
Linear-Time Transport with Rectified Flows

KHOA DO, University of Michigan, USA

DAVID COEURJOLLY, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, France

POORAN MEMARI, CNRS, LIX, École Polytechnique, Inria, IP-Paris, France
NICOLAS BONNEEL, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, France

In
st
an
t
O
T

(C
P
U
,3
s)

G
eo
m
Lo

ss
(G
P
U
,6
.7
s)

O
u
rs

(C
P
U
,0
.0
6s
)

BNOT (173s)

Instant OT (26s) Ours (CPU: 0.042s, GPU: 0.012s)

O
u
rs

(3
D
)

Fig. 1. Our transport algorithm computes shape interpolations and image stipplings in linear time, with results approaching those of optimal transport. In 2D,
the interpolation is performed on a 256x256 grid with 65,536 samples and timings correspond to computing 5 interpolation steps; stippling is performed on a
1024x1024 grid with 8,192 samples. We compare our results to a GPU-optimized linearized transport with Sinkhorn divergences [Feydy et al. 2019b], the
Instant Transport of Nader and Guennebaud [2018], the high-quality stippling of BNOT [de Goes et al. 2012], and that obtained using Instant Transport
(timings for Instant OT stippling include 23.5s of precomputations that only depend on grid resolution). In our 3D example, our process takes 815s to compute
transport maps on a 2563 resolution with 16.8 millions of particles, and each interpolation step then requires 3s (spla�ing particles and mesh reconstruction).
Anvil model by TurboSquid user PotatoOrgyLt and Lion by CGTrader user tudorfat.

Matching probability distributions allows to compare or interpolate them, or
model their manifold. Optimal transport is a tool that solves this matching
problem. However, despite the development of numerous exact and approxi-
mate algorithms, these approaches remain too slow for large datasets due

Authors’ Contact Information: Khoa Do, University of Michigan, USA, khoadb@umich.
edu; David Coeurjolly, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, France,
david.coeurjolly@cnrs.fr; Pooran Memari, CNRS, LIX, École Polytechnique, Inria, IP-
Paris, France, memari@lix.polytechnique.fr; Nicolas Bonneel, CNRS, Université Claude
Bernard Lyon 1, INSA Lyon, France, nicolas.bonneel@liris.cnrs.fr.

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 1557-7368/2025/8-ART
https://doi.org/10.1145/3731147

to the inherent challenge of optimizing transport plans. Taking intuitions
from recent advances in recti�ed �ows we propose an algorithm that, while
not resulting in optimal transport plans, produces transport plans from uni-
form densities to densities stored on grids that resemble the optimal ones
in practice. Our algorithm has linear-time complexity with respect to the
problem size and is embarrassingly parallel. It is also trivial to implement,
essentially computing three summed-area tables and advecting particles
with velocities easily computed from these tables using simple arithmetic.
This already allows for applications such as stippling and area-preserving
mesh parameterization. Combined with linearized transport ideas, we fur-
ther extend our approach to match two non-uniform distributions. This
allows for wider applications such as shape interpolation or barycenters,
matching the quality of more complex optimal or approximate transport
solvers while resulting in orders of magnitude speedups. We illustrate our
applications in 2D and 3D.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

HTTPS://ORCID.ORG/0009-0001-9887-7470
HTTPS://ORCID.ORG/0000-0003-3164-8697
HTTPS://ORCID.ORG/0000-0002-8811-6889
HTTPS://ORCID.ORG/0000-0001-5243-4810
https://orcid.org/0009-0001-9887-7470
https://orcid.org/0000-0003-3164-8697
https://orcid.org/0000-0002-8811-6889
https://orcid.org/0000-0001-5243-4810
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3731147

2 • Khoa Do, David Coeurjolly, Pooran Memari, and Nicolas Bonneel

CCS Concepts: •Computingmethodologies→ Image manipulation; Shape
modeling.

Additional KeyWords and Phrases: optimal transport, interpolation, recti�ed
�ows

ACM Reference Format:

Khoa Do, David Coeurjolly, Pooran Memari, and Nicolas Bonneel. 2025.
Linear-Time Transport with Recti�ed Flows. ACM Trans. Graph. 44, 4 (Au-
gust 2025), 13 pages. https://doi.org/10.1145/3731147

1 Introduction

Optimal transport is a mathematical theory that allows one to com-
pare probability distributions by interpreting them as piles of sand
transported at minimal cost. The cost of moving an entire pile of
sand towards another becomes a distance between these probability
distributions, and stopping the sand motion in-between results in an
intermediate distribution that can be used as an interpolation. Many
algorithms have been proposed to compute the optimal transport
between distributions. Because obtaining fast algorithms on this
problem is di�cult, much e�ort has been devoted either to solving
particular instances or devising approximate solutions. While the
resulting algorithms have been reported to be fast [Cuturi 2013;
Feydy et al. 2019a,a; Jacobs and Léger 2020; Lévy et al. 2021; Nader
and Guennebaud 2018; Solomon et al. 2015], their time complexity
has remained ranging from O(= log=) for rough approximations
to O(=3 log=) for exact solutions. This is however hard to improve
for optimal solution in general, based on the known theoretical
complexities.

Among particular instances of interest, the problem of computing
the optimal transport map between a uniform density towards a
given non-uniform density has received much attention. This can
be explained by the numerous applications that involve this setting,
such as recovering incompressibility in �uid simulation [Gallouët
and Mérigot 2018; Levy 2018], enforcing area preservation in con-
formal mapping [Dominitz and Tannenbaum 2009; Zhao et al. 2013],
modeling the early universe from a uniform mass distribution at
time 0 [Lévy et al. 2021], redirecting an input uniform light distri-
bution to produce caustics [Meyron et al. 2018], stippling images
by warping uniform patterns [Nader and Guennebaud 2018], or
generating uniform Monte Carlo samples by optimizing the loca-
tions of points [Paulin et al. 2020]. Further, an approximate transport
between two non-uniform distributions can be obtained by consider-
ing an intermediate – for instance, uniform – reference distribution.
This process is known as linearized optimal transport [Nader and
Guennebaud 2018], and is able to produce reasonable approxima-
tions of optimal transport in many cases.
In our work, we primarily tackle the problem of transporting a

uniform distribution towards a non-uniform distribution stored on
a grid, and use linearized optimal transport to address the more
general case of matching two non-uniform distributions. Our work
is inspired by the concept of recti�ed �ows [Liu 2022; Liu et al. 2022];
our intuition is that when one of the distributions is uniform, one
iteration of recti�ed �ow can be achieved in closed form, which
makes it extremely fast. Our algorithm takes as input a grid con-
taining a non-uniform density (e.g., a grayscale image in 2D or a
voxelized shape in 3D) and a set of particles uniformly sampling the

domain. It then computes three summed-area tables and readily uses
them to advect these particles. After advection, the particles exactly
follow the input non-uniform density, and the matching between
their initial position and their �nal advected position is similar to an
optimal transport map. In our settings, the velocity �eld is entirely
determined by solving the continuous problem of transporting a
uniform density to a piecewise-constant density stored on a grid,
but the transport map is evaluated at discrete locations by advecting
particles. The algorithm is trivial to implement and is fully described
in less than a single column of our article using standard arithmetic,
is embarrassingly parallel, can be implemented on the GPU, re-
sults in linear-time complexity in the number of particles and input
density grid discretization (though exponential in the dimension),
and allows for many low-dimensional applications where optimal
transport is routinely used. We demonstrate these applications and
show that they result in comparable quality to that reported in
the literature, but orders of magnitude faster. Typical runtimes are
42ms for transporting 8k points towards a 1024x1024 grid on the
CPU or 12ms on the GPU, all precomputations and computations
included. Combined with linearized transport, it becomes easy to
extend our method to the problem of transporting two arbitrary
discretized densities. We demonstrate applications such as 3D shape
interpolation.

Our contribution consists in reformulating recti�ed �ows in the
case where one distribution is uniform to achieve linear-time com-
plexity and realtime results in computer graphics applications requir-
ing optimal transport. Code is available in supplementary materials
and at https://github.com/DoBachKhoa/RectFlowOT.

2 Background and related work

2.1 Optimal transport

We review the main principles and algorithms of optimal transport
and refer to the survey of Bonneel and Digne [2023] for a more
exhaustive review and applications to computer graphics, and to
the survey of Peyré and Cuturi [Peyré et al. 2019] for details on
numerical methods. We further allow simpli�ed notations for clarity.

Problem statement. Optimal transport provides a distance be-
tween distributions ` (G) (G ∈ -) and a (~) (~ ∈ .) by optimiz-
ing a transport plan c (G,~) with respect to some cost, such that
both marginals match respectively ` and a . This de�nes an energy
,

@
? (`, a) that corresponds to the so-called Wasserstein distance

between ` and a :

,
@
? (`, a) = min

c

∫
-×.

∥G − ~∥
@
?3c (G,~) (1)

B .C .

∫
.
3c (G,~) = ` (G) ∀~ (2)∫

-
3c (G,~) = a (~) ∀G (3)

c (G,~) ≥ 0 ∀G,~ , (4)

where ∥G−~∥
@
? is the !? distance at the power @ between two points

of coordinates G = (G8)8=1..3 and~ = (~8)8=1..3 de�ned as ∥G−~∥
@
? =(∑3

8=1 |G8 − ~8 |
?
)@/?

. This amounts to solving a linear program. In

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

https://doi.org/10.1145/3731147
https://github.com/DoBachKhoa/RectFlowOT

Linear-Time Transport with Rectified Flows • 3

our context, - = . = [0, (0] × [0, (1] × . . . × [0, (3−1] = �, a 3-
dimensional box. The quadratic cost (? = @ = 2) is often used as the
cost of moving a particle from location G to ~ – the so-called ground
distance – but other costs are occasionally used in the literature.

Exact solutions. For discrete distributions supported on = points,
a network simplex provides solutions in O(=3 log=), and can be
e�ciently implemented in practice [Bonneel et al. 2011; Kelly and
O’Niell 1991]. The setting of uniform discrete distributions with the
same number of samples amounts to a linear assignment problem
between samples.
In a semidsicrete setting where ` is a continuous distribution,

a is discrete, and considering , 2
2 , the structure of the problem

results in a power diagram – i.e., a Voronoï diagram of controllable
cell sizes – which cells can be optimized with convex optimization
methods [Lévy 2015]. This optimization iteratively computes power
diagrams, each in O(= log= + =⌈3/2⌉) in 3 dimensions. In practice,
this results in very fast implementations that, with engineering
e�orts, can even be used to support problem sizes of tens of millions
of 3D samples in hours on a personal computer [Lévy et al. 2021].
Similarly, the case, 1

2 results in Apollonius diagrams, which can
also be obtained e�ciently [Hartmann 2017].
Closer to our work, the Instant Transport of Nader and Guen-

nebaud [2018] transports a uniform distribution towards a continu-
ous distribution stored on a 2D grid by repeatedly solving Poisson
equations. Since the Poisson matrix can be prefactored once and
only depends on the grid resolution, solving multiple times remains
e�cient. They obtain approximate transport maps between two
non-uniform densities using linearized optimal transport (see next).
In contrast, while our approach is much faster, our maps between
the uniform distribution and a density is not optimal.

Approximations. Adding an entropic term to, 2
2 regularizes the

problem, allowing for the use of fast iterative Bregman projections
implemented as matrix-vector multiplications [Cuturi 2013] – an al-
gorithm called Sinkhorn. When distributions are further discretized
on a grid, these projections can be implemented via fast convolu-
tions [Solomon et al. 2015]. Using this formulation to approximate
optimal transport requires O(1/Y2) iterations, where Y characterizes
the ℓ1 approximation error in the marginals ` and a of c [Altschuler
et al. 2017]. It tends to be numerically unstable as the regularization
factor is reduced, and the regularized distance of a measure with
itself is non-zero [Feydy et al. 2019b]. Greenkorn [Altschuler et al.
2017] is a greedy variant in near linear time that only updates a
single row or column of c when the data are unstructured, but still
requires O(1/Y2) iterations. To alleviate stability issues, Sinkhorn
divergences debias the entropic energy [Feydy et al. 2019b]. While
it does not directly result in a single transport plan c anymore, a
transport map can still be recovered using a gradient �ow. A fast
GPU-based implementation in the GeomLoss library roughly allows
for matching 10: samples in 1B with Sinkhorn divergences or 50:
samples in 1B with the Sinkhorn algorithm.
Regarding very fast solutions, the sliced transport between dis-

crete distributions computes a series of 1-d transportation problems
on projections, which each can be carried out in O(= log=) via
simple sorting operations [Bonneel et al. 2015; Rabin et al. 2012] or

evenO(=) using a cumulative distribution function [Pitie et al. 2005].
Transporting a uniform (or more generally continuous) distribution
towards a discrete distribution can also be achieved with such 1-d
projections [Paulin et al. 2020], and continuous-to-continuous solu-
tions can be achieved with the help of the Radon transform [Bonneel
et al. 2015]. Although these approaches scale very well in practice
and generalizes to the partial transport setting [Bonneel and Coeur-
jolly 2019], in particular in the high-dimensional discrete setting,
the use of 1D projections incurs signi�cant errors compared to
3-dimensional optimal transport.

Linearized transport. In certain applications, for computing trans-
port plans between ` and a , it is more convenient to rely on a pivot
measure g , computing c`→g and cg→a and composing both trans-
port plans. This has arisen in the context of generalized geodesics [Am-
brosio et al. 2008]. Since it requires the computations of optimal
transports to a pivot measure, it does not in itself reduce computa-
tion times for the transport problem, but allows for faster computa-
tions of approximate Wasserstein barycenters or indirectly acceler-
ate computation times when fast solvers are available for a speci�c
pivot measure (e.g., uniform) [Nader and Guennebaud 2018]. The
pivot measure has been taken as uniform [Mérigot et al. 2020; Nader
and Guennebaud 2018], Gaussian [Moosmüller and Cloninger 2023]
or the average of the input measures ` and a [Seguy and Cuturi
2015; Wang et al. 2013]. The concept has been called “linear opti-
mal transport” [Moosmüller and Cloninger 2023; Wang et al. 2013]
since it allows comparing distributions using the !2 norm of their
Monge maps with respect to the pivot measure. We instead call it
here “linearized” to avoid confusion with our “linear-time” com-
plexity. Similarly to the work of Nader and Guennebaud [2018], we
use linearized transport to allow the calculation of transport maps
between two arbitrary measures, bene�ting from our fast transport
solver to a pivot uniform measure.

2.2 Rectified flows

Recti�ed �ows were introduced in the context of generative mod-
els [Liu et al. 2022], with connections to optimal transport [Liu
2022; Liu et al. 2022]. Given coupled observations (-0 ∼ `, -1 ∼ a)

in R
3 (3 ≥ 1), the goal is to advect -0 towards -1 by a velocity

�eld E , that needs to be found based on the following least-square
regression problem:

min
E

∫ 1

0
E
[
∥(-1 − -0) − E (-C , C)∥

2
]
3C , (5)

where -C = C-1 + (1 − C)-0. Intuitively, we look for a velocity �eld
that is as straight as possible (following the direction -1 −-0) while
joining -0 and -1 – hence the name recti�ed �ow.

Link to Optimal Transport. As shown in [Liu 2022], the coupling
(/0, /1) obtained by taking/0 = -0 and/1 by advecting/0 with the
resulting velocity �eld reduces the transportation cost between the
two corresponding distributions, compared to the original coupling
(-0, -1), while /1 also follows a . However, it does not target a
speci�c ground distance such as 2 (G,~) = ∥G − ~∥2, but reduces the
transportation cost for all convex ground distances (in expectation).
The original approach [Liu et al. 2022] models the velocity �eld

E with a deep neural network, and optionally iterates the recti�ed

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

4 • Khoa Do, David Coeurjolly, Pooran Memari, and Nicolas Bonneel

�ow procedure on the resulting coupling to iteratively reduce the
transportation cost, further straightening the velocity �eld.

A follow-up approach aims tominimize the transportation cost for
a given ground distance (as opposed to all convex ground distances
simultaneously) by introducing the ground cost in Eq. 5 [Liu 2022].
Liu et al [2022] also note that Eq. 5 has an exact minimum given by

E (G, C) = E-0∼`,-1∼a [-1 − -0 |-C = C-1 + (1 − C)-0 = G] . (6)

While their algorithm does not directly bene�t from this formula,
we build on it in the case where ` is a uniform probability distribu-
tion, making it highly e�cient for large-scale problems, as we will
explain in the next Section.

3 Rectified flows involving a uniform distribution

We aim to compute the conditional expectation of Eq. 6:

E (G, C) = E[-1 − -0 | -C = G], where -C = C-1 + (1 − C)-0 .

when ` has a uniform density.

3.1 Problem reformulation

Substituting -1 − -0 =
-1−-C

1−C into the expectation, we �nd:

E[-1 − -0 | -C = G] =
E[-1 | -C = G] − G

1 − C
. (7)

Thus, the problem reduces to computing E[-1 | -C = G]. We fur-

ther use -C = C-1 + (1 − C)-0 to express -0 as -0 =
-C −C-1
1−C . The

joint density of (-1, -C) can be expressed in terms of (-1, -0). The
Jacobian of the transformation (-1, -C) → (-1, -0) is:

� =

(
1 0

− C
1−C

1
1−C

)
, det(�) =

1

1 − C
.

The joint density thus becomes:

5-1,-C
(G1, G) =

1

1 − C
51 (G1) 50

(G − CG1
1 − C

)
,

where 50 is the density of -0, and 51 is the density of -1.
Using the general formula for conditional expectations, we obtain:

E[-1 | -C = G] =

∫
G1 5-1,-C

(G1, G) 3G1∫
5-1,-C

(G1, G) 3G1
(8)

=

∫
G1 51 (G1) 50

(
G−CG1
1−C

)
3G1∫

51 (G1) 50

(
G−CG1
1−C

)
3G1

. (9)

3.2 Simplification for uniform -0

Our �rst core idea is to take advantage of the results obtained
in the context of recti�ed �ows in the case where the following
conditions are met. First the source density ` is a uniform probability
distribution on a box domain � in R

3 . Second, the target measure a
has a piecewise constant density on a 3-dimensional grid.
When -0 ∼ Uniform(�), the density 50 is constant over the do-

main �. To simplify the conditional expectation E[-1 | -C = G], we
de�ne the region for -1 such that -0 remains within its support �:

�′G,C =
{
G1 |

G − CG1

1 − C
∈ �

}
. (10)

C = 0

C = 1

ti
m
e
C

G = 0 G = F = 1024Uniform distribution

Target distribution 5

space G

Velocity

-1000

0

1000
(G, C)

; A

�′G,C

Fig. 2. 1-d example. We compute a velocity field for each space-time point
(G, C) by relying on the integral of the target distribution 5 (here, a sum of
two Gaussians) and of G ∗ 5 over the interval �′G,C = [ℓ, A]. These bounds
are obtained by considering all straight lines passing through (G, C) and
(G ′, 0) for G ′ ∈ [0, F]. Here, we show a particle starting at (G, C) = (256, 0)
following this velocity field (purple curve). For uniformly distributed par-
ticles at time C = 0, this results in particles distributed according to 5 at
C = 1.

Substituting into the formula for conditional expectation, we obtain:

E[-1 | -C = G] =

∫
�′G,C

G1 51 (G1) 3G1∫
�′G,C

51 (G1) 3G1
. (11)

This represents the weighted mean of -1, where the weights are
given by the target density 51, restricted to the region �′G,C .

Velocity �eld. By substituting the value of E[-1 | -C = G] into
Equations 6 and 7, we obtain the velocity formula:

E (G, C) =
©
«
∫
�′G,C

G1 51 (G1) 3G1∫
�′G,C

51 (G1) 3G1
− G

ª®
¬
/(1 − C) . (12)

This highlights how the velocity �eld depends on the mean desti-
nation -1 (conditioned on -C = G) and the scaling factor 1/(1 − C),
which adjusts for the interpolation parameter C .

Integration bounds. �′G,C is a box de�ned by two extremal points

0(G, C) and 1 (G, C) ∈ R3 . These are obtained by considering all lines
passing through space-time point (G, C) and the uniform density’s
bounded support � = [0, (0] × · · · × [0, (3−1] at C = 0 (see Fig. 2 for
an illustration in 1D). The line passing through space-time coordi-
nates (G, C) and (0, 0) also passes through point (G/C, 1). The line
passing through (G, C) and (((0, . . . , (3−1), 0) also passes through
point ((((0, . . . , (3−1) (C − 1) + G)/C, 1). We thus get the bounds for
�′G,C as:

08 (G, C) = max

(
0, (8 −

(8 − G

C

)
,

18 (G, C) = min
(
(8 ,

G

C

)
.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

Linear-Time Transport with Rectified Flows • 5

f₀ f₁

Uniform

Fig. 3. We illustrate the linearized transport between distributions of two
densities 50 and 51. We advect uniformly distributed particles towards 50
and 51 and use the resulting correspondences.

3.3 Fast interpolated summed-area tables

Our second core idea is that integrating piecewise constant func-
tions and piecewise linear functions stored on grids over axis-aligned
box-shaped domains is possible in constant time assuming that
summed-area tables are precomputed in linear time (with respect
to the number of grid cells). This makes our approach highly e�-
cient for large-scale problems. A summed-area table precomputes∑:0
80=0

∑:0
81=0

. . .
∑:3−1
83−1=0

580,81,...,83−1 in a table by reusing previously

computed values (see Alg. 2).
However, during advection, particles fall within grid cells and

interpolation is needed, especially when the grid resolution is coarse
(see Fig. 4). While integrating piecewise constant density 5 over
non-integer bounds simply amounts to accessing the summed-area
table using standard bilinear interpolation, integrating piecewise
linear functions of the form G 5 (G) requires quadratic interpolation
(see Alg. 1).

Advection. Our algorithm starts with a set of uniformly distributed
particles at time C = 0 and progressively advects them with veloc-
ity �eld E (G, C) until C = 1. To illustrate transport plans, we use
particles regularly located on a grid, while for stippling applica-
tions we use blue noise point patterns. Advecting particles could
be achieved most easily by the order 1 Euler integration scheme:
GC+1 = GC + dC E (GC , C) where dC = 1/) and) is the number of
time steps. In practice, we achieve higher accuracy with a 4th order
Runge-Kutta integration scheme (RK4), fully detailed in Alg. 2.

Algorithm. A signi�cant bene�t of our approach is the concise-
ness of the resulting algorithm – comparable to sliced or entropy-
regularized transportation.
We provide in Alg. 2 the computation of all summed-area ta-

ble computations and particle advection in 2D. These methods are
trivially extendable to higher dimensions though storing dense
higher-dimensional voxels becomes impractical even for moderate
dimensions. We provide in Alg. 1 the computation of the velocity
�eld for a particle at position G and time C in 2D. The quadratic

interpolation formulas become more involved and computationally
costly as the dimension increases.

Algorithm 1 Velocity(�c , �G , �~, � , -, C)

Require: - = (G,~) ∈ [0, 1]2 input point, C ∈ [0, 1] time

Require: �c , �G , �~ summed area tables and image. � of sizeF ×ℎ
; �c , �G , �~ of size (F + 1) × (ℎ + 1)

⊲ Interpolation helpers ; {G} = 5 A02 (G), ⌊G⌋ = 5 ;>>A (G) ⊳

function 8=C4A?G (�G , � , x, y)

return �G
⌊G ⌋,⌊~⌋

+
(
�G
⌊G ⌋,⌊~⌋+1

− �G
⌊G ⌋,⌊~⌋

)
{~} +((

�G
⌊G ⌋+1,⌊~⌋

− �G
⌊G ⌋,⌊~⌋

)
{G} + �⌊G ⌋,⌊~⌋ {G}{~}

)
G+⌊G ⌋

2

function 8=C4A?~ (�~ , � , x, y)

return �
~

⌊G ⌋,⌊~⌋
+

(
�
~

⌊G ⌋+1,⌊~⌋
− �

~

⌊G ⌋,⌊~⌋

)
{G} +((

�
~

⌊G ⌋,⌊~⌋+1
− �

~

⌊G ⌋,⌊~⌋

)
{~} + �⌊G ⌋,⌊~⌋ {G}{~}

)
~+⌊~⌋

2

⊲ Determine integral bounds (ℓ, C) and (A, 1) ⊳

ℓ ← max(0,F − (F − G)/C)

A ← min(F, G/C)

D ← max(0, ℎ − (ℎ − ~)/C)

1 ← min(ℎ,~/C)

⊲ Look up summed area tables and interpolate; !4A? is standard

bilinear interpolation ⊳

Ic ← !4A? (�c , A , 1) − !4A? (�c , ℓ, D) + !4A? (�c , ℓ, 1) +

!4A? (�c , A , D)

IG ← 8=C4A?G (�
G , A , 1) − 8=C4A?G (�

G , ℓ, D) + 8=C4A?G (�
G , ℓ, 1) +

8=C4A?G (�
G , A , D)

I~ ← 8=C4A?~ (�
~, A , 1) − 8=C4A?~ (�

~, ℓ, D) + 8=C4A?~ (�
~, ℓ, 1) +

8=C4A?~ (�
~, A , D)

return ((IG ,I~)/Ic − -)/(1 − C)

Algorithm 2 Full 2D transport pseudo-code

Require: - =

{
-8 ∈ [0, 1]

2
}
8=1..=

uniform input points

Require: � =
{
�8 9

}
8=0..ℎ−1, 9=0..F−1

grayscale inputF × ℎ image

Require:) number of times steps
Ensure: upon terminating, - follows the image density

⊲ Precompute summed-area tables ⊳

(�c , �G , �~) ← 0(F+1)×(ℎ+1)
for (8, 9) ∈ {0, . . . , ℎ − 1} × {0, . . . ,F − 1} do

�c8+1, 9+1 ← �c8+1, 9 + �
c
8,9+1 − �

c
8,9 + �8, 9

�G8+1, 9+1 ← �G8+1, 9 + �
G
8,9+1 − �

G
8,9 + �8, 9 (9 +

1
2)

�
~
8+1, 9+1 ← �

~
8+1, 9 + �

~
8,9+1 − �

~
8,9 + �8, 9 (8 +

1
2)

⊲ Advect particles with RK4 ⊳

for 8 ∈ {0, . . . , =} do

for C ∈ {0, . . . ,) } do

+1 ← +4;>28C~(�c , �G , �~, � , -8 , C/))

+2 ← +4;>28C~(�c , �G , �~, � , -8 +
+1
2) , (C +

1
2)/))

+3 ← +4;>28C~(�c , �G , �~, � , -8 +
+2
2) , (C +

1
2)/))

+4 ← +4;>28C~(�c , �G , �~, � , -8 +
+3
) , (C + 1)/))

-8 ← -8 + (+1 + 2 (+2 ++3) ++4)
1
6)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

6 • Khoa Do, David Coeurjolly, Pooran Memari, and Nicolas Bonneel

N
ai
ve

In
te
rp
ol
at
ed

Resolution 64x64 128x128 256x256 512x512 1024x1024

RK4 steps 5 10 25 50 100

Fig. 4. Top. We assess the impact of our interpolation vs. naive access to the summed-area tables depending on grid resolution. Here, we compute the transport
map using 10242 particles on a grid, but we vary the resolution of the underlying image and summed-area tables. We only plot Δk (see Fig. 6). Naive access to
the summed-area tables (first row) leads to many NaN values at low resolution, displayed as black pixels. Bo�om. We assess the impact of the number of RK4
time steps on a 1024x1024 grid in the transport map (Δk).

3.4 Non-uniform 50

To support the case of transporting a non-uniform distribution with
density 50 towards another (non-uniform) distribution of density
51, we bene�t from linearized optimal transport ideas. Given a set
of particles .0 following a uniform distribution, we advect them to-
wards 50 and 51 independently, and the two sets of advected particles
are in one-to-one correspondence (see Fig. 3). This correspondence
can be used to produce (approximate) displacement interpolation,
or be further generalized to (approximate) Wasserstein barycenters
when more than two densities are involved.

4 Numerical Evaluation

4.1 Time complexity and speed

The time complexity of our entire algorithm is easily shown to be
$ (< + =)23), where < is the number of pixels, = the number of
samples,) the number of iterations in our advection scheme, and 3
the dimension. $ (<) is due to image-dependent preprocessing, by
computing summed-area tables; $ (=)23) is due to the advection
itself, which requires) iterations, each accessing 23 values for
interpolating. In practice, we �x) to) = 50 (see Fig. 7 and Sec. 4.3).

Our timings are obtained using an AMD Ryzen Threadripper
2990WXwith 32 cores at 3 GHz, from 20181 and an NVIDIA GeForce
RTX 2080. Unless stated otherwise, timings refer to our CPU imple-
mentation. Our implementations are compared to CPU and GPU
implementations of other methods (see Sec. 4.2). Our GPU CUDA
implementation was readily produced by ChatGPT o4-mini from our
CPU C++ implementation, and resulted in about 4x speedup. On the
GPU, summed-area tables were parallelized per row and columns,
successively performing horizontal and then vertical scans.

4.2 Comparison to optimal transport

Semi-discrete optimal transport. When the target measure is dis-
crete (i.e., a sum of Diracs), optimal transport results in a decom-
position of the domain into connected cells, where each cell sends
mass to its associated target Dirac. When the ground distance is the
squared Euclidean distance between two points, these cells are con-
vex polytopes and form a power diagram. More complex structures
arise from other costs.

1This desktop machine has relatively poor performances; we obtained twice faster
results in the 3D interpolation experiment using an Apple laptop with M2 8-core
processor.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

Linear-Time Transport with Rectified Flows • 7

Since our transport is not optimal speci�cally for a given ground
distance but reduces all transport costs for all convex ground dis-
tances, we numerically assess the cells produced when transporting
a uniform measure to a discrete measure.
We compare the shape of our cells with that of optimal trans-

port using various ground distances in Fig. 5 for 1024 uniformly
random 2D points and 1024 points sampled on a disk. In practice,
measures were discretized on a 1024x1024 pixel grid and thus, do
not exactly consist of Diracs. Ground truth optimal transport results
were obtained using the network simplex of Bonneel et al. [2011]
with this discretization. Our cells were obtained by uniformly sam-
pling 256x256 particles inside each of these 1024 random pixels,
and advecting them backwards to the uniform measure with our
recti�ed �ow. For this experiment only, we used a very large value
) = 3000 of RK4 steps to assess the quality of the model rather than
the quality of its numerical approximation. In supplementary mate-
rials, we provide more extensive comparisons to optimal transport
,

@
? with various ? and @.

Continuous, 2
2 transport. In the continuous 2D grid setting, the

optimal transport map to a uniform distribution, for the quadratic
cost, can be computed in acceptable time using the Instant OT
approach of Nader and Guennebaud [2018]. This can provide a
point of comparison for our nonoptimal solution. Their approach
produces the optimal transport map) using the gradient of a convex
potential:) (G) = G +∇k (G) by iteratively solving Poisson equations.
We can also produce a transport map by distributing particles on
a grid and advecting them with our approach. In Fig. 6, we show
∇k =) − Id and Δk = ∇.) for their approach and ours on two
examples. These two examples were chosen because the Lion image
has a relatively smooth density covering the entire image plane
(higher density of ink is darker) that should result in a relatively
smooth transport map, and the Still Life image shows a centered
subject with a 0 density outside and higher contrast, resulting in
strong discontinuities in the transport map. Our results show similar
values for both ∇k and Δk compared to Instant OT. For the Lion
image (rows 1-2), the relative error in ℓ2 norm for the transport
map) is 1.5%, it is 14.6% for ∇k , and 21.8% for Δk . For the Still Life
image (rows 3-4), the relative error in ℓ2 norm for the transport map
) is 2.6%, it is 13.2% for ∇k , though the error is 125% for Δk due to
highly penalized localized important errors near the discontinuities
of) .

4.3 Ablation and hyper-parameters

We proposed a summed-area table interpolation, which we assess
in Fig. 4. While in 2D, directly accessing the summed-area tables
to the nearest value with no interpolation is approximately twice
faster, it also produces NaN values, in particular at coarse resolution,
when �′G,C becomes smaller than one pixel. When �′G,C is smaller
than one pixel, the estimated integral from the alternating sum of
nearest values in the summed-area table results becomes zero, which
degenerates the denominator of Eq. 11. In Fig. 7, we evaluate the
impact of the number of RK4 iterations on a stippling application
(Sec. 5.1). We settle with) = 50, which o�ers a reasonable balance
between speed and quality. Fig. 8 shows the impact of the number
of samples and grid resolution on stippling quality and speed. It

is easy to demonstrate that the magnitude of the velocity �eld is
always bounded by the domain size. First, in Eq. 11, we obtain that
08 (G, C) ≤ E[-1 | -C = G] ≤ 18 (G, C) as E[-1 | -C = G] is obtained
as a convex combination of points in �′G,C . By substituting 08 and

18 with their expression, and using the fact that min(0
1
, 2
3
) ≤ 0+1

2+3
,

we get min
(
(8 ,

G
C

)
≤ (8 and thus the desired velocity bound. The

velocity �eld is also Lipschitz continuous when the density and time
parameters are positive, which ensures convergence [Ascher and
Petzold 1998] (p.83).

5 Applications

The scope of our framework’s applications is nearly as extensive
as that of optimal transport. We discuss four key applications: Stip-
pling, 2D Wasserstein barycenters, 3D shape interpolation, and
Area-preserving parametrization, as partially illustrated in Figure 1.

5.1 Stippling

Direct stippling. Generating point distributions is motivated by
diverse applications in Computer Graphics, such as halftoning, art
stippling, and economical imprinting. A simple and e�cient way
to stipple grayscale images consists in using our time-continuous
process to map an initial uniform blue-noise point set [de Goes et al.
2012] to the target distribution computed from the input image.
We o�er a comparison to recent methods that target blue noise

stippling or that use optimal transport in Fig. 1 and 9, using 8,192
samples in a 1024x1024 image – we refer to the survey of Martin
et al. [Martín et al. 2017] for more general approaches. Probably
the best results for stippling are obtained by Gaussian Blue Noise
(GBN) [Ahmed et al. 2022] and BNOT [de Goes et al. 2012]. On this
example, BNOT takes 173 seconds while GBN takes 152 seconds.
We show that these iterative methods bene�t from being initialized
with our result to accelerate them (see next).

The scalable SOT approach of Salaün et al. [2022] performs well,
but the result took 395 seconds to produce with their available par-
allel CPU implementation. Our method, that took 0.042s to run on
the CPU or 0.012s on the GPU, has arguably the same quality as
Instant OT [Nader and Guennebaud 2018] that took 26 seconds.
Instant OT also advects an input point set, and we used the same
uniform precomputed BNOT sampling pattern as input to both our
and their methods. Instant OT’s time includes an initialization step
that took 23.5 seconds that only depends on the image resolution
and not the image content, a solving step that took 1.5 seconds
that depends on the image content but not the stippling pattern,
and a map inversion that took 0.93 seconds that e�ectively advects
samples. Other approaches produced arguably lower quality results,
including Sliced OT [Paulin et al. 2020] (16 seconds, including 8
seconds for precomputing a Radon transform of the input image,
and 8 seconds to optimize stipples) and Polyhex [Wachtel et al. 2014]
(0.31s). Note that while Polyhex is the fastest competing approach,
it also comes with 1.42 GB of precomputed lookup tables, that, in
practice, took about 10 seconds to load on our machine before gen-
erating samples. In Table 1, we summarize all timings for our direct
stippling experiments. Additional stippling results and comparison
with Penrose tilling [Ostromoukhov et al. 2004] and Wang tiles
[Kopf et al. 2006] are provided in supplementary material.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

8 • Khoa Do, David Coeurjolly, Pooran Memari, and Nicolas Bonneel

Sample
points

, 2
2 , 4

4 , 4
2 , 1.6

4 Ours

Fig. 5. Optimally transporting a uniform measure towards a sum of 1024 Diracs (le�) results in a power diagram when the ground distance is quadratic
(“, 2

2 ”) or more complex, possibly non-convex, cells in other cases (here, computed with, 4
4 ,,

4
2 ,,

1.6
4 using linear programming). Our transport reduces the

transport cost for all convex ground distances and results in non-convex cells of equal areas (“Ours”). We illustrate on uniformly drawn sample points (top
row) and points sampled on a disk (bo�om row).

Δk

∇q

Input image Instant OT Ours Input image Instant OT Ours

Fig. 6. The Instant OT approach of Nader and Guennebaud [2018] computes the optimal transport map) as) (G) = G + ∇k (G) by solving Poisson equations
iteratively. We compare their optimal ∇q =) − Id and Δk to our result that does not claim optimality for the quadratic cost (nor any specific cost). Here,
darker input image values represent higher (ink) density. Maps are encoded with their (G, ~) coordinates as red and green values.

Accelerating existing methods with fast initialization. Methods
producing the highest quality stippling also tend to be the slowest.
In our tests, BNOT [de Goes et al. 2012] and GBN [Ahmed et al.
2022] performed best. These methods are iterative and can bene�t
from a good initialization to accelerate convergence. We show that
initializing these methods with our realtime stippling allows to
recover the same quality at signi�cant speedup. Figure 10 illustrates
convergence results for GBN and BNOT, initialized with uniform
random sampling and the result of our method. For BNOT, using our

result as initialization, we achieve in a few seconds a convergence
comparable to the result obtained in minutes using uniform random
sampling as initialization.

Realtime stipple editing. Our linear-timemethod enables real-time
editing, signi�cantly improving usability for technical and artistic
applications over similar tools that require minutes, such as Pattern-
shop [Huang et al. 2023]. For this application, we use a uniform point
set generated by LDBN [Ahmed et al. 2016] that gives qualitatively

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

Linear-Time Transport with Rectified Flows • 9

5 iter. (0.026s) 10 iter. (0.035s) 25 iter. (0.052s) 50 iter. (0.080s) 100 iter. (0.135s)

Fig. 7. Using the RK4 integrator, we show the iterations of the advected samples, here, on a 1024x1024 image with 16k samples. We se�le for 50 iterations.
Similar results can be obtained with more iterations of integrators with lower convergence (e.g., Euler).

Fi
xe
d
20
48
×
20
48

gr
id

8k (0.084s CPU, 0.023s GPU) 16k (0.012s CPU, 0.030s GPU) 32k (0.20s CPU, 0.044s GPU) 64k (0.36s CPU, 0.072s GPU)

Fi
xe
d
32
:
sa
m
pl
es

128 (0.022s CPU, 0.013s GPU) 256 (0.025s CPU, 0.013s GPU) 512 (0.04s CPU, 0.016s GPU) 1024 (0.11s CPU, 0.029s GPU)

Fig. 8. We vary the space discretization – sample count (first row, on a 2048 × 2048 image) and image resolution (second row, using 32: samples) – of our
algorithm and evaluate speed and qualitative results.

Scalable SOT (395s) GBN (152s) Sliced OT (16s) Polyhex (0.31s) Ours (CPU: 0.042s, GPU: 0.012s)

Fig. 9. From a 2D distribution and an initial uniform sampling pa�ern, we advect samples using our rectified flow. We compare our results with the
state-of-the-art methods of Salaün et al. [2022], Gaussian Blue Noise [Ahmed et al. 2022], Sliced OT [Paulin et al. 2020] and Polyhex [Wachtel et al. 2014] (see
also Fig. 1 for other comparisons).

similar results to BNOT [de Goes et al. 2012] but in realtime. Other
fast point patterns can be used as input [Doignies et al. 2023]. Since
our method does not incur signi�cant precomputations, the density

as well as the number of samples may be interactively adjusted
– impacting the overall pattern. We showcase in supplementary

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

10 • Khoa Do, David Coeurjolly, Pooran Memari, and Nicolas Bonneel

R
an
do

m
in
it
.

G
B
N
u
si
n
g
ou

r
in
it
.

#iter 10 50 100 250 1000

R
an
do

m
in
it
.

B
N
O
T
u
si
n
g
ou

r
in
it
.

#iter 1 2 3 5 10

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 0 20 40 60 80 100 120 140 160

GBN with our initialization
GBN with random initialization

G
B
N

 e
n
e
rg
y

Time (s)

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

BNOT with our initialization
BNOT with random initialization

O
p
ti
m
a
l
tr
a
n
s
p
o
rt

 c
o
s
t

Time (s)

Fig. 10. We present two representative experiments to demonstrate the impact of our method as a fast initialization on the convergence of stippling methods.
First, using the high-quality Gaussian Blue Noise iterative sampler [Ahmed et al. 2022] (first set of figures) and then, the BNOT sampler [de Goes et al.
2012] (second set), we compare two initialization strategies: uniform random sampling (top row in each experiment) and the result from our method (bo�om
row). The number of iterations of the GBN solver are indicated for each column, with our method improving convergence at negligible cost. For BNOT, we
also report the number of weight optimization iterations, each of which involves several (and varying numbers of) Newton and line search steps. With our
initialization, BNOT converges in 215 seconds, compared to 1972 seconds for uniform random initialization on this challenging example. Lastly, we illustrate
the convergence of the GBN or BNOT energy as a function of the number of iterations and time, via two graphs. We observe that for BNOT on this example,
most of the time is spent in the first iteration, while for GBN, each iteration takes the same time (eg. 150s for 1000 steps).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

Linear-Time Transport with Rectified Flows • 11

Table 1. We provide timing comparisons with other stippling methods (in
seconds). Additional results and comparisons can be seen in supplementary
materials.

Image details BNOT GBN Instant
OT

Ours
(CPU)

Ours
(GPU)

8k,
1024x1024

173 152 26 0.042 0.012

8k,
1024x1024

1612 1205 30 0.048 0.012

16k,
1024x1024

5653 852 56 0.080 0.018

16k,
2048x2048

1056 2400 21 0.12 0.030

materials a video of this application, as well as a realtime webcam
stippling video demo.

conformal map target density output

input mesh conformal map output

Fig. 11. Area preserving parametrization. First row: conformal parameteri-
zation, conformal factor used as density, our area-preserving result. Second
row: input mesh, conformal parameterization, our area-preserving result.
Pierrot model by Frank ter Haar from the Aim@Shape repository.

5.2 2D and 3D shape interpolation

Shape interpolation is an immediate application of our Linear-Time
Transport method, enabling smooth transitions between two input
shapes and producing plausible intermediate results. In 2D experi-
ments, we compare our approach with both the instant transport

method and a state-of-the-art GPU-based implementation (Geom-
Loss library), demonstrating that our method is two orders of mag-
nitude faster than both, see Figure 1 top left. We demonstrate tran-
sitions from one connected component to two, along with more
complex cases involving multiple holes, such as the caterpillar ex-
ample featured in Fig. 1. Additionally, showcase 3D interpolations,
surpassing the limitations of instant transport, which is restricted
to 2D grids, see Figure 1 bottom. In 3D, the density is constructed by
voxelizing 3D meshes (here, using 2563 voxels). We then transport
strati�ed uniformly distributed particles with one particle per voxel
towards these densities. We then interpolate these particles, splat
them onto the voxel grid using a small Gaussian centered at each
particle, and use a marching cubes algorithm [Lorensen and Cline
1998] to reconstruct the interpolated mesh.

5.3 Linearized Wasserstein Barycenters

We further extend our approach to interpolating between more
than two input shapes, akin to Wasserstein Barycenters, within
our linearized transport framework. In the 2D and 3D examples of
Figures 12 and 13 illustrate smooth interpolation from one connected
component to two, showcasing the robustness of our approach in
addressing complex topology (additional results in supplementary
material).

5.4 Area preserving parametrization

Area-preservation �attening is another application of our fast com-
putation of transport plans between densities. This method maps
a 2D surface onto a �at plane while locally preserving areas. We
proceed using the approach of Zhao et al. [2013] for meshes homeo-
morphic to a disk. We �rst compute a conformal map from the mesh
to a square planar domain, and then transport the conformal factor
towards the uniform measure. We use the transport map to advect
vertices in parameter space – this results in an area-preserving map
by construction, as shown in Figure 11.

6 Conclusions

Drawing on the concept of recti�ed �ows, our approach e�ciently
computes transport in closed form. It has linear time complexity
and is embarrassingly parallel, signi�cantly improving speed. It
works in arbitrary, but moderately low, dimensions, is trivial to
implement, and is easily ported on the GPU. While it requires both
a grid discretization and particles, which can be a challenge in some
applications, this also makes it powerful, as it allows obtaining the
transport map for a very sparse set of particles. Our framework is
applicable to a range of problems, including stippling, Wasserstein
barycenters, shape interpolation, and area-preserving parametriza-
tion. The simplicity, scalability, and �exibility of our method make it
a powerful tool for further research in fast, transport-based context.

Acknowledgments

Thisworkwas partially funded by the ERCAdG 101054420 EYAWKA-
JKOS project, ANR-22-CE46-000 (StableProxies), and donations from
Adobe Inc.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

12 • Khoa Do, David Coeurjolly, Pooran Memari, and Nicolas Bonneel

Convolutional Wasserstein (POT GPU, 20s) Sinkhorn divergence (GeomLoss GPU, 3.1s)

Instant OT [Nader and Guennebaud 2018] (CPU, 4.4s) Ours (CPU, 0.12s)

Fig. 12. We compute the interpolation of 4 shapes using: (a) direct Convolutional Wasserstein barycenter [Solomon et al. 2015] via Sinkhorn-like iterations
on the GPU using POT [Flamary et al. 2021] (entropy set to 0.0019 to ensure both sharpness and numerical stability), (b) a Sinkhorn divergence iteratively
minimized via GeomLoss on the GPU to debias Sinkhorn [Feydy et al. 2019b] (c), Instant OT [Nader and Guennebaud 2018] (that includes 0.4s of Laplacian
prefactorization), and our method (d). Aside from Convolutional Sinkhorn that minimizes the optimal transport cost (up to an entropy-regularizing term
that blurs results), all other approaches use a linearized transport approach to produce barycenters. For all methods, timings correspond to producing all 25
barycenters at 256x256 resolution (or 65,536 sample points).

References
Abdalla G.M. Ahmed, Hélène Perrier, David Coeurjolly, Victor Ostromoukhov, Jianwei

Guo, Dongming Yan, Hui Huang, and Oliver Deussen. 2016. Low-Discrepancy Blue
Noise Sampling. ACM Transactions on Graphics 35, 6 (2016). https://doi.org/10.1145/
2980179.2980218

Abdalla GM Ahmed, Jing Ren, and Peter Wonka. 2022. Gaussian blue noise. ACM
Transactions on Graphics (TOG) 41, 6 (2022), 1–15.

Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. 2017. Near-linear time
approximation algorithms for optimal transport via Sinkhorn iteration. Advances in
neural information processing systems 30 (2017).

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. 2008. Gradient �ows: in metric
spaces and in the space of probability measures. Springer Science & Business Media.

Uri M Ascher and Linda R Petzold. 1998. Computer methods for ordinary di�erential
equations and di�erential-algebraic equations. SIAM.

Nicolas Bonneel and David Coeurjolly. 2019. Spot: sliced partial optimal transport.
ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13.

Nicolas Bonneel and Julie Digne. 2023. A survey of Optimal Transport for Computer
Graphics and Computer Vision. Computer Graphics Forum (Eurographics State of
the Art Reports 2023) 43, 2 (2023). https://doi.org/10.1111/cgf.14778

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter P�ster. 2015. Sliced and
radon wasserstein barycenters of measures. Journal of Mathematical Imaging and
Vision 51 (2015), 22–45.

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. 2011.
Displacement interpolation using Lagrangian mass transport. In Proceedings of the
2011 SIGGRAPH Asia conference. 1–12.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal transport.
Advances in neural information processing systems 26 (2013).

Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun.
2012. Blue Noise through Optimal Transport. ACM Trans. Graph. (SIGGRAPH Asia)

31 (2012). Issue 6.
Bastien Doignies, Nicolas Bonneel, David Coeurjolly, Julie Digne, Loïs Paulin, Jean-

Claude Iehl, and Victor Ostromoukhov. 2023. Example-based samplingwith di�usion
models. In SIGGRAPH Asia 2023 Conference Papers. 1–11.

Ayelet Dominitz and Allen Tannenbaum. 2009. Texture mapping via optimal mass
transport. IEEE transactions on visualization and computer graphics 16, 3 (2009),
419–433.

Jean Feydy, Pierre Roussillon, Alain Trouvé, and Pietro Gori. 2019a. Fast and scalable
optimal transport for brain tractograms. In Medical Image Computing and Computer
Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China,
October 13–17, 2019, Proceedings, Part III 22. Springer, 636–644.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé,
and Gabriel Peyré. 2019b. Interpolating between optimal transport and mmd using
sinkhorn divergences. In The 22nd International Conference on Arti�cial Intelligence
and Statistics. PMLR, 2681–2690.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Bois-
bunon, Stanislas Chambon, Laetitia Chapel, Adrien Coren�os, Kilian Fatras, Nemo
Fournier, et al. 2021. Pot: Python optimal transport. Journal of Machine Learning
Research 22, 78 (2021), 1–8.

Thomas O Gallouët and Quentin Mérigot. 2018. A Lagrangian scheme à la Brenier for
the incompressible Euler equations. Foundations of Computational Mathematics 18,
4 (2018), 835–865.

Valentin Hartmann. 2017. A geometry-based approach for solving the transportation
problem with Euclidean cost. arXiv preprint arXiv:1706.07403 (2017).

Xingchang Huang, Tobias Ritschel, Hans-Peter Seidel, Pooran Memari, and Gurprit
Singh. 2023. Patternshop: Editing Point Patterns by Image Manipulation. ACM
Transactions on Graphics (TOG) 42, 4 (2023), 1–14.

Matt Jacobs and Flavien Léger. 2020. A fast approach to optimal transport: The back-
and-forth method. Numer. Math. 146, 3 (2020), 513–544.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

https://doi.org/10.1145/2980179.2980218
https://doi.org/10.1145/2980179.2980218
https://doi.org/10.1111/cgf.14778

Linear-Time Transport with Rectified Flows • 13

Fig. 13. We compute barycenters for voxelized 3d meshes. Computations required 1394s for 3 transport maps for 2563 voxels, plus approx 4s per interpolation
step (advecting 2563 particles, spla�ing them on voxels, and marching cubes reconstruction). Armadillo from the Stanford Computer Graphics Laboratory 3D

scanning repository.

Damian Kelly and Garrett O’Niell. 1991. The minimum cost �ow problem and the
network simplex method. Master’s thesis (1991).

Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. 2006. Recursive
Wang tiles for real-time blue noise. In ACM SIGGRAPH 2006 Papers. 509–518.

Bruno Lévy. 2015. A Numerical Algorithm for !_{2} Semi-Discrete Optimal Transport in
3D. ESAIM: Mathematical Modelling and Numerical Analysis 49, 6 (2015), 1693–1715.

Bruno Levy. 2018. Simulating �uids with a computer: Introduction and recent advances.
arXiv preprint arXiv:1811.05636 (2018).

Bruno Lévy, Roya Mohayaee, and Sebastian von Hausegger. 2021. A fast semidiscrete
optimal transport algorithm for a unique reconstruction of the early Universe.
Monthly Notices of the Royal Astronomical Society 506, 1 (2021), 1165–1185.

Qiang Liu. 2022. Recti�ed �ow: A marginal preserving approach to optimal transport.
arXiv preprint arXiv:2209.14577 (2022).

Xingchao Liu, Chengyue Gong, and Qiang Liu. 2022. Flow straight and fast: Learning
to generate and transfer data with recti�ed �ow. arXiv preprint arXiv:2209.03003
(2022).

William E Lorensen and Harvey E Cline. 1998. Marching cubes: A high resolution 3D
surface construction algorithm. In Seminal graphics: pioneering e�orts that shaped
the �eld. 347–353.

Domingo Martín, Germán Arroyo, Alejandro Rodríguez, and Tobias Isenberg. 2017. A
survey of digital stippling. Computers & Graphics 67 (2017), 24–44.

Quentin Mérigot, Alex Delalande, and Frederic Chazal. 2020. Quantitative stability of
optimal transport maps and linearization of the 2-Wasserstein space. In International
Conference on Arti�cial Intelligence and Statistics. PMLR, 3186–3196.

Jocelyn Meyron, Quentin Mérigot, and Boris Thibert. 2018. Light in power: a general
and parameter-free algorithm for caustic design. ACM Transactions on Graphics
(TOG) 37, 6 (2018), 1–13.

Caroline Moosmüller and Alexander Cloninger. 2023. Linear optimal transport em-
bedding: provable Wasserstein classi�cation for certain rigid transformations and
perturbations. Information and Inference: A Journal of the IMA 12, 1 (2023), 363–389.

Georges Nader and Gael Guennebaud. 2018. Instant transport maps on 2D grids. ACM
Transactions on Graphics 37, 6 (2018), 13.

Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. 2004. Fast hierarchical
importance sampling with blue noise properties. ACM Transactions on Graphics
(TOG) 23, 3 (2004), 488–495.

Lois Paulin, Nicolas Bonneel, David Coeurjolly, Jean-Claude Iehl, Antoine Webanck,
Mathieu Desbrun, and Victor Ostromoukhov. 2020. Sliced optimal transport sam-
pling. ACM Trans. Graph. 39, 4 (2020), 99.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computational optimal transport: With
applications to data science. Foundations and Trends® in Machine Learning 11, 5-6
(2019), 355–607.

Francois Pitie, Anil C Kokaram, and Rozenn Dahyot. 2005. N-dimensional probability
density function transfer and its application to color transfer. In Tenth IEEE Interna-
tional Conference on Computer Vision (ICCV’05) Volume 1, Vol. 2. IEEE, 1434–1439.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. 2012. Wasserstein barycenter
and its application to texture mixing. In Scale Space and Variational Methods in
Computer Vision: Third International Conference, SSVM 2011, Ein-Gedi, Israel, May
29–June 2, 2011, Revised Selected Papers 3. Springer, 435–446.

Corentin Salaün, Iliyan Georgiev, Hans-Peter Seidel, and Gurprit Singh. 2022. Scalable
multi-class sampling via �ltered sliced optimal transport. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 41, 6 (2022). https://doi.org/10.1145/
3550454.3555484

Vivien Seguy and Marco Cuturi. 2015. Principal geodesic analysis for probability
measures under the optimal transport metric. Advances in Neural Information
Processing Systems 28 (2015).

Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher,
Andy Nguyen, Tao Du, and Leonidas Guibas. 2015. Convolutional wasserstein
distances: E�cient optimal transportation on geometric domains. ACM Transactions
on Graphics (ToG) 34, 4 (2015), 1–11.

Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit Singh,
Gaël Cathelin, Fernando de Goes, Mathieu Desbrun, and Victor Ostromoukhov. 2014.
Fast Tile-Based Adaptive Sampling with User-Speci�ed Fourier Spectra. ACM Trans.
Graph. 33, 4 (2014).

Wei Wang, Dejan Slepčev, Saurav Basu, John A Ozolek, and Gustavo K Rohde. 2013. A
linear optimal transportation framework for quantifying and visualizing variations
in sets of images. International journal of computer vision 101 (2013), 254–269.

Xin Zhao, Zhengyu Su, Xianfeng David Gu, Arie Kaufman, Jian Sun, Jie Gao, and
Feng Luo. 2013. Area-preservation mapping using optimal mass transport. IEEE
transactions on visualization and computer graphics 19, 12 (2013), 2838–2847.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version

https://doi.org/10.1145/3550454.3555484
https://doi.org/10.1145/3550454.3555484

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Optimal transport
	2.2 Rectified flows

	3 Rectified flows involving a uniform distribution
	3.1 Problem reformulation
	3.2 Simplification for uniform X0
	3.3 Fast interpolated summed-area tables
	3.4 Non-uniform f0

	4 Numerical Evaluation
	4.1 Time complexity and speed
	4.2 Comparison to optimal transport
	4.3 Ablation and hyper-parameters

	5 Applications
	5.1 Stippling
	5.2 2D and 3D shape interpolation
	5.3 Linearized Wasserstein Barycenters
	5.4 Area preserving parametrization

	6 Conclusions
	Acknowledgments
	References

