
A New Lattice-based Plane-probing Algorithm ⋆

Jui-Ting Lu[0000−0002−5341−1490], Tristan Roussillon[0000−0003−2524−3685], and David

Coeurjolly[0000−0003−3164−8697]

Université de Lyon, INSA Lyon, LIRIS, UMR CNRS 5205, F-69622, France

Abstract. Plane-probing algorithms have become fundamental tools to locally

capture arithmetical and geometrical properties of digital surfaces (boundaries of

a connected set of voxels), and especially normal vector information. On a digital

plane, the overall idea is to consider a local pattern, a triangle, that is expanded

starting from a point of interest using simple probes of the digital plane with a

predicate “Is a point x in the digital plane?”. Challenges in plane-probing meth-

ods are to design an algorithm that terminates on a triangle with several geomet-

rical properties: its normal vector should match with the expected one for digital

plane (correctness), the triangle should be as compact as possible (acute or right

angles only), and probes should be as close as possible to the source point (lo-

cality property). In addition, we also wish to minimize the number of iterations

or probes during the computations. Existing methods provide correct outputs but

only experimental evidence for these properties. In this paper, we present a new

plane-probing algorithm that is theoretically correct on digital planes, and with

better experimental compactness and locality than existing solutions. Additional

properties of this new approach also suggest that theoretical proofs of the afore-

mentioned geometrical properties could be achieved.

Keywords: Digital Plane Recognition · Plane-Probing Algorithm · Lattice Re-

duction

1 Introduction

A digital surface is a quadrangular mesh that corresponds to the boundary of a union

of regularly spaced unit cubes (voxels). We are interested in processing the geometry of

such surfaces, for instance to recognize local elementary structures such as digital plane

segments [1, 4, 5, 14], or to estimate some differential quantities [2, 3]. When performing

such local computations, we usually need to capture local geometric properties of the

surface around a given point. This can be done either by considering a fixed neighbor-

hood, e.g., using a Euclidean ball with fixed radius, or by adapting such neighborhood

to local geometric properties. Probing algorithms target the latter case by iteratively

growing a pattern with update rules given from probing of the geometry. Plane-probing

algorithms analyze digital planes [10] without imposing a parameter that controls the

size of the patch [6–9, 11]. The key objective of these techniques is to exploit arithmeti-

cal and geometrical properties of the digital plane being explored in order to retrieve

its unknown arithmetical parameters, e.g., its normal vector. When applied on generic

⋆ This work has been partly funded by PARADIS ANR-18-CE23-0007-01 research grant.
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2 J.-T. Lu and T. Roussillon and D. Coeurjolly

non-planar (implicit or explicit) digital surfaces, outputs of plane-probing algorithms

could be used to locally estimate the normal bundle of the surface, or could be a key

ingredient for surface reconstruction [9].

Plane-probing algorithms can mainly be categorized into two types: tetrahedra-based

plane-probing algorithms [8, 9, 11] and parallelepiped-based [6]. In this paper, we focus

on tetrahedra-based plane-probing algorithms applied on a digital plane. Those algo-

rithms update the three vertices of the tetrahedron base until it matches the normal of

the digital plane. Meanwhile, the apex of the tetrahedron remains fixed (see Fig. 1).
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Fig. 1: The evolution (from left to right) of a tetrahedra-based plane-probing algorithm

for normal (1, 2, 5).

Among existing approaches to update the tetrahedra vertices, we can mention the

H-algorithm and the R-algorithm [9]. The main advantage of such approaches is their

proximity to the source point. Indeed, the apex of the tetrahedron does not move, stays

right above the starting point and always projects into the opposite face, i.e., the base,

in the direction of the starting point (see Fig. 1 and [9, Lemma 4]). However, we do not

have an upper bound of the probed area. A comparison of H-algorithm and R-algorithm

is illustrated in Fig. 2, where only the triangles corresponding to the bases are drawn.

The outputs of the two algorithms are identical, but H-algorithm probes a larger region

than R-algorithm does. We also spot more obtuse triangles in H-algorithm’s evolution.

Furthermore, as stated in [12], our new algorithm also leads to additional theoretical

results such as the minimality of the lattice generated by the last triangle. In this article,

we mainly focus on the algorithmic sides of the new approach. The paper is divided into

three parts: in Sec. 2, we recall some notations used in [11] and describe the general

framework of plane-probing algorithms. We precisely describe and analyze our new

algorithm in Sec. 3, whereas Sec. 4 is devoted to experimental results.

2 Plane-probing Algorithm Variants

A standard and rational digital plane is an infinite digital set defined by a normal N ∈

ℤ
3 ⧵ {0} and a shift value � ∈ ℤ as follows [10]:

P�,N ∶= {x ∈ ℤ
3 | � ≤ x ⋅ N < � + ‖N‖1}.

In this paper, we suppose w.l.o.g. that � = 0 and that the components of N are positive,

i.e., N ∈ ℕ
3 ⧵ {0}. Given a digital plane P ∈ {P0,N | N ∈ ℕ

3 ⧵ {0}} of unknown

normal vector, a plane-probing algorithm computes the normal vectorN ofP by sparsely

Lowres version
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Fig. 2: The evolution for normal (1, 73, 100) with H-algorithm (a) and R-algorithm (b).

Every triangle of the evolution is superimposed. The initial triangle is black. The next

ones are more and more blue while iterating. The last one is red.

probing it with the predicate “is x in P?” (InPlane(x) predicate hereafter). We describe

below in a uniform way the algorithms H and R introduced in [9] as well as our new

method (see also Algorithm 1).

∙
p

e0

e1

e2

◦
q

∙
v
(0)

0

∙
v
(0)

1

∙
v
(0)

2

Initialization. Let (e0, e1, e2) be the canonical basis of ℤ
3. We

assume that a starting point p satisfies three conditions: (1) p ∈ P,

(2) the apex q ∶= p + (1, 1, 1) ∉ P and (3) the initial triangle

T(0) ∶= (v
(0)

k
)k ∈ℤ∕3ℤ ⊂ P, where v

(0)

k
∶= q−ek for all k ∈ ℤ∕3ℤ

(see inset figure and Algorithm 1, line 1).

Neighborhood and update rule. At every step i ∈ ℕ, the triangle T(i) is defined from

updated vertices {v
(i)

k
}k ∈ℤ∕3ℤ and represents the current approximation of the plane P.

All algorithms update one vertex of T(i) per iteration. That vertex is replaced by a point

of P from a candidate set, also called neighborhood in [9]. To properly define distinct

neighborhoods, we first define the following sets:

SH ∶= {(�, �) ∈ {(1, 0), (0, 1)}. (1)

SR ∶= {(�, �) ∈ {(1, �), (�, 1) ∣ � ∈ ℕ}. (2)

SL ∶= {(�, �) ∈ ℕ
2 ⧵ (0, 0)}. (3)

Note that SH ⊂ SR ⊂ SL. At every step i and for any S ∈ {SH , SR, SL}, the neigh-

borhood is now defined as follows:


(i)

S
∶=

{
v
(i)

k
+ �(q − v

(i)

k+1
) + �(q − v

(i)

k+2
) ∣ k ∈ ℤ∕3ℤ, (�, �) ∈ S

}
. (4)

See Fig. 3 for an illustration of the neighborhoods. The H-algorithm is based on


(i)

SH
, which looks like an Hexagon, whereas the R-algorithm is based on 

(i)

SR
, which

consists of Rays. In this paper, we propose a lattice-based algorithm, denoted by the

letter L, for lattice, and which uses the largest neighborhood 
(i)

SL
.
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v
(i)
2

v
(i)
1

v
(i)
0

q

Fig. 3: Illustrations of the neighborhoods: 
(i)

SH
(black squares), 

(i)

SR
(white squares)

and 
(i)

SL
includes every point on the lattices, excepted the triangle vertices.

Let 
(i)
+ be the half-space delimited by T(i) and containing 

(i)

S
. In addition, let

(T, x) be the closed ball defined by T(i) and a fourth point x not in the plane passing

by T(i). As in [11], for any pair of points x, x′, not in the plane passing by T(i), we say

that x′ is closer to T(i) than x, denoted x′ ≤T(i) x, if and only if ((T(i), x′) ∩ 
(i)
+ ) ⊆

((T(i), x)∩
(i)
+ ). As ≤T(i) is reflexive and transitive, and since all pairs of points in 

(i)
+

are comparable [12], it defines a total preorder.

The algorithms replace a vertex of T(i) with a point of the set 
(i)

S

⋂
P that is a

closest one according to ≤T(i) . More precisely, if 
(i)

S

⋂
P ≠ ∅, there is at least an index

k ∈ ℤ∕3ℤ and numbers (�, �) ∈ ℕ
2 ⧵ (0, 0) such that

∀x ∈ 
(i)

S
∩ P, v

(i)

k
+ �(q − v

(i)

k+1
) + �(q − v

(i)

k+2
) ≤T x. (5)

Note that the triple (k, �, �) may not be unique when several points are in a cospherical

position. The update rule is then [9, Lemma 2]:

⎧
⎪⎨⎪⎩

v
(i+1)

k
∶= v

(i)

k
+ �(q − v

(i)

k+1
) + �(q − v

(i)

k+2
),

v
(i+1)

k+1
∶= v

(i)

k+1
,

v
(i+1)

k+2
∶= v

(i)

k+2
.

(6)

As shown in Algorithm 1, lines 5 to 7, equations (5) and (6) are used to update the

current triangle.

Termination. The algorithms terminate at a step n, when the neighborhood has an empty

intersection with the plane, i.e., when 
(n)

S

⋂
P = ∅ (Algorithm 1, line 3). The number

of steps, n, is less than or equal to ‖N‖1 − 3 [9, Theorem 1], which is a tight bound

reached for any normal of components (1, 1, r) with r ∈ ℕ ⧵ {0}.

If p is one of the least high points in P, i.e., p ⋅ N = 0, the vertices of T(n) are

among the highest ones in P, i.e., ∀k ∈ ℤ∕3ℤ, v
(n)

k
⋅ N = ‖N‖1 − 1 [9, Theorem 2]. A

consequence is that T(n) is aligned with P. In other words, its normal is equal to N [9,

Corollary 4]. In addition, one can deduce from the vertices of T(n) a basis of the lattice

{x | x ⋅ N = ‖N‖1 − 1} [9, Corollary 5].

Lowres version



A New Lattice-based Plane-probing Algorithm 5

Even if [9] only introduces the neighborhoods H and R, the above-mentionned re-

sults and their proofs are correct for parameters (�, �) ∈ SL in the update rule and, as a

consequence, for the newly introduced neighborhood 
(i)

SL
as well.

Our motivation for introducing such a neighborhood is linked to the compactness.

Indeed, starting from an identical triangle, a point chosen by the L-algorithm always

lies in the circumscribed sphere that passes the point chosen by the H- or R-algorithm.

Furthermore, it is proven that every circumscribed sphere of two consecutive triangles

provided by the L-algorithm does not include any other points of the digital plane [12,

Theorem 4]. In the next section, we show how to efficiently find a closest point in the

L-neighborhood. The above-mentionned result will be crucial in Lemma 7.

Algorithm 1: Plane-probing algorithms H, R ([9]) and L (our method)

Input: The predicate InPlane ∶= “Is a point x ∈ P?”, a point p ∈ P and the type of

neighborhood S ∈ {SH , SR, SL} (see equations (1)-(4))

Output: A normal vector N̂ and a basis of the lattice {x | x ⋅ N̂ = ‖N‖1 − 1}.

1 q ← p + (1, 1, 1) ; (v
(0)

k
)k ∈ℤ∕3ℤ ← (q − ek)k ∈ℤ∕3ℤ ; // initialization

2 i ← 0 ;

3 while 
(i)

S
∩ {x | InPlane(x)} ≠ ∅ do

4 Let (k, �, �) be such that, for all y ∈ 
(i)

S
∩ {x | InPlane(x)},

5 v
(i)

k
+ �(q − v

(i)

k+1
) + �(q − v

(i)

k+2
) ≤T(i) y ; // equation (5)

6 v
(i+1)

k
← v

(i)

k
+ �(q − v

(i)

k+1
) + �(q − v

(i)

k+2
) ; // equation (6)

7 ∀l ∈ ℤ∕3ℤ ⧵ k, v
(i+1)

l
← v

(i)

l
;

8 i ← i + 1 ;

9 B ← {v
(i)

0
− v

(i)

1
, v

(i)

1
− v

(i)

2
, v

(i)

2
− v

(i)

0
} ;

10 Let b1 and b2 be the shortest and second shortest vectors of B ;

11 return b1 × b2, (b1, b2) ; // × denotes the cross product

3 The L-algorithm

The most expensive task in Algorithm 1 is computing a point of 
(i)

S
∩ P, which is

closest according to ≤T(i) (see lines 4 and 5). A brute-force method would be computing

the whole finite set 
(i)

S
∩P and finding a point of that set closer than any others, which

would require lots of probes. In practice, one does not need to probe so much, because

one can safely discard a large part of 
(i)

S
∩ P.

In this section, we focus on a step i ∈ {0,… , n} and for the sake of simplicity, we

drop the exponent (i) in the notations. Furthermore, we focus on the 2D lattice

∀k ∈ ℤ∕3ℤ, k ∶=
{
vk + �mk+1 + �mk+2 ∣ (�, �) ∈ SL

}
,

where mk ∶= q − vk for all k ∈ ℤ∕3ℤ. We propose an algorithm (Algorithm 2) that

selects a small and sufficient set of candidate points included in k.

Lowres version



6 J.-T. Lu and T. Roussillon and D. Coeurjolly

3.1 A Smaller Candidate Set

We introduce, in the first place, two general geometrical results which will be useful.

Lemma 1. Let two non-zero vectors u,w ∈ ℝ
3 and a closed ball whose border passes

through the origin o and the point o + u +w. If u ⋅w ≥ 0, at least one of the two points

o + u and o + w lies in the ball.

Proof. We focus on the plane including o, o + u, o + w (and o + u + w). In this plane,

if u ⋅ w ≥ 0, one half of the disk of diameter [o, o + u + w] contains o + u, whereas the

other contains o + w. Furthermore, any other disk whose border passes through o and

o+u+w must include one of the previous halves, thus one of the two points. Since any

ball whose border passes through o and o + u +w covers such a disk, the result follows

(see Fig. 4-(a)). □

Lemma 2. Let a non-zero vector u ∈ ℝ
3 and a closed ball whose border passes through

the origin o and the point o + u. No point o + �u such that � > 1 lies in the ball.

Proof. The intersection between the ball and the ray starting from o in direction u is the

segment [o, o + u], which is equal, by convexity, to the set {o + �′u}0≤�′≤1. The points

o + �u such that � > 1 do not lie in that set and therefore do not lie in the ball. □

o

o + u

o + w

o + u + w

o
o + u

o + 2u

Fig. 4: Illustrations for (a) lemma 3 and (b) lemma 2.

An elementary application of the above lemmas is the following result:

Lemma 3. For all k ∈ ℤ∕3ℤ, let Λk be the set
{
vk + �u + �w ∣ (�, �) ∈ SL

}
, where

u, w are any two non-zero vectors of ℤ3 such that vk + u, vk +w ∈ +. If u ⋅w ≥ 0, we

have either vk + u ≤T x for all x ∈ Λk or vk + w ≤T x for all x ∈ Λk.

Proof. Let us consider the ball (T, x) for a point x ∶= vk + �u + �w, with �, � ≥ 1.

Since �u ⋅�w ≥ 0, by Lemma 1, we know that either vk+�u or vk+�w lies in (T, x).

Let us assume w.l.o.g. that vk + �u ∈ (T, x), which means that vk + �u ≤T x. By

Lemma 2, we then conclude that vk + u ≤T vk + �u ≤T x. □

Thanks to the previous lemma, if mk+1 ⋅mk+2 ≥ 0, one can consider only two points

of k (Fig. 5 (a)). Otherwise, if both mk+1 ⋅ (mk+1 +mk+2) ≥ 0 and (mk+1 +mk+2) ⋅

mk+2 ≥ 0, one can again consider as few as three points: vk + mk+1, vk + mk+2 and

vk + mk+1 + mk+2. We now focus on the case where either mk+1 ⋅ (mk+1 + mk+2) or

mk+2 ⋅ (mk+1 +mk+2) is strictly negative (see for instance Fig. 5 (b)).
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A New Lattice-based Plane-probing Algorithm 7

vk

vk +mk+1vk +mk+2

(a)

vk
vk +mk+1vk +mk+2

(b)

Fig. 5: Angle between mk+1 and mk+2 : (a) when mk+1 ⋅ mk+2 ≥ 0, (b) when mk+1 ⋅

mk+2 < 0 and mk+2 ⋅ (mk+1+mk+2) < 0. Here, we also have (mk+1+ 
mk+2) ⋅ (mk+1+

(
 + 1)mk+2) < 0 with 
 = 1 (see Lemma 4 and the green angle).

Lemma 4. Let u, w be two non-zero vectors in ℤ
3. If there exists 
 ≥ 1 such that

(u + 
w) ⋅ (u + (
 + 1)w) < 0, (7)

then 
 is the unique integer greater than or equal to 1 that verifies

(u + (
 + 1)w) ⋅ w > 0 > (u + 
w) ⋅ w. (8)

In this case, 
 =
⌊
−u⋅w

‖w‖2
⌋

.

Proof. We refer to Fig. 5(b) for an example where u = mk+1 and w = mk+2. By rewrit-

ting the left-hand side of (7) as (u + 
w) ⋅
(
(u + 
w) + w

)
and developing, we get

‖u + 
w‖2 + (u + 
w) ⋅ w < 0 ⇒ (u + 
w) ⋅ w < 0 ,

which is the right-hand side of (8). Similarly, by rewritting the left-hand side of (7) as(
(u + (
 + 1)w) − w

)
⋅ (u + (
 + 1)w) < 0 and developing, we have

‖(u + (
 + 1)w)‖2 − w ⋅ (u + (
 + 1)w).

As this expression is strictly negative by (7), we obtain (u + (
 + 1)w) ⋅ w > 0, which

is the left-hand side of (8). To end, by developing (8) and isolating the 
 , we obtain


 + 1 >
−u⋅w

‖w‖2 > 
 , thus unicity. □

Lemma 5. Let u, w be two non-zero vectors in ℤ
3. If there exists 
 ≥ 1 verifying (7),

then for all c ∈ {0, 1,… , 
 − 1}, (u + cw) ⋅ (u + (c + 1)w) > 0.

Proof. First, observe that for all c ∈ ℕ ⧵ {0},

(u + (c − 1)w) ⋅ (u + cw) = (u + cw) ⋅ (u + (c + 1)w) − 2w ⋅ (u + cw). (9)

To determine the sign of −2w ⋅ (u + cw), note that we obviously have cw2 < 
w2 and,

from the right-hand side of (8), 
w2 < −u ⋅ w. As a result,

cw2 < −u ⋅ w ⇔ w ⋅ (u + cw) < 0.

Since −2w ⋅ (u+cw) > 0, it is enough to show that the statement is true for c = 
−1

because the result for the smaller values of c then follows by induction.
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8 J.-T. Lu and T. Roussillon and D. Coeurjolly

By (8), we also have w ⋅ (u + 
w) < 0 < (u + 
w)2. Therefore,

2w ⋅ (u + 
w) < (u + 
w)2 + w ⋅ (u + 
w) = (u + 
w) ⋅ (u + (
 + 1)w).

From this lower bound and replacing c by 
 in (9), we finally obtain (u+(
 −1)w) ⋅ (u+


w) > 0, which concludes the proof. □

The two previous lemmas provide a set of lattice bases whose vectors form an acute

angle. Indeed, with u = mk+1 and w = mk+2 and assuming that 
 exists, we have

(mk+1 + (
 + 1)mk+2) ⋅mk+2 > 0 (Lemma 4) and for all c ∈ {0, 1,… , 
 − 1}, (mk+1 +

cmk+2) ⋅ (mk+1 + (c + 1)mk+2) > 0 (Lemma 5). Then, it straightfowardly follows from

Lemma 3 that the closest points in the set

{vk +mk+2} ∪
{
vk +mk+1 + cmk+2 ∣ c ∈ {0,… , 
 + 1}

}

are closer than any other points in the set

k ⧵ {vk + �
(
mk+1 + 
mk+2

)
+ �

(
mk+1 + (
 + 1)mk+2

)
∣ �, � ≥ 1}.

One part ofk cannot be covered because (mk+1+
mk+2)⋅(mk+1+(
+1)mk+2) < 0.

In order to cope with that problem, we simply recursively apply the previous results.

Definition 1. For any pair of linearly independent non-zero vectors (u,w) ∈ ℤ
3 × ℤ

3,

we define a sequence of vector pairs Ωu,w =
{
(uj ,wj)

}
j≥0

as follows:

1. u0 = u and w0 = w.

2. For any j ≥ 0, the pair (uj+1,wj+1) exists if and only if there exists 
j ≥ 1 such that

(uj + 
jwj) ⋅ (uj + (
j + 1)wj) < 0, (10)

then

uj+1 = wj , wj+1 = uj + 
jwj . (11)

Definition 2 (Candidate set). For k ∈ ℤ∕3ℤ and for any pair of vectors (u,w) in the

set {(mk+1,mk+2), (mk+2,mk+1)}, we define

Ck ∶=
⋃

(uj ,wj )∈Ω(u,w)

{vk + wj} ∪
{
vk + uj + cwj ∣ c ∈ {0,… , 
j + 1}

}
.

The finiteness of Ck stems from the finiteness of Ωu,w:

Lemma 6. The sequence Ωu,w =
{
(uj ,wj)

}
j≥0

is finite.

Proof. From (11), we have for any j ≥ 0, −uj+1 ⋅wj+1 = −wj ⋅ (uj +
jwj). Developing

the last expression, we obtain −uj ⋅ wj − 
j‖wj‖2, which is strictly less than −uj ⋅ wj .

Therefore, the sequence of natural numbers
{
−uj ⋅ wj

}
j≥0

is strictly decreasing. Since,

in addition, −uj ⋅wj ≥ ‖wj‖2, while there exists 
j ≥ 1, the sequence Ωu,w is finite. □
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3.2 Even smaller candidate set

The set Ck described in the previous section is a union of subsets of aligned points. We

show below that, for each subset, the last point is always closer than the other ones:

Lemma 7. For any vectors u,w ∈ k such that there exists 
 ≥ 1 such that (u + 
w) ⋅

(u + (
 + 1)w) < 0, then for any 0 ≤ c ≤ 
 − 1, we have u + 
w ≤T u + cw.

Proof. We assume w.l.o.g. that k = 0 and we use the notation �0
T
(x, y) introduced in

[11], where x and y are relative points of ℤ3 when considering v0 as origin. We recall

that if v0 + x ∈ +, then v0 + x ≤T v0 + y ⇔ �0
T
(x, y) ≥ 0.

In order to show that for all 0 ≤ c ≤ 
 − 1, �0
T
(u + 
w,u + cw) ≥ 0, we use the

following identity [11, equation (6)]:

�0
T
(z, z′ + z′′) = �0

T
(z, z′) + �0

T
(z, z′′) +

(
2z′ ⋅ z′′

)
det [m0 −m1,m0 −m2, z]. (12)

Indeed, as c = 
 − (
 − c), we obtain (with z = z′ = u + 
w and z′′ = −(
 − c)w):

�0
T
(u + 
w,u + cw) = �0

T
(u + 
w,u + 
w)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

+ �0
T
(u + 
w,−(
 − c)w)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0, see item 1

− 2(
 − c) (u + 
w) ⋅ w
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

≤0 by Lemma 4 (8)

det [m0 −m1,m0 −m2,u + 
w]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0, see item 2

.

1. Let − be the half-space lying below the plane incident to T. Let us set x ∶= u+
w

and y ∶= −(
−c)w. By definition, v0+x ∈ + and v0+y ∈ −. We have to prove

that v0 + x ≤T v0 + y. Let x⋆ be the closest point chosen for update. By definition,

x⋆ ≤T v0 + x, which implies that (− ∩ (T, v0 + x)) ⊆ (− ∩ (T, x⋆)) (see

Lemma 8 in appendix). Due to the above inclusion relation, since v0 + y is not in

the interior of (T, x⋆) [12, Theorem 4], v0+y is not in the interior of (T, v0+x)

either, i.e., v0 + x ≤T v0 + y.

2. For any (�, �) ∈ SL, det [m0 −m1,m0 −m2, �m1 + �m2] = � + � > 0, because

det [m0,m1,m2] = 1 [9, Lemma 3]. Notably, det [m0 −m1,m0 −m2,u + 
w] >

0. □

Lemma 7 shows that the last point should be the closest. However, in the case where

this last point is not in P, we can resort to a binary search as in [9, Algorithm 4].

3.3 Algorithm and Complexity

Fig. 6 sums up the process of filtering the set k. However, we have to discard the points

that are not in P. For this purpose, we use the predicate InPlane in the whole procedure

detailed in Algorithm 2. We set ! ∶= ‖N‖1. The worst-case number of predicate calls

is in O(!) for the H-algorithm, O(! log!) for the R-algorithm [9] and O(!) for the

R1-algorithm [11]. We give below a upper bound for the L-algorithm.

Theorem 1. Algorithm 2 requires O(log!) calls to the predicate InPlane: “is x in P?”.
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10 J.-T. Lu and T. Roussillon and D. Coeurjolly

Input:
u = mk+1,
w = mk+2

u ⋅ w ≥ 0 ?
Add vk + u, vk + w

(Lemma 3)

u ⋅ (u + w) ≤ 0 ?

(u + w) ⋅ w ≤ 0 ?

Compute 
 (Lemma 4)

(u + 
w) ⋅ (u + (
 + 1)w) ≤ 0 ?

Find and add the closest point on from
{u + cw}0≤c≤
+1 (Lemma 7)

Add vk + u, vk + w and vk + u + w

Yes

No

No

No

Yes, exchange
u and w

Yes

Yes, replace
(u,w) ← (w,u + 
w)

No

Fig. 6: Roadmap

Proof. We consider the sequence of vectors (uj ,wj)0≤j≤jmax . For any j ≥ 2, if we rewrite

the equation (11) with only uj−2, uj−1 and uj , we obtain the relation uj = uj−2+
juj−1.

We use the bar notation ⋅ above any vector x to denote its height relative to N. Otherwise

said, x ∶= x ⋅N. Then, we have uj = uj−2 + 
juj−1 ≥ uj−2 + uj−1 (because 
j ≥ 1 and

uj−1 ≥ 0 by recurrence). By induction, we have for all 2 ≤ j ≤ jmax, uj ≥ 2⌊
j

2
⌋(u0+u1),

which leads to jmax ∈ O(log!), because the last point must be in P, i.e., ujmax ≤ !. Note

that there is only one call to the predicate at each rank 2 ≤ j ≤ jmax (and at most four

calls before), hence a total of O(log!) calls at the last rank. It remains to notice that the

final search also requires at most O(log!) calls with an appropriate procedure such as

[9, Algorithm 4]. □

A straightforward corollary is that the total number of predicate calls is in O(! log!)

for the L-algorithm, because there are O(!) steps (see Sec. 2) and O(log!) calls to the

predicate at every step due to the use of Algorithm 2 (Theorem 1).

4 Experimental results

Overall performance. First of all, Fig. 7 compares the number of predicate calls for

different plane-probing algorithms in a simple family of digital planes. The figure also

shows the result of an optimized variant of the L-algorithm, denoted L-opt, that de-

creases the number of calls at each step by some values that are bounded by a con-

stant. The points of the H-neighborhood are included in the L-neighborhood and are

necessarily probed by our method. However, some of the points remain inside the H-

neighborhood after the vertex update. Therefore, instead of probing all of them repeat-

edly at each iteration, one can use a cache so as not to probe twice the same point.

To provide more statistics, we have considered a large collection of implicit digital

planes with normal vectors in a set � with relatively prime components, in the range

(1, 1, 1) to (200, 200, 200) (|�| = 6578833). For all variants of plane-probing algo-

rithms, including our L-algorithm, we compare in Table 1 (left): the number n of steps,

the number  i
call

of calls to the predicate per iteration and the total number of calls
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Algorithm 2: CREATECANDIDATELIST(InPlane, T, q, k)

Input: The predicate InPlane, the triangle T, the point q and an index k ∈ {0, 1, 2}

Output: A list Candk of candidate points around vertex vk
1 Initialize Candk; (m1,m2) ← (q − vk+1,q − vk+2);

2 Add vk +m1 (resp. vk +m2) to Candk if InPlane(vk +m1) (resp. InPlane(vk +m2));

3 if InPlane(vk +m1) and InPlane(vk +m2) then

4 (u,w) ← (m1,m2);

5 while u ⋅ w < 0 do

6 if u ⋅ (u + w) ≤ 0 or w ⋅ (u + w) ≤ 0 then

7 if u ⋅ (u + w) ≤ 0 then

8 (u,w) ← (w, u);

9 Compute 
 =
⌊
−u⋅w

‖w‖2
⌋

;

10 if (u + 
w) ⋅ (u + (
 + 1)w) < 0) then

11 if InPlane(u + 
w) then

12 Add vk + u + 
w to Candk;

13 (u,w) ← (w, u + 
w);

14 else

15 Find a closest point x⋆ ∈ {vk + u + cw}0≤c≤
+1 such that

InPlane(x⋆) and add it to Candk; break;

16 else

17 Find a closest point x⋆ ∈ {vk + u + cw}0≤c≤
−1 such that InPlane(x⋆)

and add it to Candk; break;

18 else

19 Add vk + u + w to Candk if InPlane(vk + u + w); break;

20 return Candk;

∑n−1
i=0  i

call
. The results are obtained from a C++ implementation using the DGtal Li-

brary [13]. The numbers do not perfectly match with the table shown in [11] due to

different implementation choices (e.g., the ordering in case of co-spherical points).

In average, the L-algorithm requires a fewer number of steps to obtain the exact

normal vector of the plane. We also remark that it usually examines fewer points at each

step than the R-algorithm. However, it does not beat the R1-algorithm, the optimized

version of R-algorithm, in terms of the number of calls to the predicate.

Locality. We wish to estimate the proximity of the probes to the initial vertex during the

iterations. We define the max distanceDistmax of the last triangleT(n) asmaxk{‖m(n)

k
‖}.

Since the last triangle obtained by the L-algorithm has only acute or right angles [12,

Corollary 1], one can derive the following upper bound (see the last section of [12]):

‖Distmax‖ ≤

√
2

3
‖N‖2

2
+

2√
3
‖N‖2 + 1

‖N‖2
2

. (13)
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12 J.-T. Lu and T. Roussillon and D. Coeurjolly

Fig. 7: Number of calls to predicate per iteration for N ∈ {(3, 19, r), 1 ≤ r ≤ 500}.

n  i
call

∑n−1

i=0
 i

call

alg. avg. avg. max. avg.

H 25.3756 6.00 6 152.25

R 19.2534 17.73 25 271.31

R1 19.2534 9.77 15 131.23

L 19.2529 12.03 21 144.85

N s.t. CN > 0 CN

alg. tot. tot. avg.

H 247457 75235972 471.46

R 90 424 2.44

R1 - - -

L 0 0 0

Table 1: Statistics of plane-probing algorithms (on planes whose normal is in � on the

left or lying between (1, 1, 1) and (80, 80, 80) on the right).  i
call

denotes the number

of calls to predicate at a step i and n is the number of steps. CN denotes the number of

points lying both in P and in T(i),T(i+1) , the closed ball that passes through the vertices

of two consecutive triangles.

In Fig. 8, we measure the max distance of the last triangle computed by the L-algorithm

for all normals whose l2-norm is less than 200 and compare them with the above theoret-

ical bound. Both the theoretical bound and the bound given by experiments shows that

the max distance is linear with respect to ‖N‖2 and the thickness of the digital plane.

Compactness. For all i ∈ {0,⋯ , n − 1}, let T(i),T(i+1) be the closed ball that passes

through the vertices of two consecutive triangles. We tested for all normals in the set � ,

that for the L-algorithm the sequence of radii of
{
T(i),T(i+1)

}
0≤i≤n−1

is non-decreasing.

This is not the case for H-algorithm nor R-algorithm. An example is shown in the Fig. 10.

We also count the number of points in P and strictly inside the balls
{
T(i),T(i+1)

}
0≤i≤n−1

for all normals of coprime coordinates between (1, 1, 1) and (80, 80, 80) (See Table 1,

right). No points are found in any balls for the L-algorithm while 75235972 points are

found for H-algorithm and 424 points for R-algorithm.
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A New Lattice-based Plane-probing Algorithm 13

Fig. 8: The relation between maximum distance and the l2-norm of normal vectors. Each

green dot corresponds to the output of the L-algorithm for a given normal vector in � .

The theoretical upper bound is in blue.

In particular, we observe for all vectors in � that the steps of L-algorithm are in-

cluded in the ones of R-algorithm. This implies that L-algorithm always needs fewer

steps than the R-algorithm. For example, for the plane of normal vector N = (2, 5, 6)

(see Fig. 9), the L-algorithm uses 40 steps while the R-algorithm uses 50 steps to find

the exact normal vector. In Fig. 10, we also observe that the curves of L-algorithm stop

earlier than other plane-probing algorithms.

5 Conclusion

In this paper, we present a new plane-probing algorithm, called L-algorithm, that takes

into account more candidate points at each step than its predecessors. We also observe

that the L-algorithm requires fewer steps than the R-algorithm and H-algorithm. In con-

trary, at each step, it needs to examine more candidate points to find the closest point in

its neighborhood. Despite this downside, the point selected by the L-algorithm provides

more interesting compactness features at every step. The circumspheres of consecutive

triangles has non-decreasing radii and do not include any point in the plane. In other

words, the L-algorithm creates a local 3D delaunay triangulation of the digital plane.

We also proposed an optimization of the plane-probing algorithm to reduce the number

of predicate calls. This improvement could be extended to the cases where we probe on

a digital surface.
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(b)

Fig. 9: The evolution of the algorithm R(a) and L(b) for the normal vector (2, 5, 156).
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Fig. 10: Various measures for N = (198, 195, 193) per iteration during probings with

the H , the R1 and our L-algorithm: (from left to right) radius of T(i),T(i+1) , maximal

distance to q, and perimeters of the triangles.

In the future, we wish to bound from above the distance of all vertices to the starting

point in order to objectively measure the localness of plane-probing algorithms. An-

other perspective is to further optimize the L-algorithm to reduce its complexity to an

amortized linear complexity.
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A Inclusion relation in − used in Lemma 7

Lemma 8. If y ≤T x, then ((T, x) ∩−) ⊆ ((T, y) ∩−).

Proof. For any pair x, y ∈ −, we denote y ⪯T x if and only if ((T, y) ∩ −) ⊆

((T, x) ∩ −). As for ≤T, note that ⪯T is a total preorder. Let us consider now two

points x′ ∈ ()(T, x) ∩−) and y′ ∈ ()(T, y) ∩−) (both points lie on the boundary

of either (T, x) and (T, y) in −). Note that, by construction, (T, y′) = (T, y) and

(T, x′) = (T, x).

Since the relation ⪯T is total, we have either y′ ⪯T x′ or x′ ⪯T y′. As the second

case implies the remark statement by definition, we focus below on the first case. By
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definition, y′ ⪯T x′ implies ((T, y)∩−) ⊆ ((T, x)∩−). Since we assume y ≤T x,

we also have ((T, y) ∩ +) ⊆ ((T, x) ∩ +) by definition. If we take the union of

both sides of the inclusion, we have (T, y) ⊆ (T, x). If (T, y) = (T, x), the overall

remark statement is trivially true. If (T, y) ⊂ (T, x), we have a contradiction as both

balls are constructed from the same triangle T. □
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