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(a) 2-d discrepancy of consecutive pairs of dimensions. (b) 4-d discrepancy of consecutive quads of dimensions.

Figure 1: We show discrepancy curves for all consecutive pairs (a) and quadruplets (b) of the �rst 48 dimensions of our sampler

vs Sobol’. Our sampler exhibits lower discrepancy for these dimensions. While we used transparency to show superimposed

curves, our discrepancy curves in 2-d show almost exactly the same low-discrepancy behavior, guaranteed by our (0, 2)-sequence

and progressive properties, resulting in an apparent single line.

ABSTRACT

The convergence of Monte Carlo integration is given by the unifor-

mity of samples as well as the regularity of the integrand. Despite

much e�ort dedicated to producing excellent, extremely uniform,

sampling patterns, the Sobol’ sampler remains unchallenged in

production rendering systems. This is not only due to its reason-

able quality, but also because it allows for integration in (almost)

arbitrary dimension, with arbitrary sample count, while actually

producing sequences thus allowing for progressive rendering, with

fast sample generation and small memory footprint. We improve

over Sobol’ sequences in terms of sample uniformity in consecutive

2-d and 4-d projections, while providing similar practical bene�ts –

sequences, high dimensionality, speed and compactness. We base

our contribution on a base-3 Sobol’ construction, involving a search

over irreducible polynomials and generator matrices, that produce

(1, 4)-sequences or (2,4)-sequences in all consecutive quadruplets
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of dimensions, and (0, 2)-sequence in all consecutive pairs of di-

mensions. We provide these polynomials and matrices that may

be used as a replacement of Joe & Kuo’s widely used ones, with

computational overhead, for moderate-dimensional problems.
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1 INTRODUCTION

Integrating functions is at the core of many computer graphics –

and other – systems. Perhaps the most common example in our
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community is the case of physically-based rendering, that involves

integrating the rendering equation. This is most often performed

through Monte Carlo integration, involving the evaluation of the

integrand at random locations, or quasi-Monte Carlo integration,

evaluating the integrand for pseudo-random well-located samples.

Quasi-Monte Carlo integration bene�ts from Koksma-Hlawka’s

inequality: the convergence rate of the Monte Carlo integration

estimator improves with the integrand regularity, and with samples

uniformity. While the regularity of the integrand itself can be some-

what controlled via other variance reduction techniques, we focus

on samples uniformity that does not require knowledge of the inte-

grand. Over the years, much work has been devoted to producing

extremely uniform samples that e�ectively improve Monte Carlo

convergence rate, e.g., by optimizing samples according to various

criteria. Still, Sobol’ sequences with Joe and Kuo initialization ta-

bles [Joe and Kuo 2008; Sobol’ 1967] and Owen scrambling [Owen

1995] remain used in many production rendering systems and sim-

ulators, despite suboptimal sample uniformity. This is due to many

other advantages o�ered by this approach that are often overlooked

by other researchers. First, Sobol’s method produces a sequence of

arbitrary length: this allows for progressively re�ning a rendering

by adding samples while maintaining good Monte Carlo conver-

gence. In many cases, competing methods only o�er point sets that

do not allow for progressive rendering, or provide sequences only

up to a �nite predetermined number of samples. Second, it works

in (almost) arbitrary dimensions while many approaches remain

low-dimensional or even 2-d. Third, samples are fast to generate,

with a compact representation (a small binary matrix per dimension

and low-order polynomial binary coe�cients), while many other

approaches require complex optimizations or storing the precom-

puted points themselves. Nevertheless, other production renderers

may only use the �rst few dimensions of Sobol’ sequences due to

their “increasingly poor distributions in pairs of higher dimensions”

(regarding Renderman [Christensen et al. 2018]).

Based on this observation, we seek a way to improve Sobol’

samples uniformity on consecutive 2-d and 4-d projections while

preserving their advantages. Sobol’ samples uniformity is guaran-

teed in part by construction, but also via appropriate parameter

search. We leverage both aspects. First, we bene�t from the addi-

tional degrees of freedom o�ered by a construction in base 3 rather

than base 2 [Paulin et al. 2022]. Second, we bene�t from other de-

grees of freedom o�ered by a search over irreducible polynomials

instead of primitive polynomials [Faure and Lemieux 2016]. The

relatively small number of irreducible polynomials still allows us

for a comprehensive search, and allows us for �nding solutions

that provide the following desirable properties, that will be detailed

in this paper. We show one quadruplet of dimensions (or quad

hereafter, for short) that is a (1, 4)-sequence with (0, 2)-sequences

pairwise projections, proven by construction. This provides ideal

uniformity as measured in terms of discrepancy. We provide 11

additional quads of dimensions with the similar properties but only

numerically veri�ed up to nearly 59k samples. All quads we present

are compatible: their dimensions do not overlap, and we use them

together to form higher-dimensional sequences that posess (t, s)-

sequence properties guaranteed by the Sobol’ construction, in up

to 48 dimensions. We show that the discrepancy of our sequence

is improved over Sobol’ on these consecutive projections. In ex-

change, a base-3 construction prevents the use of fast xor-based

binary arithmetic, and can incur minor additional costs.

2 RELATED WORK

In its simplest form, quasi-Monte Carlo integration consists in

numerically estimating an integral as

� =

∫

[0,1]B
5 (G)3G ≈

1

=

=
∑

8=1

5 (G8 ) = �̃ ,

with points- = {G8 }8=1..= uniformly spread over the unit B-dimensional

cube. In this form, the error is bounded by Koksma-Hlavka’s theo-

rem:

|� − �̃ | ≤ +5 �
∗ (- ) ,

where +5 is Hardy and Krause’s variation of 5 measuring its regu-

larity, and �∗ (- ) is the star discrepancy of point set - measuring

its uniformity.

Much work has been devoted to improving the uniformity of

generated point sets for improving the integration error.

Point sets. Point sets have been numerically optimized speci�-

cally for improving uniformity. Optimal transport has been used

as a measure of uniformity to minimize [De Goes et al. 2012] but

this has remained limited to 2 or 3-dimensions. A sliced optimal

transport variant allows to reach about 20 dimensions [Paulin et al.

2020; Salaün et al. 2022]. By instead optimizing the variance of

the function obtained by summing Gaussians centered at each

sample, Ahmed et al. [Ahmed et al. 2022] reach excellent unifor-

mity, demonstrated up to 8 dimensions. Closer to our work, the

cascaded construction of Paulin et al. [2021] based on alternating

Sobol’ process with bit reversal, guarantees a perfect uniformity

of the point set for projections onto consecutive pairs of dimen-

sions in terms of discrepancy. The discrepancy of the �rst nested

100 dimensions is numerically optimized, although this does not

guarantee a low discrepancy behavior (see next for a discussion on

low-discrepancy sequences). All these approaches o�er excellent

uniformity, which translates into excellent numerical integration

convergence, through Koksma-Hlavka’s theorem but also other

theorems bounding integration error with di�erent kinds of discrep-

ancy measures [Harman 2010], optimal transport metric [Paulin

et al. 2020], or Fourier spectra behavior [Pilleboue et al. 2015]. Their

main drawback is that they do not allow for progressive evaluation

of the integral: once a numerical estimate has been obtained using

a set of samples, re�ning this computation to improve its accuracy

is not directly possible. This requires throwing away the previous

result and producing a new completely di�erent point set with more

samples. Recently, Ahmed et al. [2023] introduced a method that

allows converting certain point sets to sequences up to a �nite

predetermined number of samples. It is unfortunately limited to

two dimensions, and using this process independently on di�erent

pairs of dimensions would deteriorate high-dimensional uniformity

(as illustrated in Sec. 5 with ZeroTwo and Padded samplers). It is

therefore not the solution we are looking for in higher dimensions.

Low-discrepancy sequences (LDS). Matrix-based constructions

allow to produce sequences of points using �nite �eld arithmetic.

Among others, the Sobol’ sequence [Sobol’ 1967] has been most
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widely used. It produces points via modulo 2 matrix-vector multi-

plications, where the per-dimension binary triangular matrix is in

part determined as a preprocess by optimizing generators (the �rst

4 × 4 upper left part of these matrices, where typically 4 ∈ [1, 18]

depending on the dimension) and the rest of each matrix is ob-

tained using a recursion involving a linear combination of previous

columns weighted by the coe�cients of a well-chosen primitive

polynomial. While all these generators and primitive polynomials

were carefully optimized, the obtained uniformity has remained

limited (see Fig. 1 and 4) due to several constraints: the base 2 con-

struction o�ers limited degrees of freedom and the set of primitive

polynomials is small. However, they satisfy the important prop-

erty of (C, B)-sequences, described hereafter. A point set of = = 1<

samples within the B-dimensional unit hypercube, where 1 is some

base (1 = 2 for Sobol), is said to be a (C,<, B)-net if all subintervals

of volume 1C/= of the form Π
B
9=1 [0 91

−3 9 , (0 9 + 1)1−3 9 ] for all 9

contain 1C samples, with 0 ≤ 0 9 < 13 9 , and 0 9 , 3 9 ∈ N0. Intuitively,

C = 0 enforces high uniformity since it requires many small in-

tervals each to contain a single point, while larger C values only

enforce larger intervals to contain more points. A (C, B)-sequence is

a sequence that enforces the (C,<, B)-net property for all possible

values of<.

An advantage of (C, B)-sequence is that their discrepancy —and

hence integration error— is bounded as a function of C [Niederreiter

1992] as:

#�∗
= (- ) ≤ 1C

B−1
∑

8=0

(

B − 1

8

) (

< − C

8

) ⌊

1

2

⌋

, (1)

in base 1 ≥ 3 (a case of interest for our work ; bounds of similar

forms exist for 1 = 2 [Niederreiter 1992]). It is thus of crucial

importance to try and reduce the value of C in low-discrepancy

sequences since this bound scales as 1C .

In MatBuilder [Paulin et al. 2022], an integer linear program is

designed to satisfy various user constraints on generative matrices.

Contrary to Sobol’, these matrices are directly optimized, without

resorting to polynomials, and they show that base-3 constructions

o�er signi�cantly improved results due to the largely increased

degrees of freedom. We take inspiration from this work to optimize

Sobol’ generators in base 1 = 3. However, for a set of< ×< op-

timized matrices, properties are only enforced up to 1< samples.

They hence cannot strictly produce “sequences” (where proper-

ties ought to hold for an arbitrary number of added points). We

call these samplers “progressive” as in Ahmed et al. [2023]. In the

work of Faure and Lemieux [2016], a Sobol’ construction based on

irreducible polynomials instead of primitive polynomials is used

for higher degrees of freedom. This construction has subsequently

been used to numerically optimize generators in base 2 [Faure and

Lemieux 2019]1. We also bene�t from their result, seeking solutions

for a subset of irreducible polynomials.

Other constructions have been proposed to produce low-discrepancy

sequences, notably bene�tting from the extremely high uniformity

of low-dimensional Sobol’ sequences. The ZeroTwo approach pre-

sented in PBRT [Pharr et al. 2023] uses the �rst two dimensions of

1At the time of writing the result of this optimization is not publicly available. The
authors have graciously provided us with six generators. We selected the best of these
generators according to our criteria for comparison purposes

the Sobol’ sequence, and repeat them along with a random permuta-

tion of points to produce higher dimensional point sets. While pair-

ing randomly loses the sequence property, shu�ing indices instead

with an Owen permutation allows to remain a sequence [Burley

2020; Helmer et al. 2021]. The �rst four dimensions can similarly

be used [Burley 2020]. While these produce sequences with per-

fect projections on consecutive pairs of dimensions, their higher-

dimensional behavior is not LDS anymore and loses bene�ts for

general higher-dimensional integration problems [Helmer et al.

2021].

3 GENERALIZED SOBOL’ SEQUENCES

For completeness, this section describes the extension of Sobol’

sequences as described in the work of Faure and Lemieux [2016].

The construction is based on the following recipe. The general

idea is to decompose the index of a point (say, point number 8) in a

chosen prime base1: i = (80, 81, ..., 8<−1)1 =

∑<−1
:=0

8:1
: and use this

decomposition to produce point coordinates for each dimension.

For a given dimension 3 , a matrix�3 with coe�cients in {0, .., 1−1}

is built such that the coordinate of that point for that dimension

is obtained with the help of the matrix-vector multiplication j =

�3 i
) . The 3’th coordinate of point 8 is then expressed as G8,3 =

∑

: 9:1
−:−1.

The power of Sobol’ construction lies in the way matrices �3
are obtained and the properties they guarantee on the generated

points. Matrices �3 are upper triangular, with a non-zero diagonal.

Its upper left 43 ×43 block consists of a set of 43 · (43 −1)/2 degrees

of freedom ; these values are optimized in order to achieve good

properties on the resulting points, as in the work of Joe and Kuo [Joe

and Kuo 2008]. These �rst 43 columns are called generating vectors.

Typically, 43 increases with the dimension 3 (41 = 1 while 4100 = 9

in the work of Joe and Kuo [Joe and Kuo 2008]).

Each column {+=}==4+1..< of �3 is obtained as a linear combi-

nation of its 43 previous columns, plus a shifted column (see Fig. 2).

The coe�cients in this combination are given by the coe�cients of

a polynomial ?3 (G) =
∑43
8=0 08G

8 of degree 43 :

+= = +̃=−4 −

4
∑

8=1

04−8+=−8 , (2)

where +̃=−4 is a column vector consisting �rst of 4 zero values, and

then the< − 4 values of +=−4 (“+[ (4+1) :4=3 ]”). Note that the entire

arithmetic is performed modulo 1.

While in the initial work of Sobol’ these polynomials were taken

as primitive polynomials, Faure and Lemieux [2016] showed that

similar guarantees were obtained using a larger set consisting of ir-

reducible polynomials. Irreducible polynomials simply correspond

to polynomials that cannot be divided by other polynomials other

than themselves and 1 (similarly to prime numbers), while a primi-

tive polynomial of degree< in base 1 carries the additional restric-

tion that the smallest positive integer = such that it divides G= − 1

is = = 1< − 1.

In particular, it is shown that for B matrices {�0, ...,�B−1} ob-

tained using irreducible polynomials of degrees {40, ..., 4B−1}, the

value for C is bounded by C =

∑B−1
3=0

(43 − 1) [Faure and Lemieux

2016]. This in turn guarantees the low discrepancy of this sequence,
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Figure 2: Example construction of a Sobol’ matrix with a

degree 4 = 3 polynomial ? (G) = G3 + 02G
2 + 01G + 00. To build

column +6, a linear combination of the 4 previous columns

+3, +4, +5 is used, weighted respectively by −00, −01 and −02
(modulo 1), and an additional shifted copy of column+3. This

shifted copy, here called +̃3 is such that its �rst 4 components

are 0 and the 8’th value of +̃3 (8 > 4) is the 8 − 4’th value of +3.

though in practice, lower values of C may be found for speci�c gen-

erating vectors. This larger choice of polynomials (over primitive

polynomials) allows to reduce the value of C because the degree of

available polynomials grows much more gracefully. Similarly, the

choice of a basis 1 = 3 is guided, in our work, by the added degrees

of freedom hinted at by Paulin et al. [2022] as well as the slower

growth of irreducible polynomials degree.

As an example, the �rst few primitive polynomials in base 1 = 3

are G + 1, G2 + G + 2, G2 + 2G + 2, G3 + 2G + 1, while the �rst few

irreducible polynomials in base 1 = 3 are G , G + 1, G + 2, G2 + 1.

Similarly, the �rst few irreducible polynomials in base 1 = 2 are

G , G + 1, G2 + G + 1, G3 + G + 1. For primitive polynomials in base 3

and for irreducible polynomials in base 2, the fourth polynomial

is already cubic while for base-3 irreducible polynomials it is only

quadratic.

While in the case of1 = 2, Joe and Kuo have extensively searched

for good generating vectors with primitive polynomials [Joe and

Kuo 2008] and Faure and Lemieux for irreducible polynomials [Faure

and Lemieux 2019], such work has not been conducted for base 3

irreducible polynomials. The generating vectors we propose give

desirable properties and bene�t from Faure and Lemieux’ advances

on Sobol’ sequences theory.

4 OPTIMIZING GENERATING VECTORS
BASED ON QUADS

We �rst list the properties obtained by our sequences. The �rst 4

dimensions exhibit the following exceptional properties:

• (a) The �rst pair of dimensions (0, 1) is (0, 2)-progressive (up

to< = 100)

• (b) The second pair (2, 3) is a (0, 2)-sequence (up to an in�nite

number of points)

• (c) Pairs (0, 2) and (0, 3) are (0, 2)-sequence (ditto)

• (d) Pairs (1, 2) and (1, 3) are (1, 2)-sequence (ditto)

• (e) The quad (0, 1, 2, 3) is a (1, 4)-sequence (ditto)

The other quads (48, 48 + 1, 48 + 2, 48 + 3) exhibit the following

good properties:

• (f) The �rst pair (48, 48+1) is (0, 2)-progressive (up to< = 10,

i.e., up to 310 ≈ 59: points)

• (g) The second pair (48 + 2, 48 + 3) is (0, 2)-progressive (ditto)

• (h) The quad (48, 48+1, 48+2, 48+3) is atmost (2, 4)-progressive

(ditto)

The resulting sequence is a (C, B)-sequence, for some C , for any

subset of dimensions – this is granted by design due to Sobol’

properties.

4.1 The �rst 4 dimensions

Low-dimensional problems are very common in practical applica-

tions, which justi�es the search for exceptional properties. Fortu-

nately, the availability of low-order irreducible base-3 polynomi-

als allows us to exhibit such properties. For these �rst 4 dimen-

sions, we use the �rst 4 irreducible polynomials in that order:

G, G2 + 1, G + 1, G + 2. The four corresponding generating ma-

trices are respectively [1],

[

1 1

0 1

]

, [1], [2]. Reordering polynomials

in this way allows for consecutive pairs of dimensions to remain

(0, 2)-sequences. With these initializations, polynomial x generates

the identity matrix, and x+1 generates the Pascal matrix modulo 3.

Properties (b), (c), (d) and (e) are immediately obtained by the

theorem of Faure and Lemieux [2016] linking C with the sum of poly-

nomial degrees (for any generating matrices). Property (e) should

be compared to Sobol’ �rst four dimensions whose C value is C = 3

(with 1 = 2) while we obtain C = 1 (with 1 = 3). Property (a) has

been numerically tested up to< = 100. We conjecture that it forms

a (0, 1)-sequence due to the self-similarity of the matrix involved,

though we could not provide formal proof of that. For all practical

purpose, the C value is 0 up to 3100 samples.

4.2 The other quadruplets

Contrary to the work of Faure and Lemieux [2019], we do not keep

all irreducible polynomials to form higher dimensional problems,

but we instead exhibit speci�c good irreducible polynomials with

good generating matrices. Higher degrees irreducible polynomials

make sequence properties harder to satisfy, so we numerically

evaluate properties (f–h) only up to matrix sizes< = 10 (310 ≈ 59:

points). The value of C for a given set of matrices {�8 }8=1..: and

given point set size 1ℓ can be computed as the value for which the

matrix formed by combining the �rst A8 rows and �rst ℓ columns

of all matrices, with
∑

8 A8 = ℓ − C has (full) rank ℓ − C in�� (1), the

Galois Field of order 1 [Niederreiter 1992; Paulin et al. 2023]. This

is numerically tested for all ℓ ≤ < = 10, and we thus obtain a Cℓ
value – a C value per point set size.

We test all pairs of irreducible polynomials for up to the �rst

196 polynomials (of degrees 1 to 6), and for each pair, we test ∼10
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million random generating vectors. We �lter and select a subset of

pairs that are (0, 2)-progressive, i.e., Cℓ = 0 ∀ℓ ∈ {1..<}. We then

exhaustively combine all pairs of generating vectors for dimensions

of the form (8, 9) for a given 8 against all other pairs of generating

vectors for dimensions (:, ;). For these quads (8, 9, :, ;), we only

keep those whose maximum value of Cℓ for all ℓ is at most equal

to 2. When multiple solutions exist for the same quad, we �nally

keep the one for which this maximum value for C = 2 occurs for

the largest value of ℓ . We remove all pairs involving dimension 8

and as well as the pair (:, ;) from the list of pairs to evaluate, and

iterate until no satisfactory quad is found.

This process allows to exhibit 11 quads of dimensions, that, when

combined with the �rst excellent quadruplet, e�ectively produces

progressive point sets of up to 48 dimensions.

5 NUMERICAL EXPERIMENTS

We analyze our sequences in terms of their 2-d projections, in terms

of higher-dimensional discrepancies, integration error on synthetic

integrands and integration error for rendering applications. Exten-

sive experiments can be found in our supplementary document for

all pairs and quads of dimensions.

5.1 Base-3 implementation

In our context, all arithmetic over �� (3) simply amounts to stan-

dard integer arithmeticmodulo 3 (this is the case in�� (1)whenever

1 is prime, and as long as we do not require computing inverses).

Base-2 arithmetic o�ers signi�cant speed, due to bitwise operators.

Notably a base-2 decomposition of a number can be obtained us-

ing bit shifts, and a modulo-2 bitwise addition amounts to a xor

between two numbers. In contrast, a base-3 Sobol’ implementation

requires decomposing a number in base 3, and performing matrix-

vector multiplications and vector shifts, which reduces its e�ciency.

We rely on lookup tables to e�ciently decompose in base 3 rather

than slower successive divisions. A commonly used speedup in fast

base-2 implementations relies on Gray-code ordering [Antonov and

Saleev 1979]. We similarly bene�t from this technique. Gray-code

ordering allows to obtain a coordinate of the next sample point

with a single column vector operation (instead of full matrix-vector

product). The idea is that a single (base-3) digit is altered between

two consecutive Gray-code indices, in such a way that, for a given

dimension, a single column of our matrix a�ects the corresponding

matrix-vector product.

For rendering applications, Owen scrambling allows to decor-

relate sequences used in di�erent pixels, and could be used to pro-

duce screen-space blue noise error distributions [Heitz and Bel-

cour 2019]. Owen scrambling does not a�ect the value of C , and

would not improve the uniformity of non-optimized projections

(see Fig. 14 in supplementary materials). Base-3 Owen scrambling

is required in our case, and is a trivial extension to base-2 Owen

scrambling [Owen 1995] which proceeds by recursively swapping

halves (and then quarters etc.) of each dimension. For each dimen-

sion separately, a ternary tree (instead of binary) is used to represent

digit permutations. The root of the tree indicates whether the most

signi�cant digit of a point coordinate should be altered, and the

leaves indicate whether the least signi�cant digit should be altered.

At each node of the tree, one permutation of the set {0, 1, 2} among

1! = 6 pseudo-random permutations should be obtained or stored,

and applied to the corresponding digit. We obtain this permutation

by computing the tree’s node index, and use it to index a random

sequence. While similar in nature, the process in base 3 also incurs

additional cost compared to base 2 scrambling due to the lack of

bitwise operations.

We provide our base-3 implementations at https://github.com/

liris-origami/Quad-Optimized-LDS, and pseudo-codes in a supple-

mentary document.

5.2 2-d projections

We illustrate the uniformity of our sequences in all pairs of pro-

jections in Fig. 4 as compared to Sobol, ZeroTwo (the �rst two

dimensions of Sobol’ with random permutations), the ISN-dec LDS

sequence optimized by Faure and Lemieux [2019], the �rst four

projections of Sobol’ with random permutations as used by Bur-

ley [Burley 2020] for rendering, and the cascaded Sobol’ construc-

tion of Paulin et al. [Paulin et al. 2021]. The approach of Faure and

Lemieux [2019] results in more uniform projections for distant pairs

of dimensions while we improve uniformity on adjacent pairs of

dimensions. Adjacent pairs of cascaded Sobol’ appear more uniform,

but non-adjacent pairs are much less uniform. The ZeroTwo and

Padded Sobol’ (0123) approaches result in white noise behavior for

distant pairs of dimensions. Note that while we illustrate 2-d pro-

jections for 243 (resp. 256 in base 2) samples, behavior may change

for other sample counts. We guarantee C = 0 for consecutive 2-d

projections and C = 1 or C = 2 for consecutive 4-d projections at

least for all sample counts until < = 59, 049, but C = 0 may be

occasionally achieved by our sampler and others as well for a given

sample count and pair of dimension. Also, C = 0 in base 2 involves

a better uniformity than C = 0 in base 3, as discrepancy generally

grows with 1 (Eq. 1). While some pairs of non-optimized projec-

tions appear very non-uniform (e.g., dimensions (7,11)), their 2-d

discrepancy remains counterintuitively lower than that of white

noise (see Fig. 5 in supplementary materials). If such structures

need to be avoided, ZeroTwo or Padded Sobol’ remain good candi-

dates in consecutive 2-d or 4-d projections but at the cost of lower

convergence rate (see Sec. 5.3).

We evaluate the 2-d discrepancy and integration error for Gauss-

ian and Heaviside integrands of 2-d consecutive projections as the

number of samples increases. Fig. 3 (top) shows this data for two

pairs, while graphs for all consecutive pairs are shown in supple-

mentary materials. The supplementary materials also showcase

an example of discrepancy above 310 samples (up to 531k sam-

ples), and for sample counts di�erent from powers of 3. Cascaded

Sobol’ [Paulin et al. 2021] o�ers best uniformity on consecutive

2-d projections as (0, 2)-net property is enforced by construction,

though their method does not result in a sequence. Aside from

cascaded Sobol’, as dimensionality increases, our approach o�ers

better uniformity and integration error over competitors, including

Faure and Lemieux [2019]. Fig. 1 (a) summarizes all 2-d discrep-

ancy curves on the same graph for our approach and Sobol’ for

comparison.
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Figure 3: Left to right. We show 2-d (top 2 rows) and 4-d (bottom 3 rows) discrepancy and integration errors for Gaussian and

Heaviside integrands, for selected subsets of dimensions (resp. �rst pair and �rst quad, pair (14, 15), quad (12, 13, 14, 15) and

dimensions(6,7,8,9)). While the dimensions (6,7,8,9) fall in-betwen two quads and were not optimized, its discrepancy and MSE

behaves as a typical 4-d low-discrepancy sequence, unlike those of the Zero-Two quad of the same dimensions. The �rst two

dimensions of Sobol’, Cascaded, and Zero-Two coincide. Exhaustive results are shown in supplementary materials.
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(a) Sobol’ (b) Faure-Lemieux (c) ZeroTwo

(d) Padded Sobol’ (0123) (e) Cascaded Sobol’ (f) Ours

Figure 4: We show 2-d projections of points for 256 = 28 or 243 = 35 samples of (a) the �rst 12 dimensions of Sobol’, (b) the

�rst 12 dimensions of Faure and Lemieux’s ISN-dec [Faure and Lemieux 2019], (c) the �rst two Sobol’ dimensions, repeated

with a random permutation of sample indices [Pharr et al. 2023], (d) the �rst four dimensions of Sobol’, repeated with

scrambling [Burley 2020], (e) the cascaded Sobol’ approach of Paulin et al. [Paulin et al. 2021] (not sequence) and our approach.

Here, orange squares display guaranteed (0, 2)-progressive or -sequence properties (note that C = 0 has lower uniformity in our

base 3 than base 2 – see Eq. 1 ; we analyze discrepancy in Fig. 3). The green squares belong to optimized quads. Plot for row 8

and column 9 represents a projection over dimensions (8, 9).

5.3 4-d and higher-dimensional discrepancies

As our approach is based on 4-d quads, we similarly evaluate the

discrepancy behavior and integration error for consecutive quads.

This is shown in Fig. 3 (bottom) for selected two quads, and all

quads are shown exhaustively in supplementary materials with

comparisons. Fig. 1 (b) summarizes all 4-d discrepancy curves on

the same graph for our approach and Sobol’ for comparison.

In supplementarymaterials, we illustrate 6-, 8- and 12-dimensional

discrepancies in Fig. 7, 8 and 9. Zero-Two and Padded Sobol’ have

the same slope as white noise sampling due to the random pairing

of blocks of dimensions.

5.4 Rendering

We performed rendering experiments, in 6-d and 10-d. In the �rst

experiments shown in Fig. 5 (top two rows), the scenes only have

direct illumination. The �rst two dimensions are used for sampling

light sources and the next two dimensions for sampling the BRDF ;

a multi-sample MIS estimation is used to combine these estimators.

The next two dimensions are used to sample within each pixel. The

second experiment, shown in Fig. 5 (bottom row), adds one bounce

of indirect lighting, involving 4 additional dimensions. Here, the

�rst two dimensions are used for sampling within pixels, the next

two dimensions for sampling light sources, the next two dimensions

for sampling the BRDF (used both for MIS estimation of direct

lighting like in the 6-d case, and for generating an indirect ray if

the direct ray did not �nd a light source), the next four dimensions

are used similarly at the next light bounce (sampling light sources

and BRDF). In practice, dimension order did not signi�cantly a�ect

results. For direct light only, we improve the rendering error over

other state-of-the-art samplers [Burley 2020; Faure and Lemieux

2019; Paulin et al. 2021; Pharr et al. 2023; Sobol’ 1967] on the simpler

scene (middle row), while in the more complex scene (top row),

Sobol’ with Owen scrambling, Faure and Lemieux’ and cascaded

Lowres version
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Figure 5: We show rendering experiments in 6-d (top two

rows) involving pixel sampling and MIS for direct lighting,

and in 10-d (bottom) additionally involving indirect lighting.

This result shows the importance of optimized 4-d unifor-

mity. We compare against White Noise, Sobol’ with Owen

scrambling, Cascaded Sobol’ [Paulin et al. 2021], ZeroTwo

involving the �rst two Sobol’ dimensions [Pharr et al. 2023],

Padded Sobol’ (0123) that involves the �rst four dimensions

of Sobol’ [Burley 2020], the irreducible base-2 Sobol’ table

ISN-dec of Faure and Lemieux [2019].

Sobol’ perform similarly to our method. In the case of indirect

light (bottom row), we perform better than ZeroTwo [Pharr et al.

2023] that involves the �rst two Sobol’ dimensions, and similarly

to the approach of Burley [2020] that involves the �rst four Sobol’

dimensions (padded Sobol’ (0123)). This underlines the importance

of uniformity on consecutive quads. Neither the padded Sobol’ of

Burley [2020] nor cascaded Sobol’ [Paulin et al. 2021] guarantee

higher dimensional uniformity, although they work remarkably

well on this example.

6 DISCUSSIONS AND CONCLUSION

We provide evidence for the existence of (0, 2)-progressive pairs of

dimensions in base 1 = 3 when using irreducible polynomials in

Sobol’ construction [Faure and Lemieux 2016], that can be combined

to form (2, 4)-progressive quads. These quads allow for reducing

the discrepancy in higher-dimensional problems and e�ectively

reduce integration errors. We provide initialization tables in supple-

mentary materials for moderate dimensions only (48 dimensions,

as compared to the 10k dimensions of Joe & Kuo [2008] or 16,510

in the work of Faure and Lemieux [2019]). This limitation is not

fundamentally linked to our approach, but by computer power and

�ne optimization of our unoptimized search implementation. The

base-3 construction requires a base-3 Owen scrambling for ren-

dering applications as well as modulo 3 arithmetic, which reduce

speed compared to e�cient bitwise operations. It also implies that

sample counts of highest quality correspond to powers of 3, which

grows faster than more commonly used powers of 2. Finally, aside

from the �rst four dimensions, the only other criteria we enforced

concerned sample sizes of up to nearly 59k samples. While we do

not guarantee the best possible behavior for more than 59,049 sam-

ples and outside of the quadruplets of dimensions we optimized, a

reasonable uniformity is guaranteed due to Sobol’ construction that

enforces the (C, B)-sequence property and Faure and Lemieux’s re-

sult bounding C by a sum of polynomial degrees [Faure and Lemieux

2016].

Within the context of moderate-dimensional problems where

high uniformity in speci�c pairs of dimensions is desired, such as

expected from rendering applications, our sampler should provide

bene�ts for reducing integration error. We extensively tested our

sampler based on a discrepancy metric and synthetic integrands,

and o�ered preliminary experiments that exhibit such bene�t in

practice. We believe our sampler can spur further research in low

discrepancy sampling.
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