the convergence speed of the worst-case is of order O(N−1− 1

d ).

7.2 Convergence analysis in S2 space

We perform a similar theoretical convergence analysis in order to
obtain the variance convergence rates of various state-of-the-art

sampling patterns. We classify the sampling patterns in terms of the
shape of their corresponding power spectra, as follows:

Constant power spectra Here, P̆S(l) := γ, where γ is a con-
stant value. As the power spectrum is independent of N , we
use Eq. (S–28) and Eq. (S–29) to deduce that the best- and worst-
case variance convergence rates are of order O

(

N−1
)

.

Step power spectra We use Eq. (E–31) as our step power spectra

(P̆S(l)), with l the frequency parameter and d = 2. We normalize the

l term with α
√
N , where α is a positive constant and N represents

the number of samples. This allows us to bring all power spectra,
shown in Fig. 5, to the same scale for all N . As in the Euclidean
space, for N > l2/α2 the variance of integration in the best-case is
zero. The expression for the variance, Var (IN ), due to step power
spectrum in the worst-case can be approximated using Eq. (S–29):

Var (IN ) ≤ µ(S2)
2
a′
F

N

∞
∑

l=dα
√
Ne

1

l2
. (S–36)

where a′
F is a the hidden constant from O(l−2). The summation

term in the above equation can be symbolically solved to deduce the
worst-case variance convergence rate of sampling patterns with a
step power spectra, which is of order O(N−1.5).

Quadratic power spectra In S2, it is not trivial to obtain a gen-
eral expression for a polynomial profile. Therefore, we directly
study the polynomial profile defined as in Eq. (E–33) for b = 2 of a
quadratic polynomial. Using this quadratic profile power spectrum,
in the best-case variance Eq. (S–28), we obtain:

Var (IN ) ≤ µ(S2)
2

N

l0
∑

l=1

γ aF l2

(α
√
N)2

(S–37)

= O
(

N−2) . (S–38)

Using the quadratic profile power spectrum for the worst-case vari-
ance Eq. (S–29), we obtain:

Var (IN ) ≤ µ(S2)
2

N





bα
√
Nc

∑

l=1

γ aF (l/(α
√
N))2

l2
+

∞
∑

l=dα
√
Ne

γa′
F

l2



 ,

(S–39)
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which can be symbolically solved to obtain a convergence rate of
order O

(

N−1.5
)

.

7.3 Discussion

The proposed classification of power spectra with respect to their
shape can be used as a theoretical tool to bound arbitrary power
spectra using simple profiles (e.g., linear, quadratic, etc.). Thus, the
corresponding variance convergence rate of the sampling patterns
can be deduced from the bounds of their respective profiles, summa-
rized in Fig. 2. Below we discuss analytical formulations for some
of the state-of-the-art sampling patterns whose variance convergence
rate is derived using our framework. We discuss details regarding
other sampling patterns in Sec. 8.

White noise The radial power spectrum of white noise has a
constant profile with γ = 1 exhibiting a variance convergence rate
of order O

(

N−1
)

, which is well known in literature.

Jittered Sampling Gabrielli and Torquato [2004] derived an ana-
lytical expression for the power spectrum of the jittered sampling in
d = 1. By using the same formalism, one can obtain the analytical
expression of jittered sampling in arbitrary d dimensions:

PS(ω) = 1−
d
∏

i=1

sin(πωi)
2

π2ω2
i

, (E–40)

where ωi is the i-th element of the vector ω. Despite the presence
of the inverse function in this expression, the power spectrum is
continuous everywhere and as ωi → 0, the power goes to zero.

Furthermore, we have limωi→0
∂2PS(ωi)

∂ω2
i

= 2π2

3
, suggesting that the

power spectrum has quadratic behavior near zero. In fact, we have
numerically observed that PS can be upper bounded by a quadratic

ramp (b = 2) with γ = 1 and α =
√
3/π, and lower bounded by a

quadratic ramp with γ = 1/2 and α =
√
3/π, as shown in Fig. 4.

Consequently, in the Euclidean domain, the variance convergence

rate of MC integration with jittered sampling is of order O(N−1− 1

d )

in the worst-case and O(N−1− 2

d ) in the best-case. These results
agree with the convergences rates found by Mitchell [1996].

Poisson Disk For Poisson Disk distributions, Torquato and col-
leagues [2006] observed that for a sufficiently large N , the minima
of the mean power spectrum can be asymptotically seen near the DC
peak, with a value of 1/20. A similar observation can be made in
the spherical domain. Following our theoretical analysis, the power
spectrum of the Poisson disk distribution is lower bounded by a
constant profile with γ = 1/20 for both Euclidean and spherical
domains. Consequently, the variance convergence rate of the Pois-
son Disk sampling patterns is similar to the convergence rate of the
white noise sampler, that is, of order O

(

N−1
)

. An illustration of
the variance convergence rate is shown in Fig. 4 and Fig. 5.

8 Experiments and Results

In this section, we present several experiments comparing existing
sampling methods including: white noise, jittered sampling, Pois-
son Disk and capacity constraint methods. First, we look at the
implementation details and then proceed to our case study.

Implementation details In the toroidal domain (T d), we use the
implementation by Gamito and Maddock [2009] for Poisson Disk
sampling, for capacity constraint methods we choose the method of

de Goes and colleagues [2012]. We also include sampling patterns
by Schlömer et al. [2011] and step noise as described by Heck and
colleagues [2013]. In the spherical domain, we perform sampling
directly on the sphere using the Healpix data structure [Górski et al.
2005] which is an equal area quadrangulation of the sphere. To
implement jittered sampling, we use the Healpix quads as strata and
randomly place samples in each stratum. For Poisson Disk sampling,
there exist many algorithms in the literature that mimic the dart
throwing approach on the surface of the sphere [Cline et al. 2009;
Peyrot et al. 2013; Gamito and Maddock 2009]. In our implemen-
tation, we first generate a dense set of samples on the sphere, as
in the work of Li and colleagues [2010], and then reject samples
that are too close, as in the work of Bridson [2007]. We achieve a
distribution close to the boundary sampling described in the work
of Dunbar and Humphreys [2006]. We also implement a spherical
version of the CCVT algorithm by Balzer and colleagues [2009]
using the geodesic distance on the sphere. All sphere samplers are
illustrated in Fig. 3 and are generated on a multiprocessor machine,
with an Intel Core i7 CPU 980@3.3g GHz processor.

To plot the sampling power spectra, we compute the average power
spectrum over 1000 realizations, as suggested by Schlömer and
colleagues [2011]. We plot power spectra for N = 16384 in the
toroidal domain and N = 4096 in the spherical domain. Later,
we use these power spectra to estimate lower and upper bounds on
the variance of our test functions in both the toroidal (Fig. 4) and
spherical (Fig. 5) domains.

Case studies To support our theoretical claims for the variance
convergence rate, we choose a 2D circular disk function in the
Euclidean space and a spherical cap function in the spherical domain
as our worst-case signals [Brandolini et al. 2001]. We also consider
functions such as the Gaussian (in T 2) and the spherical harmonic
Y m
l (l = 4,m = 0) basis function, with their respective parameters

explained in our supplementary material, Section 5. Even though the
Gaussian function does not belong to the given class of functions, we
consider it a simple case of integration as it is a rapidly decreasing
function with fast power spectral decay rate (due to its C∞ nature)
whereas the Y m

l basis function is bandwidth-limited. We compute
variance of all the above integrands with different sampling patterns.
The variance was computed over 1000 trials for cases where the
samplers (white noise and jittered) are not prohibitively slow. For
spherical CCVT and Poisson Disk, we kept the number of trials
between 200 to 1000, depending on the speed of the sampler. As
the spectral profile of these test integrands is known, our variance
prediction model can be used to estimate the bounds on the variance
in integration of each function by simply using the bounds derived
from the corresponding sampling power spectra.

We illustrate the variance computed via our framework in Fig. 4
and 5. Our experimental results are consistent with our variance
predictive model (Sec. 7), and the variance is correctly bounded in
both the toroidal and the spherical domains. In Fig. 4, we observe
that tighter bounds on the sampling power spectra can result in
tighter bounds on the variance. For example, the upper bound on
the jittered sampling power spectrum is tighter than the lower bound
which results in a tighter upper bound on the associated variance. For
Poisson Disk sampling, the spectral profile is bounded by a constant
profile and consequently, the convergence rate of the variance is
similar to white noise. Also, as the lower bound on the Poisson
Disk sampling is tighter than the upper bound, the corresponding
variance achieves a tight lower bound. Surprisingly, for a given
experimental setup, we observe an offset of 0.006935 for [Schlömer
et al. 2011] in its spectral profile. This offset imposes bounds on the
corresponding power spectrum with constant profiles, as in Poisson
Disk. The variance generated by Schlömer and colleagues [2011]
is one order of magnitude below Poisson disk sampling but the
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(a) (b) (c) (d) (e)

Figure 3: Illustration of spherical sampling methods: Healpix underlying structure (a) used in regular sampling (b), stratified sampling (c)
and our implementation of CCVT (d). Finally, (e) illustrates our implementation of Poisson disk sampling (see details in Sec. 8).

convergence rate is still O
(

N−1
)

. For the method of de Goes and
colleagues [2012], the lower bound has a polynomial profile. Finally,
instead of bounding the step power spectrum in Fig. 4(m) (in blue)—
proposed by Heck and colleagues [2013]—we compare it with the
theoretical step power spectral profile Eq. (E–31) (green, hidden
under the blue curve). In Fig. 4(n) and 4(o), we demonstrate that the
variance convergence rate of the step power spectrum generated by
Heck and colleagues is clearly worse than its spectral target (step
profile).

Similar behavior can also be observed in Fig. 5 for the sphere,

where all the power spectral profiles are plotted as (P̆F vs ω) with

ω = l/(α
√
N). Variance bounds due to the white noise are also

shown in Fig. 5. Note that, in Fig. 4 and 5, we only bound the
variance convergence rate. This is why the variance values are
normalized (with the variance value for N = 1) for all of our test
integrands.

Rendering results We also implement ambient occlusion in a
Cornell box scene to study the behavior of various state-of-the-art
sampling patterns (shown in Fig. 3 of the supplementary material).
As most state-of-the-art samplers are not directly extendable to the
hemisphere, we sample a complete sphere and consider samples
only from the visible part. We designed the Cornell box scene to
enhance the noise level in the whole box. For rendering, we chose
a regular sampling pattern on the image plane to keep the aliasing
coherent throughout all samplers. This is why our reference image,
shown as an inset in Fig. 6(f), shows some structural artifacts. The
reference Cornell box image is computed by shooting one ray from
the center of each pixel followed by shooting 32k secondary rays
from each primary hit point. The secondary ray directions were sam-
pled via a jittered sampling pattern. A similar process was adopted
to generate the Cornell box images using other samplers. This is
done to compare the variance coming through the hemispherical
sampling patterns from each primary ray hit point.

Comparisons To provide a side by side comparison of the vari-
ance convergence rate of different samplers, we plot the convergence
rate curves in Fig. 6 for both the Euclidean and spherical domains.
As predicted by our model, in the Euclidean domain, we can see that
the asymptotic behavior of de Goes and colleagues [2012] and jit-
tered sampling is better than both the Poisson Disk sampling and the
sampling method of Schlömer and colleagues [2011]. The jittered
sampling convergence rate overtakes the Poisson Disk sampling
convergence rate just after 200 samples and for the sampling method
proposed by Schlömer and colleagues [2011], jittered sampling
overtakes after 3072 samples (as shown in Fig. 6). Similar obser-
vations are made in the spherical domain for the jittered sampling
patterns. CCVT [Balzer et al. 2009], jittered, and regular sampling
patterns have asymptotically similar behaviors in the spherical do-
main, though jittered sampling patterns show higher variance.

9 Conclusion and future work

In this work, we develop a framework to analyze the effects of vari-
ous sampling patterns on the variance of MC integration. We use the
notion of homogeneous sampling patterns that allows manifestation
of error only in terms of variance during MC integration. We show
that the variance is directly related to the sampling and integrand
power spectra in both the Euclidean and the spherical domains. We
also show that for a given class of functions, we obtain the same
worst-case variance convergence rates in both the domains.

One of the limitations of our framework is that it is designed for
only stochastic samplers and assumes some knowledge of the power
spectrum of the sampling pattern under study. Therefore, sampling
patterns with varying power spectra (e.g. Sobol), that is, which de-
pend on the number of samples, cannot be handled by our framework.
We would like to explore this issue in future. Another promising
direction for future research is to develop a similar framework for
deterministic sampling methods like, Sobol or other low-discrepancy
sequences.

Additionally, our framework can be used to study the effects of
various sampling patterns with known and/or unknown closed-form
power spectral formulation. We show that by using simple shapes
(quadratic, constant, etc.) for the power spectra, exisiting state-of-
the-art sampling power spectra can be easily bounded. This also
results in bounding the associated variance for MC integration. We
use our framework to theoretically derive best- and worst-case vari-
ance convergence rates—for a given class of functions—of various
state-of-the-art sampling methods.

Design principles In our theoretical framework (Sec. 7), we pro-
pose some principles to design new sampling patterns. We also
advocate the importance of the low frequency zone of the corre-
sponding sampling power spectra. We emphasize the fact that an
ideal sampling power spectrum must attain zero value as the fre-
quency parameter tends to zero. This property ensures that the
distribution is sufficiently uniform. In addition, the shape of the
power spectrum near the zero frequency zone is also very important
and must have at least a linear profile behavior. Moreover, the flatter
the shape of the power spectral profile in this low frequency zone,
the faster the variance converges in MC integration for favorable
integrands. Ideally, the power spectrum must contain a range of low
frequencies that are perfectly zero, such as the step power spectrum
profile, shown in Fig. 2(d).

Our experimental results in the Euclidean and spherical domains
show that no existing methods fulfill these design principles. Sam-
pling methods based on packing and hard local conditions like Pois-
son Disk and [Schlömer et al. 2011], do not have a power spectrum
converging to zero near zero frequency. This can be explained by
the lack of uniformity in the distribution which can be corrected
using proper subdivison of the domain through tile-based methods.
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Figure 4: Bounds on the power spectra and on the variance convergence rate of our test integrands in the toroidal domain. Log-Log plots
are shown in the Center and Right columns. Left: Power spectra of different sampling patterns (blue), bounded by a theoretical spectral

profile (green). On the frequency axis, units corresponds to the frequency
d
√
N . (d) and (g) have bounds with constant profiles while (a) and (j)

have polynomial profiles. The corresponding parameters (γ, α, b) from Sec. 7, for both the upper (γu, αu, bu) and lower (γl, αl, bl) bounds

are as follows: (a) γu = 1, αu =
√
3/π, bu = 2, γl = 1/2, αl =

√
3/π and bl = 2, (d) γu = 1.75 and γl = 1/20, (g) γu = 3.78 and

γl = 0.006935, (j) γu = 3, αu = 1, bu = 4, γl = 0.3, αl = 3.5 and bl = 4, and (m) is approximated by a step profile with γ = 1 and
α = 1/

√
π. Center: Gaussian function (in blue) with variance bounds (in green) computed using the bounds of the corresponding sampling

power spectrum (Left). Variance generated by white noise is shown in dashed gray curve. Right: Similar visualization for a disk function.
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Figure 5: Bounds on the power spectra and on the variance convergence rate of our test integrands in S2. Log-Log plots are shown in the
Center and Right columns. Left: Power spectra of different sampling patterns (blue), bounded by a theoretical spectral profile (green). On the

frequency axis, units corresponds to the frequency α
√
N . (a) and (g) have bounds with constant profiles while (d) and (g) have quadratic

(b = 2) profiles. The corresponding parameters (α, γ) from Sec. 7.2, for both the upper (αu, γu) and lower (αl, γl) bounds are also provided.

(a) αu = 1.0, γu = 1.3, αl = 1.0, γl = 0.7 and (g) αu =
√
2.75, γu = 1.8, αl =

√
2.75, γl = 0.055 bounded with constant profiles while

(d) αu = 0.2, γu = 1.0, αl =
√
0.6, γl = 0.4 and (j) αu =

√
0.05, γu = 2.0, αl =

√
2.85, γl = 0.05 with quadratic (b = 2) Center: The

variance curve of a spherical harmonic basis function with l = 4,m = 0, (blue), with bounds (green) computed using the bounds of the
corresponding power spectrum. Right: The variance in integration of a spherical cap, using the same visualization.

Lowres version



10 100 1000 10
4

10
5

10
-8

10
-6

10
-4

0.01

N

Variance
Jittered

Poisson Disk

[Schlömer et al. 2011]

[DeGoes et al. 2012]

[Heck et al. 2013]

10 100 1000 10
4

10
5

10
-8

10
-6

10
-4

0.01

N

Variance
Jittered

Poisson Disk

[Schlömer et al. 2011]

[DeGoes et al. 2012]

[Heck et al. 2013]

10 100 1000 10
4

10
5

10
-8

10
-6

10
-4

0.01

N

Variance
Jittered

Poisson Disk

[Schlömer et al. 2011]

[DeGoes et al. 2012]

[Heck et al. 2013]

(a) (b) (c)

10 100 1000
N

10
-9

10
-7

10
-5

0.1

Variance

10
-3

10000

Regular

White noise

Jittered

Poisson Disk

CCVT

10 100 1000
N

10
-7

10
-5

0.1

Variance

10
-3

10000

Regular

White noise

Jittered

Poisson Disk

CCVT

MSE

24 54 96 150 216 294 384 486 6006
N

10
-5

0.1

10
-2

10
-3

10
-4

Regular

White noise

Jittered

Poisson Disk

CCVT

(d) (e) (f)

Figure 6: Comparison of the variance in MC integration for different integrand signals. Here we use experimental data from Fig. 4 and 5 in
(a), (b), (d) and (e). Top row represents comparisons in the Euclidean space for (a) a Gaussian function, (b) a disk function and (c) an HDR
image (16000×16000 pixels, taken from sIBL Archive, full image shown in the supplementary material). For reference, variance due to white
noise is shown in the dashed gray line. Bottom row represents comparisons in the (hemi-)spherical domain : (d) a spherical harmonic basis
function (Y 0

4 ). Inset illustrates the gray scale of the absolute values of the function, (e) a spherical cap function (θ0 = 60), where the white
shade in the inset represents non-zero constant value region (f) a Cornell box scene.

For example, the tiled version of Poisson Disk sampling in Wach-
tel et al. [2014] has power spectrum converging to zero towards
zero frequency. Similarly, all methods based on the capacity con-
straint [Balzer et al. 2009] seem to guarantee a power spectrum that
converges to zero. However, these methods still have residual energy
spread along low frequencies which can be improved.

Quadrature rules on the sphere In our framework, we perform
Monte Carlo integration—instead of using optimal adaptive quadra-
ture rules—on the spherical and hemispherical domains despite their
low dimensional nature. We do this for a couple of reasons: First,
our present framework is designed only for non-adaptive sampling
patterns. Adaptive or importance-based sampling do not support
the homogeneity of the sampling patterns, and designing a variance
analysis framework in such a case needs further research; Second,
as most production renderers are Monte Carlo based, our framework
provides an analysis tool that can be employed in the production
pipeline for choosing a sampling pattern that reduces the overall
variance in integration of (hemi-)spherical signals. New sampling
patterns can also be designed using our framework.

Future work Generating a sampling pattern with absolutely no
energy in the low frequency range seems to be a very challenging
problem. We expect to use the theoretical results and tools developed
in this paper to help design such sampling patterns. Finally, taking
into account more sophisticated sampling strategies, such as adap-
tive (or importance) sampling and filtering, could be an interesting
avenue for future work.
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A Proof: unbiased homogeneous sampling

In this appendix, we mathematically illustrate that the homogeneous
sampling patterns are unbiased in nature. For this, we show that
the expected value of the Monte Carlo estimator is equal to the
integration of F . The expected value of the MC estimator can be
written as:

〈IN 〉 = µ(D)

N

〈∫

D

S(x)F (x)dx

〉

=
µ(D)

N

∫

D

〈S(x)〉F (x)dx .

(41)
To make S homogeneous, we perform averaging over the group of
motions, H (translations for the torus and rotations for the sphere)
over the whole domain, this gives us:

〈IN 〉 = µ(D)

N

∫

D

1

µ(H)

〈∫

H

[τ(S)](x)dτ

〉

F (x)dx . (42)
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To simplify the inner integral, we use the fact that H acts transitively
on D, as a result, the average of [τ(S)](x) over all τ ∈ H is the
average of S(x) over all x ∈ D:

1

µ(H)

∫

H

[τ(S)](x)dτ =
1

µ(D)

∫

D

S(x)dx . (43)

Plugging Eq. (43) back into Eq. (42) (with a change of variable), we
get:

〈IN 〉 = µ(D)

N

∫

D

〈

1

µ(D)

∫

D

S(y)dy

〉

F (x)dx (44)

=
1

N

∫

D

〈S(y)〉 dy
∫

D

F (x)dx . (45)

In particular, when S(y) =
∑

δ(y − sk) for k = 1 : N , we get:

〈IN 〉 =
∫

D

F (x)dx . (46)
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