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Abstract. Digital objects and digital surfaces are isothetic structures
per se. Such surfaces are thus not adapted to direct visualization with
isothetic quads, or to many geometry processing methods. We propose
a new regularization technique to construct a piecewise smooth quad-
rangulated surface from a digital surface. More formally we propose a
variational formulation which efficiently regularizes digital surface ver-
tices while complying with a prescribed, eventually anisotropic, input
normal vector field estimated on the digital structure. Beside visualiza-
tion purposes, such regularized surface can then be used in any geometry
processing tasks which operates on triangular or quadrangular meshes
(e.g. compression, texturing, anisotropic smoothing, feature extraction).

1 Introduction

Objective. This paper addresses the problem of approximating the boundary
of an object given as a 3d binary image (see Fig. 4 top for an example). Such
input data is called a 3d digital object and its surface is called a digital surface.
They arise as digitizations of continuous objects and segmentation of 3d images.
Compared to gray-level volumetric images, such binary image model is much
more complex to handle: the function takes only two values, it is not continuous
and of course has no gradient, it is known only at regularly sampled places.
For this data, direct use of former methods gives triangulated meshes with poor
geometry (staircasing effects, few possible orientations).

Contribution. We propose an original method to construct a piecewise smooth
approximation of the boundary of a digital object. It follows a convex variational
principle that regularizes the digital surface according to three criteria: First, it
must stay close to the input data; second, it should comply to a well-chosen
normal vector field u; third, its cells must be as regular as possible. Our method
is not iterative and provides excellent piecewise smooth reconstructions when
the normal vector field u is a good approximation of the normal vector field of
the original continuous object. This is why we use recent digital normal vector
estimators which offer multigrid convergence guarantees [5, 9] and may also de-
tect normal discontinuities [4]. By this way, we are able to take into account
the discrete and arithmetic nature of digital objects while using the powerful
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framework of convex optimization. Experiments show that the output surface is
aligned with the prescribed normal vector field and is closer to the underlying
continuous object than was the input digitized surface. Sharp features are nicely
delineated and the quality of mesh faces is very good.

Related works. First of all, the numerous methods that extract isosurfaces from
a volume image or function provide poor results with such input data, since
they rely on the exact value of the image / function to determine the position of
vertices. This includes marching cubes, dual marching cubes and the many vari-
ants designed to reconstruct meshes from implicit surfaces [12, 14, 13]. Standard
mesh denoising methods could also be considered for removing staircasing effects
of digital surfaces [8, 15–17]. However, they tend either to consider all steps as
features or to smooth everything out. Very few approaches take into account the
peculiar nature of digital data. In 2d, we may quote early works for digital con-
tour polygonalization, which use digital straightness properties to align digital
points onto their estimated tangent line [2]. In 3d, reversible polyhedrization of
digital surfaces can be achieved with greedy digital plane segmentation followed
by Marching-Cubes sewing [3]. Although they are theoretically reversible, none
of these techniques achieve similar visual quality compared to our proposal (see
Figure 3) . Note that we experimentally show that our regularized surface is also
very close to the original digital one.

Outline. Section 2 gives the necessary notions and notations of digital geometry
used throughout the paper. Section 3 presents the variational formulation of
our digital surface regularization method. The convex optimization algorithm is
described in Section 4. Experiments illustrating the qualities of the method are
given in Section 5, as well as a quantitative asymptotic analysis of the surface
reconstruction. Limitations and possible extensions of this method are discussed
in Section 6.

2 Preliminaries

A 3d binary image is simply a function from Z
3 toward {0, 1}. The set Z ⊂ Z

3

of digital points where the function is not null represents the digital object.
It is naturally embedded in R

3 as the union of unit cubes centered on these
digital points. Its topological boundary is called its digital boundary, and is a
special case of digital surface. Since a digital surface is a set of unit squares sewn
together, it has a cellular representation in cartesian cubical grid as a set E

0 of
0−cells (vertices), a set E

1 of 1−cells (edges), and a set E
2 of 2−cells (square

faces). We do not detail the topological combinatorial structure, à-la Alexandrov,
associated with subsets of the Cartesian cubic grid (and more specifically digital
surfaces). Interested readers may refer to [10]. We just assume in the following
that (E0,E1,E2) defines a proper combinatorial 2-manifold without boundaries.

Our objective is to reconstruct a piecewise smooth surface from a digital
boundary. Therefore we have in mind that the digital shape comes from some
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digitization or sampling of a continuous shape X, and our objective is to infer the
original shape boundary ∂X with solely its digitization as input. The multigrid

convergence framework is thus well adapted to evaluate objectively the qualities
of our method (e.g. see [10, 11]). For some continuous shape X ⊂ R

3 and a
digitization process parameterized by a sampling grid step h, we will evaluate
if our regularized surface ∂∗

hX (in red in Figure 1) is closer to the continuous
surface ∂X than the digitized boundary ∂hX (in orange). And of course, we
wish that the finer is the resolution (h → 0) the better is the approximation.
Classical notations are recalled in Figure 1. It is already known that, for the
Gauss digitization (denoted Gh(X) in Figure 1), the digitized boundary ∂hX of
a compact subset X of Rd with positive reach is Hausdorff close to ∂X, with a
distance no greater than

√
dh/2 [11]. Hence our regularized surface ∂∗

hX should
also be Hausdorff close to ∂X. In Section 5, we show that this is indeed the case,

and with a better constant than
√
3
2 h.

h

X ∂X Gh(X)

E
1

E
0 ξ(·)

h

p∗ (p∗ − p)

Fig. 1. Illustration of the digitization models and notations in dimension 2. ξ(y) maps
y ∈ R

2 \MA(X) to the closest point on ∂X (MA(X) being the medial axis of X).

Furthermore, the normals of the regularized surface ∂∗
hX should also tend to-

ward the normal of the original continuous surface ∂X. We achieve this property
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by adding as input to our regularization process a normal vector field associated
to faces of the input digital surface. By choosing normal estimates given by some
multigrid convergent normal estimator (like [5, 9]), our variational formulation
makes the normals of the regularized surface ∂∗

hX align with the normals of ∂X.

3 Variational formulation

Our variational model will simply move the vertices E0 of the input digital surface
in order to regularize it. Although the cellular topology of the digital surface is
used in the process, the output regularized surface has the same cellular topology
as the input digital surface.

In the following, we denote p := {pi} the canonical coordinates in R
3 of the

0−cells {σ0
i } in the embedding Euclidean space. Similarly we introduce p∗ :=

{p∗
i } ∈ R

3 the set of regularized points coordinates in R
3 associated with each

0−cell. Furthermore, we denote by u := {uk} the input discrete normal vector
field associated with the faces of the cubical complex (vector uk is the estimated
normal of the cell σ2

k). In the following sections, we provide more details about
the structure of these sets allowing us to define a reliable and efficient calculus
on the digital surface. We also consider S as the embedded quadrangulated
surface associated with the cubical complex (with vertices p, edges induced by
E
1 and faces by E

2). We denote by S∗ the quadrangulated surface with the same
structure as S with vertices p∗. Please note that once vertices are regularized,
the quads of S∗ may not be planar anymore. The surface S is, by definition,
∂hX if we are considering the digitization of a shape X. The surface S∗ then
corresponds to ∂∗

hX in this case.
Before formally defining p∗, let us consider a given point set p̂ ⊂ R

3 and
its associated quadrangulation Ŝ. We evaluate the energy associated with this
point set. First, we want p̂ to be close to p (data attachment). Then, we want the
discrete normal vector field associated with p̂ to comply with the input vector
field u. Since quads associated with Ŝ may not be planar, we place this constraint
onto the edges of each quad: we want each edge dp̂j (where dp̂j := p̂j0 − p̂j1

with ∂σ1
j = {σ0

j0
, σ0

j1
}, σ0

j0
being the tip of edge σ1

j and σ0
j1

being the origin of

edge σ1
j )

3 to be as orthogonal as possible to each neighboring face normal vector
uk (normal vector alignment). Those constraints are handled by the first and
second terms of the following energy function :

E(p̂) := α ‖p̂− p‖2
︸ ︷︷ ︸

Edata(p̂)

+ β ‖dp̂ · u‖2
︸ ︷︷ ︸

Ealign(p̂)

+ γ ‖p̂− b̂‖2
︸ ︷︷ ︸

Efairness(p̂)

. (1)

where b̂i holds the coordinates of the barycenter of the neighboring vertices of
pi. The last term (fairness) ensures that vertices of Ŝ are well distributed along
the surface: it moves the points onto their tangent planes so that the sampling is

3 For readers familiar with Discrete Exterior Calculus (DEC), d is similar to an exte-
rior derivative operator on (triplets of) primal 0−forms of the cubical complex.
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as regular as possible. In sections 3.1, 3.2 and 3.3, we detail the norms involved
in each term of this functional.

From this formulation, we define the optimal regularized coordinates p∗ as

p∗ := argmin
p̂

E(p̂) . (2)

We detail now each energy term in a discrete calculus setting, which allows
an efficient minimization of (2) (see Section 4).

3.1 Data attachment term

Since p contains point coordinates, it can be interpreted as a triplet of maps px,
py and pz from E

0 to R containing the vertex coordinates in embedding space.
Thanks to a numbering of cells in E

0, we use a vector representation of p as a
single column vector concatenating vectors associated with px, py and pz. In
other words p = [pT

x ,p
T
y ,p

T
z ]

T . Data attachement term keeps p∗ close to p and
guarantees the convexity of the problem. It is defined as follows:

Edata(p̂) := ‖p̂− p‖2 . (3)

The norm in (3) is the norm of discrete E
0 7→ R

3 maps and is defined from
the scalar products between discrete E

0 7→ R maps 〈•, •〉0:

‖p̂− p‖2 = ‖a‖2 = 〈ax,ax〉0 + 〈ay,ay〉0 + 〈az,az〉0 . (4)

To shorten notation in the previous equation, a is the difference map (p̂− p).
One can simply consider classical Euclidean scalar products between vectors

in R
|E0| to define (4). In Section 3.4, we propose an alternative definition which

is more consistent with discrete calculus on combinatorial structures.

3.2 Normal vector alignment term

The second term is the most complex one and tends to orthogonalize the direc-
tion of each edge with adjacent face normal vectors:

Ealign(p̂) := ‖dp̂ · u‖2 . (5)

First let us look at dp̂ : E1 7→ R
3 (see definition in Section 3). There exists

a linear operator D : (E0 7→ R
3) 7→ (E1 7→ R

3) such that

dp̂ = Dp̂ . (6)

Thanks to the linearization of p̂ as a 3|E0| vector, such linear operator can be
represented as a 3|E1|×3|E0| matrix. dp̂ ·u : E2 7→ R

4 holds the scalar products
for each edge adjacent to all faces in embedding space:

(dp̂ · u)k = (dp̂k0
· uk,dp̂k1

· uk,dp̂k2
· uk,dp̂k3

· uk) (7)
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where ∂σ2
k = {σ1

k0
, σ1

k1
, σ1

k2
, σ1

k3
} (always four edges in face border).

Furthermore, there exists a linear operator U : (E1 7→ R
3) 7→ (E2 7→ R

4)
such that :

dp̂ · u = UDp̂ . (8)

Again, such operator can be represented as a 4|E2|×3|E1| matrix in our discrete
calculus.

The norm in (5) is the norm of discrete E
2 7→ R

4 maps and is defined from
the scalar products between discrete E

2 7→ R maps 〈•, •〉2 :

‖dp̂ · u‖2 = ‖b‖2 = 〈bk0
,bk0

〉2 + 〈bk1
,bk1

〉2 + 〈bk2
,bk2

〉2 + 〈bk3
,bk3

〉2 . (9)

In the previous equation, b is a shorthand for dp̂ ·u. Finally, the alignment term
is thus simply expressed as

Ealign(p̂) = ‖UDp̂‖2 . (10)

3.3 Fairness term

The last term is the fairness term which tends to flatten the regularized complex
and to distribute the vertex positions with tangential displacements (see Figure
2):

Efairness(p̂) := ‖p̂− b̂‖2 . (11)

The norm is the same as in (3) and relies on the same scalar product 〈•, •〉0.
b̂i is the barycenter of neighboring vertices to pi. More formally4 :

b̂i :=
1

| link(σ0
i )|

∑

σ0

j
∈link(σ0

i
)

p̂j . (12)

This defines B : (E0 7→ R
3) 7→ (E0 7→ R

3) a linear operator from and to

E
0 7→ R

3 (3|E0| × 3|E0| matrix) allowing us to write b̂, expressed as a linearized
column vector of positions, as the matrix-vector multiplication,

b̂ := Bp̂ . (13)

Note that matrix B is sparse which leads to efficient factorization (see Section 4).
The fairness term reduces to

Efairness(p̂) = ‖(I−B)p̂‖2 , (14)

where I is the identity operator (identity matrix 3|E0| × 3|E0|).
4 link(σ0

i ) is the link operator on cubical complexes. As a consequence, 0−cells in this
set are connected to σ0

i by a 1−cell in the complex.
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Fig. 2. Impact of the Efairness term on the regularized quadrangulation (without on the
left, with on the right).

3.4 Scalar products

In previous definitions, scalar products 〈•, •〉0 and 〈•, •〉2 must be specified.
More precisely, we need to specify the metric tensor (definite positive, therefore
symmetric matrix) W0 (resp. W2) associated with maps x, y : E

0 7→ R (resp.
maps u,v : E2 7→ R):

〈x,y〉0 := xT W0 y , (15)

〈u,v〉2 := uT W2 v . (16)

A simple choice consists in considering identity matrices for W0 and W2. How-
ever, specific weights can be set if embedding priors of the digital surface are
known (see [6] for a complete discussion and Section 6).

Since we consider triplets or quadruple of respectively 0− and 2−forms in
previous formulations (due to the linearization of positions into a single vector
and the linearization of the four dot products associated with each face edges), we

need to extend scalar products of vector is R|E0| to vectors in R
3|E0|(respectively

to vectors in R
4|E2|). We simply define

W̄0 :=





W0 0 0
0 W0 0
0 0 W0



 ,W̄2 :=







W2 0 0 0
0 W2 0 0
0 0 W2 0
0 0 0 W2






. (17)

4 Energy minimization

Since (1) is convex, we can compute p∗ as the unique solution to

∇p̂E(p∗) = α ∇p̂Edata(p
∗) + β ∇p̂Ealign(p

∗) + γ ∇p̂Efairness(p
∗) = 0 . (18)
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From (3), (10) and (14) gradients of each energy term can be expressed as follows:

∇p̂Edata(p̂) = 2W̄0(p̂− p) , (19)

∇p̂Ealign(p̂) = 2DT UT W̄2 UDp̂ , (20)

∇p̂Efairness(p̂) = 2(I−B)TW̄0(I−B)p̂ . (21)

Weighting up all these gradients in Eq. (18) leads to the following linear
system in p∗:

Rp∗ = αW̄0p , (22)

with
R :=

(

αW̄0 + βDT UT W̄2 UD+γ(I−B)TW̄0(I−B)
)

. (23)

As long as weights are strictly positive, the operator R is a 3|E0|×3|E0| matrix,
which is symmetric definite-positive (see Appendix A). The linear system (22) is
thus efficiently solved using classical linear algebra solvers [7]. In our experiments,
we have used the following rules to balance the energy terms:

β = 1, 0 < α � γ � β .

We choose parameters with different order of magnitudes to sequence the effect
of the minimization of the three energy terms of Eq.(23). First, we wish to build
a smooth surface leading to the highest value for β, the alignment term. Second,
the α energy term is necessary to achieve uniqueness of the optimization problem.
Its lowest order of magnitude ensures that the result is very close to the set of
solutions of the alignment term alone. Finally, the user has freedom for the γ
energy term, depending on the desired regularity of the output quadrangulation
(see Fig. 2).

5 Experiments

In this section, we evaluate the quality of the regularization. We have considered
two different normal vector fields as input: the first one is given by Integral
Invariant approaches [5] and is known to be multigrid convergent. The second
correspond to a piecewise smooth reconstruction of the normal vector field using
[4]. This approach performs a normal vector field regularization while detecting
and preserving sharp features. The discrete operators have been implemented
using the DGtal DEC package [1] with Eigen backend for the linear algebra
solver [7].

In Figure 4 we first illustrate the overall regularization on a Standford-bunny
object using an Integral Invariant based normal vector field. In Figure 5, we show
that using an anisotropic, piecewise smooth normal vector field from [4], the
regularized surface is able to capture sharp features. In Figure 6, we demonstrate
the robustness of the regularization in presence of noise. Note that beside the
fact that the input normal vector field is robust for the alignment term, the
fairness term allows us to obtain a smooth quadrangulation even in this case.
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Fig. 3. Regularization example on a digital sphere (r = 10). From left to right the
original Marching-Cubes surface, the simplified one using [3] and our regularization.

Fig. 4. Regularization example on a 1283 Stanford-bunny. From left to right, input
digital surface and regularized surface using the input normal vector field from [5]
(r = 6).

If not specified, α = 10−3, β = 1 and γ = 10−2 values have been used in these
tests.

We also evaluate the asymptotic behavior of the regularization operator. As
discussed in Section 2, we know that the Hausdorff distance between S and ∂X
for some smooth shape X is in O(h). We experimentally observe that S∗ has the
same asymptotic behavior and is even closer to the original surface than S. We
have considered asymptotic plane and sphere objects in Figure 7 for various h
(abscissa) tending to zero. In the first row, we show that the normal vector field
u∗ of the regularized surface S∗ seems to converge to the input field u as h tends
to zero5. The second row shows the proximity of p (i.e. the vertices of S = ∂hX)
to ∂X (Theorem 1 of [11]). The O(h) convergence speed is thus experimentally
confirmed. In the third row, we evaluate the distance between p∗ (the vertices of
S∗) and its closest point on ∂X. We also observe an experimental convergence
speed in O(h). Finally, the last row compares the two approximations. In this
case, we see that p∗ is experimentally closer to ∂X than p.

5 Since quads of S∗ are not coplanar anymore, each vector of u∗ is defined by averaging
the two normal vectors of the quad triangles.
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Fig. 5. Isotropic vs anistropic normal vector field as input data. From left to right: the
original object, the regularization with Integral Invariant based normal vector field [5]
(r = 4), the regularization after a piecewise smoothing of the same normal vector field
using [4] (ε = [2, 0.25], λ = 0.03, α = 0.006 and the Integral Invariant normal vector
field with r = 4).

Fig. 6. Regularization examples without (left) or with noise (right) (Octaflower, 2563).
A highly specular surface has been used to highlight the smoothness of the reconstruc-
tion (normal vectors are given by the face geometry). The input normal vector field is
given by [4].
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Fig. 7. Convergence results for plane and sphere with α = 10−5h2, β = 1, γ = 0. Errors
(y−axis) are given for both the L2 and L∞ norms. The grid resolution h (in abscissa)
in the range [6 · 10−3, 0.2]. As h tends to zero, convergence graphs must be read from
right to left.
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6 Conclusion and future works

In this article, we have proposed a variational approach to regularize a digital
surface. The regularized surface is consistent with respect to an input normal
vector field, and has a smooth embedding. If the input normal vector field is
piecewise smooth (i.e. with singularities), the regularization preserves these fea-
tures. Finally, we have experimentally demonstrated that the regularized vertices
are closer to the underlying continuous object than the Gauss digitization in a
multigrid convergent framework.

Future works are twofold: First, similarly to Theorem 1 of [11], a formal
proximity result is needed between p̂ and ∂X. At this point, we have been
able to derived a formal proof for an L2 proximity in O(h) (average error).
Further developments are required to obtain a L∞ proximity in O(h) (worst-
case). Secondly, we would like to exploit the regularity and smoothness of the
regularized surface in various geometry processing problems. Last, we would like
to study the influence of metrics W̄0 and W̄2 in the quality of reconstruction.
For now we have only used identity matrices, but we believe that metrics based
on estimated local areas would improve results.

A Details on operator R

The R operator defined in (23) is a sum of three symmetric matrices,

αW̄0 + βDT UT W̄2 UD+γ(I−B)TW̄0(I−B) . (24)

The first one is a positive definite matrix since it stands for a scalar prod-
uct. From (5) and (11), one can clearly see that Ealign ≥ 0 and Efairness ≥
0 as they are calculated as the sum of positive or null terms. Noting that
Ealign(p̂) = p̂T DT UT W̄2 UDp̂ and Efairness(p̂) = p̂T (I−B)TW̄0(I−B)p̂,
the second and third matrices are therefore positive semi-definite. Therefore we
have ∀x ∈ R

3|E0| \ {0}:

xT
(
αW̄0

)
x > 0 , (25)

xT
(

βDT UT W̄2 UD
)

x ≥ 0 , (26)

xT
(
γ(I−B)TW̄0(I−B)

)
x ≥ 0 . (27)

Assuming α > 0, β > 0 and γ > 0, we have xT Rx > 0 and R is positive
definite. R is thus invertible and efficient inversion algorithms exist (e.g. using
LDLT Cholesky factorization [7]).
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