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Abstract—Voxel based modeling is a very attractive way to represent complex multi-material objects. Beside artistic choices of
pixel/voxel arts, representing objects as voxels allows efficient and dynamic interactions with the scene. For geometry processing
purposes, many applications in material sciences, medical imaging or numerical simulation rely on a regular partitioning of the space
with labeled voxels. In this article, we consider a variational approach to reconstruct interfaces in multi-labeled digital images. This
approach efficiently produces piecewise smooth quadrangulated surfaces with some theoretical stability guarantee. Non-manifold parts
at intersecting interfaces are handled naturally by our model. We illustrate the strength of our tool for digital surface regularization, as
well as voxel art regularization by transferring colorimetric information to regularized quads and computing isotropic geodesic on digital
surfaces.
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1 INTRODUCTION

In many aspects of Computer Graphics, the represen-
tation of complex objects as data attached to voxels be-
comes more and more familiar. A key feature of voxel-based
modeling is that many geometry and topology processing
tasks (collision detection, constructive solid geometry, ray-
object intersection, homotopic transforms. . . ) can be triv-
ially defined or efficiently implemented within this model.
Together with very efficient data structures [1]–[3], voxel
grids are widely used to represent or simulate complex phe-
nomena that are volumetric, multi-material and/or dynamic
(e.g.[4]–[6]). In rendering, voxel-based global illumination
techniques reformulate the illumination equation and take
into account the spatial subdivision domain to pre-compute
material and light/material information. They thus obtain
a physically based rendering whose complexity does not
depend anymore on the geometrical complexity of the
objects in the scene but on the grid size (which can be
adapted to the device viewport) [7]–[9]. Voxel art and low-
resolution voxel modeling can also be observed in the game
industry thanks to some dedicated modeling tools [10]. In
the spirit of [11] which addresses the issue of depixelizing
pixel art, our method transforms the crispy representation
of voxel surfaces into a smooth reconstruction even for low-
resolution objects.

Beside modeling tasks, geometry processing of regular
labeled images is crucial in many material sciences or med-
ical imaging applications (e.g [12]–[14]) as many acquisition
devices generate regularly spaced volumetric data.

In this article, we consider a variational formulation,
first introduced in [15], to efficiently reconstruct interfaces
in multi-labeled 3D images. Starting from digital surfaces
defined as boundaries of voxel sets, we construct a piece-
wise smooth quadrangulated surface with geometric and
topological theoretical guarantees that captures the singu-
larities of the input voxel geometry. As we maintain a map-
ping between original digital surface quads and regularized
ones, we can transfer information (e.g. color, embossing or

bump map) from the multi-labeled image to the regularized
interfaces. Such smooth surfaces can either be used for
visualization purposes, or as an intermediate representation
for later geometry processing tasks.

2 CONTEXT AND CONTRIBUTIONS

2.1 Related work
Iso-contouring approaches. From the seminal work of
Lorensen and Cline [16], the Marching-Cubes (MC) ap-
proach is one of the most popular approach to extract
a triangular iso-surface from a 3-D gray-level volumetric
image. This approach locally constructs the triangulation
from a set of canonical configurations with vertices obtained
by interpolation from image values. Many extensions have
been proposed (see [17] for a survey). For instance to fix
topological ambiguities [18], to handle multiple labels or
interfaces [19], to quickly generate adaptive mesh on GPU
[20], [21], or to extract feature preserving surfaces [22]. Using
a similar local construction idea, Dual-Contouring (DC)
techniques construct an iso-surface from implicit functions
(with positions and normal vector field as input) [23]. These
approaches produce smooth surfaces, even in adaptive and
multi-material cases, but require both a precise normal
vector field at the iso-surface and precise positions on the
surface. Again, many derived works have been proposed to
control the overall surface topology [24] or to provide fast
GPU implementations [25]. For voxel art reconstruction, we
can also cite the work of Muniz et al. [26] which mainly
focuses on colorimetric transfer between the voxel object
and MC-like surfaces. Our approach follows a similar idea
for color mapping using a robust regularization of the
surfaces geometry.

Finally, on binary 3D images, the “shrouds” approach
of [27] builds a smooth surface that separates interior from
exterior voxels. This 3D problem is transformed into a
series of 2D smooth contour reconstruction problems, by
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Fig. 1. Reconstruction of the interfaces of a multi-labeled image: (from left to right) input voxel art decomposed into two labels (sea, island,
64× 68× 40) and three interfaces, piecewise smooth reconstruction with consistent interfaces between labels.

slicing the 3D volumes with axis-align planes. Each contour
is regularized so as to minimize its squared curvature and
the separation property is obtained by forcing each vertex
to lie on its unit edge joining an interior voxel to an exterior
voxel. Those 2D problems are intertwined since each vertex
is shared by two slices. Since this method gives comparable
results to our approach, we will compare them in the
experiment section. Note nevertheless that this method is
limited to closed surface reconstruction and its extension to
open surfaces or multi-labeled image is not trivial.

Volumetric approaches. As we are dealing with volumetric
multi-labeled images, solutions exist from volumetric
meshing or volumetric reconstruction [14], [28]–[31].
These approaches aim at reconstructing a volumetric
(usually tetrahedral) mesh which preserves multi-labeled
interfaces, while optimizing the quality of geometrical
elements, crucial when solving Finite Elements Method
problems. Usually starting from structures like Delaunay
triangulation, these techniques optimize the geometry
using iterative or variational formulations. In this paper, we
rather focus on the high quality of reconstructed interfaces
within the multi-labeled dataset while keeping a mapping
between input and output surface elements. We compare
our method with some of these techniques.

Regularization of surfaces. As we regularize surfaces,
alternative approaches may consider mesh fairing or
denoising strategies on MC surfaces. Most recent techniques
consider variational formulations on the vertices positions
or the normal vector field to denoise a mesh while
preserving its features [32]–[36]. These approaches are
extremely efficient to remove noise from a perturbed
triangular mesh, but do not generate smooth enough
surfaces on low resolution voxel interfaces as illustrated by
our experiments (see Sec. 4 and supplementary). A closely
related surface regularization approach was proposed in
[37]: the fairing variational model is based on squared
curvature minimization and imposed hard constraints on
the distance to the original vertices. The optimized energy
is not convex and this model shares many similarities with
the shrouds method. In a similar way, Zhang et al. [38]
also propose a Willmore flow to regularize quad meshes
as well as hexahedral volumetric ones, with an additional
tangential constraint to enhance the quality of the surface

elements. However, the non-convexity of the energy and
the use of a semi-implicit Euler scheme to minimize it may
lead to sub-optimal solutions and numerical instabilities.
Our approach relies on a simpler quadratic formulation
whose solution has strong geometrical and topological
stability properties.

Digital Geometry. To process the geometry or the topology
of subsets of Z3 (digital objects), there exist dedicated
mathematical tools and efficient algorithms [39]. These
approaches exploit either the regularity of the grid,
the integer arithmetic or the topology induced by the
lattice, to infer some geometrical quantities for instance.
Our approach relies on a stable normal vector field
estimation on boundaries of the voxel set. To estimate such
differential quantities, many strategies exist. We focus here
on approaches providing proven multigrid convergence
properties such as [40] (see Sec. 3.3 for a more precise
definition). From an estimated input normal vector field,
we can obtain a piecewise smooth anisotropic normal
vector bundle using voting or variational approaches
[41], [42]. As we aim to reconstruct a mesh from a set of
voxels, we also mention a polyhedrization technique of
digital object boundaries [43]. This approach first extracts
large patches of flat voxels as defined in [44], then apply
some iterative fairing steps on the X, Y and Z slices and
finally reconstruct an iso-surface. Although authors present
interesting results, the overall algorithm is complex with
many parameters and heuristic (e.g. in the flat patches
extraction step). We propose a simpler approach with some
asymptotic theoretical properties on the regularized surface.

Contributions. In this article, we propose a variational
approach to reconstruct boundaries of voxel sets (Fig. 2)
that is fast, robust and easy to implement. Starting from
an anisotropic normal vector field estimation on the digi-
tal surface, the energy minimization produces a piecewise
smooth and fair quadrangulated surface (Fig. 2, second
row). The regularized surface is geometrically close to the
input digital boundary (Property 1, Sec. 3.3) and guaranteed
without self-intersections under easy-to-enforce constraints
(Property 2, Sec. 3.4). Since our method preserves the com-
binatorial structure of the input quadrangulated surface,
we can regularize complex multilabel image interfaces and
map colorimetric information from the input surface onto



3

the smooth one for voxel art regularization. Moreover, our
variational model is a convex quadratic energy which can
be minimized either by solving a sparse linear system, or
using an iterative gradient descent scheme which allows
topological control and efficient implementation on GPU at
interactive frame rates.

In Section 3, we describe the variational model we
consider and detail its properties. In Section 4, we exper-
imentally evaluate our tool to regularize digital surfaces,
multiple material interfaces and voxel art, and compare it
with other methods of the literature. The supplementary
material provides detailed proofs of theoretical properties
of our model as well as further experimental comparisons
with other regularization approaches.

The variational model was first introduced in [15]. Here
we extend this result with theoretical stability results of
the regularization (Sec. 3.3 and 3.4 and supplementary) and
with extensions to multi-labeled images (Sec. 3.5). Further-
more the new GPU optimization can enforce the hypotheses
required by the topological stability result (Sec. 3.4). Finally
the proposed model is more deeply evaluated and com-
pared with the Shrouds algorithm.

3 VARIATIONAL REGULARIZATION

3.1 Digital Surface Model

We first describe the surface model we use to process
boundaries of sets of voxels. Let X be a binary voxel object
as a subset of Z3. A convenient way to define the boundary
of X considers the cellular inter-pixel decomposition of the
grid (see Fig. 2-left). The digital surface or digital boundary,
of X is a collection of surfels (cells of dimension 2 embedded
as isothetic quads), equipped with some specific adjacency
relationship. Digital surface vertices are the 0−cells incident
to a surfel. We refer to [39], [45], [46] for topological prop-
erties associated to this combinatorial structure. For short, if
voxels are connected and adjacent along their faces but not
solely along edges or vertices, then the boundary of these
voxels form a digital surface that is a closed combinatorial
2-manifold.

Given a multi-labeled image, we can extend this rep-
resentation to define digital surfaces for all interfaces (Fig.
2-right): each connected component of voxels with the same
label characterizes a proper digital surface and we can even
define an interface between two labels as the connected set
of surfels in-between the two voxel sets with these labels.

At any surfel of the digital surface, one can estimate
several differential quantities such as a normal vectors. Any
algorithm estimating a robust normal vector field on a mesh
or a point cloud could be used [41], [47]–[49]. However,
estimators dedicated to digital surfaces are usually preferred
since they provide multigrid convergence properties [40]:
given a smooth object digitized on a grid with grid-step
h, the property states that the estimated normal vectors
converge uniformly to the normal vectors on the smooth
object as h tends to zero. This property is used in Section 3.3
to improve the quality of our reconstruction. For piecewise
smooth reconstruction, we can rely on anisotropic normal
vector estimation through dedicated approaches [41], [48],
[50] or as a post-process of a first normal vector field

Fig. 2. Reconstruction of digital surfaces: given a 3D digital surface
(topological boundary of a set of voxels) (first row left) and a 2D labeled
image with 1D digital interfaces between pixel components (first row
right), the proposed approach outputs piecewise smooth reconstruc-
tions with the combinatorics as the input surfaces (second row).

estimation [42]. Please refer to the supplementary material
for experimental comparisons.

In the context of multi-labeled images, normal vectors
are estimated on the boundary of each connected com-
ponent, each surfel having two normal vectors since it is
shared by two regions. Averaging their direction (forgetting
their orientation) leads to a single normal vector direction
per surfel, which is enough input for our variational model.

3.2 Energy formulation

The objective is to regularize the boundaries of digital
objects into piecewise smooth ones (Fig. 2). The variational
formulation takes as input a combinatorial quad structure
with n vertices P := {pi ∈ R3}i=1...n and m faces
F := {fk}k=1...m as quadruples of vertices. We also con-
sider a prescribed normal vector field nf ∈ S2 for each
f ∈ F , whose directions are important but whose orien-
tations can be arbitrary. The output is a quadrangulated
surface that has the same combinatorial structure but with
vertices P ∗ := {p∗i }i=1...n such that:

P ∗ := argminP̂ E(P̂ ) (1)

with

E(P̂ ) := α
n∑
i=1

‖pi − p̂i‖2 + β
∑
f∈F

∑
d p̂j∈∂f

(d p̂j · nf )2

+ γ
n∑
i=1

‖p̂i − b̂i‖2 . (2)

where •·• is the standard R3 scalar product and ‖•‖ its asso-
ciated norm. By a slight abuse of notation, let {d p̂j}j=1...4

be the embedded edges of the face f . Edges do not need to
be oriented as we square the scalar product in the second
term. See figure 3 for an illustration of each terms. The first
term of this quadratic energy is a data attachment term to
prevent vertices to be too far away from the input digital
surface. The second term, the alignment term, forces the
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Fig. 3. Notations for the normal vector alignment term (a, b) (e.g.
d p̂1 := p̂a − p̂b), and the fairness term (c).

regularized quads to match with the prescribed normal
vector. The energy is minimum when all edges belong to
the tangent plane defined by nf . Similar formulation can
be found to enforce planarity of quads in many variational
formulations [51]. Finally, the last term is a classical
fairness term which appears in many relaxation geometry
processing tasks. If we denote b̂i the barycenter of the
adjacent vertices to p̂i, the fairness term forces the points
p̂i to be close to b̂i. This term is useful to optimize quad
geometry by moving vertices solely along their tangent
plane in which the alignment term is already minimal. If p̂i
belongs to the boundary of P̂ , no fairness term is considered
for this point. In the multi-material case, a specific strategy
has been chosen to properly define the barycenter b̂i, see
Sect. 3.5.

Let p =
[
· · · , pzi−1, pxi , p

y
i , p

z
i , p

x
i+1, · · ·

]T be the 3n
column vector obtained by packing together the coordinates
of all input vertices of P . Similarly, we denote by p̂ the 3n
column vector containing the regularized vertex positions.
Energy partial derivatives can be computed from (2) as

∂E(P̂ )

∂p̂i
:= α

n∑
i=1

2(p̂i − pi) + β
∑
f∈F

∑
d p̂j∈∂f

2(d p̂j · nf )nf

+ γ
n∑
i=1

2(b̂i − p̂i) (3)

and are linear with respect to p̂ and p. If we represent
∂E(P̂ )
∂p̂i

as a column vector ∇E(P̂ ), there exists two dis-
crete linear maps (3n × 3n matrices) A and B such that
∇E(P̂ ) = Ap̂−Bp. Minimizing (2) can be done by solving
the linear system ∇E(P ∗) = 0 ⇔ Ap∗ = Bp. Note
that A is sparse, which allows an efficient resolution of
the linear system (see supplementary material). For some
specific applications such as interactive regularization on
GPU, a gradient descent using (3) may be preferred.

Positive weights α, β and γ can be set independently
to emphasize some of the terms. As illustrated in the ex-
periments (Sect. 4 and Fig. 15), each term as an explicit
impact on the expected result: its proximity to the original
surface, its conforming to the given normal vector field and
the quality of the quadrangulation respectively. As long as
α > 0, the operator is full rank, and the energy admits
a unique solution. In our experiments except the ablation
study, we considered the same parameters for all figures:
α = 10−3, β = 1 and γ = 10−1; The rationale being that
the alignment term is the most important one, followed one
order of magnitude lower by the fairness term to allow
additional tangential regularization. The attachment term
gets the lowest weight since it is mainly present to ensure

that the variational problem has a unique solution: the other
terms have indeed non null kernel.

3.3 Proximity and stability
An important property of the proposed formulation is that
we can guarantee a proximity between the regularized sur-
face and the input digital object boundary. A more formal
analysis considers an asymptotic multigrid behavior of the
surface: given a smooth shape X ⊂ R3 and its digitization
Xh on a grid step h, e.g. using the Gauss digitization
Xh := X ∩ (h · Z3). We would like to know how far is
the regularized quadrangulation of ∂Xh with respect to ∂X
as h tends to zero.

We have the following proximity and stability result,
which assumes that the fairness term is negligible compared
to the others.

Proposition 1 (Proximity and stability). Let P be the input
voxel vertices of the boundary of Xh, and let P ∗ be the output
vertices of our regularized surface. Then the average distance
between P ∗ and P is upper-bounded by O(h). Furthermore, the
same holds between P ∗ and ∂X . More precisely,

1

n

n∑
i=1

‖p∗i − pi‖ ≤ C · h ,
1

n

n∑
i=1

d(p∗i , ∂X ) ≤ C ′ · h , (4)

for some constants C,C ′ that depend uniquely on the reach (say
greater than R) of ∂X , and for a gridstep h, 0 < h < 2R/

√
3.

Proof. Sketch of the proof (full proof in the supplementary
material). The main idea is to exhibit a quadrangulated sur-
face P̃ built on the continuous boundary ∂X , whose energy
E(P̃ ) is upper bounded by a constant. The energy E(P ∗) of
the optimal shape is then no greater than this constant. The
relations above are then induced by this inequality. More
precisely, the proof follows these steps.
1. Since Xh is the digitization of a solid X whose boundary
has positive reach, then ∂X is

√
3h/2-Hausdorff close to

∂Xh, for small enough gridstep h ([52], Theorem 1). Then
the orthogonal projection ξ onto ∂X is well defined for ∂Xh,
being within the reach. Every projected vertex p̃i := ξ(pi)
onto ∂X is thus at distance no greater than

√
3h/2 to pi.

2. Denoting P̃ the set of projected vertices p̃i, we evaluate
an upper bound for its energy E(P̃ ) (its edge/face combi-
natorics is the same as the input surface). The three terms of
(2) can be upperbounded as (n,m correspond to the number
of vertices and faces resp.):

E(P̃ ) ≤ α3

4
nh2 + βKmh2+2δ + γ(1 +

√
3)2nh2.

The first and third terms follow easily from ‖p̃i − pi‖∞ ≤√
3h/2. Middle term requires the fact that the normal onto

a smooth surface does not vary too quickly. Last, symbol
δ ≥ 0 indicates the speed of convergence of the prescribed
normal vector field nf toward the true normal of the surface
∂X at this point.
3. From ([52], Lemma 10), the area of ∂Xh is upper bounded
by a constant times the area of ∂X , thus mh2 is upper
bounded. Since n = m + cste on closed digitized surfaces,
we have n = O(1/h2) and m = O(1/h2). So E(P̃ ) is upper
bounded by a constant, even for non-convergent prescribed
normal vector field (δ = 0) !
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4. P ∗ being optimal, we have E(P ∗) ≤ E(P̃ ) ≤ K ′, for
K ′ a constant. Since all three terms of the energy are posi-
tive, keeping the first term and Cauchy-Schwartz inequality

induce 1
n

∑n
i=1 ‖pi − p∗i ‖ =

√
K′

α
1√
n

. Last, the Jacobian
of ξ being bounded and ξ(∂Xh) covering ∂X , we get
n = Ω(1/h2) which concludes (4), left. Equation (4), right,
is immediate from the former and ‖p̃i − pi‖ ≤ O(h).

The proposition is stated for digital surface P defined
as the boundary of the Gauss digitization of some smooth
manifold X , using a preliminary step resulting from [52]
that bounds the Hausdorff distance between P and ∂X by
O(h). When dealing with smooth surface with boundaries,
the Gauss digitization framework may not make sense but
Proposition 1 would also hold as long as we can define P as
some digitization of the surface at Hausdorff distance O(h).

A remarkable aspect of this result is that it does not
depend on the quality of the input normal vector field.
It means that the regularization is very stable in terms of
vertex position, while aligning edges so that most of them
are orthogonal to the input normal vector field.

As also shown in the supplementary material, the quality
of the input normal field impacts the normal field of the
output surface, since we show these two fields are close
and gets closer as h decreases. If we use normal vector field
estimators that converge toward the normal vector bundle
of ∂X (for instance, the digital integral invariant estimator
has a pointwise estimation error upper-bounded by O(h2/3)
[40], [53]), then the regularized surface has a normal field
that is close to the normal field of ∂X while being close to
∂X on average. In other words, it is almost the same surface.
We provide additional experimental results to illustrate the
robustness of the reconstruction with respect to the input
normal vector estimator or to noise in the estimation (see
supplemental material).

3.4 Topological guarantees
When minimizing (2) on noisy input or thin structures, self-
intersections may appear in the reconstruction. We describe
here a simple technique to enforce topological guarantees
on the reconstructed surface. Let us consider a generic
embedding into R3 of the reconstructed polygonal face fk
of P̂ . In our experiments, we illustrate the reconstructed
surface P̂ using a piecewise linear embedding of quads
(using an arbitrary triangulation). Different or higher order
embeddings could also be considered and our results may
also apply in these cases.

We thus consider the following sufficient conditions to
prevent self-intersections in P̂ (with h the grid step):

(i) Each point in the embedding of fk must lie in the
convex hull of its vertices.

(ii) Each vertex p̂i of P̂ must stay in the closed cube of
edge h − ε centered on its corresponding vertex pi
of P , for an arbitrary small ε, 0 < ε < h.

In Appendix, we prove that if both conditions are sat-
isfied, then no self-intersections can occur in P̂ . More pre-
cisely we have:

Proposition 2 (Topological guarantees). If rules (i) and (ii) are
satisfied for P̂ , then the optimal mesh P ∗ has no self-intersections.

More formally, two faces of P ∗ either have no intersection or, when
they intersect it is along their common edge segment or at their
common vertex.

Condition (i) is quite easy to fulfill as many natural
embeddings of faces lie in the convex hull of its vertices: e.g.
two triangle decomposition (used in illustrations), barycen-
tric subdivision, or even a bilinear interpolation of vertex
positions.

Concerning condition (ii), forcing vertices to stay in
a fixed neighborhood would imply additional linear con-
straints in the optimization problem (1). Even if more elabo-
rate methods could have been used (e.g. subspace minimiza-
tion [37]), we have considered in Fig. 4 a simpler approach
using a gradient descent minimization of (1) with a clamp-
ing of the vertices during the advection step (by setting to
zero some components of the gradient vector according to
the local configuration). As illustrated in Fig. 4, the clamping
step has an impact on the smoothness of the reconstruction.
We recall that (i) and (ii) are sufficient conditions to prevent
self-intersection. In Sec. 4, the clamping has not been used
as no self-intersection has been observed.

Since the combinatorial structures of P̂ and P are iden-
tical, Prop. 2 implies that both surfaces share the same
topological properties. For instance, if P is globally a 2-
manifold surface (e.g. boundaries in well-composed pictures
[45]) or if it is locally a 2-manifold (e.g. when coming
from the digitization of continuous objects with specific
regularity properties [52]), then the regularized P̂ has the
same property.

3.5 Multi-material

Even if the variational formulation (2) is a quadratic global
energy, its evaluation and its gradient are local and can be
extended to reconstruct complex multi-labeled interfaces.
On multi-labeled images, we rely on the limited number of
topological configurations of digital interfaces (Fig. 5): each
surfel is shared by two voxels with different labels and each
edge is a junction of at most 4 interfaces. Let us assume that
we have an estimated normal vector per surfel (see Section
3.1).

The first term (data attachment) in (2) is purely local on
vertices and is perfectly adapted to the multi-labeled inter-
faces. Thanks to the surfel-to-edges formulation of the second
term (alignment term, see Fig. 3-(a, b) and 5-(b)), each junc-
tion edge contributes more than twice to the energy but the
overall formulation does not change. Therefore the vertices
of such edges take into account contributions of all adjacent
normal vectors. For the third term optimizing the quad
geometry, each barycenter considers all adjacent vertices,
possibly on different interfaces. Another option would have
been to simply cancel out this term for vertices on junction
edges but regularizing their position with respect to their
neighbors allows us to regularize 1-D junctions between
interfaces (see Fig 11, first column).

As a consequence, the energy model and its minimiza-
tion described in Section 3 can also be applied to multi-
labeled interfaces. Whatever the topology of the input com-
binatorial structure, the linear operator representing the
gradient of (2) is still sparse and invertible.
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Fig. 4. Topological control: given a 1283 Stanford bunny shape (left), we colormap the distances ‖p∗i−pi‖∞ for the reconstruction minimizing
(2) (middle, right), and for the reconstruction from (2) when considering the clamping step during the vertices advection (middle, right). This
step may alter the smoothness of the reconstruction, but ensures that condition (ii) of Prop. 2 is satisfied.
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Fig. 5. Handling multiple interfaces: junction between interfaces in
the digital grid (worst case with four different labels) in (a) and the
decomposition into independent faces/edges to evaluate the energy
function (b).

4 EXPERIMENTS

4.1 Implementation details

Two different implementations are available. The first one
is a direct minimization of (2) using a sparse matrix linear
solve on the gradient operator, following [15]. This approach
requires to explicitly compute the operator from the digital
surface structure (sparse 3n × 3n matrix, see Supplemen-
tary), and then use a classical linear algebra solver (e.g. from
[54]). This implementation is publicly available in the DGtal
library (release 1.1) [55], [56].

Alternatively, for interactive purposes, we can update
the vertex positions on GPU using a simple gradient de-
scent. Using only a few steps, we quickly obtain a close
approximation of the optimal solution found by solving
the linear system. Timings are given in Section 4.4. In all
following experiments, when not specified, we have used
the anisotropic normal vector estimation described in [42].

For the experimental evaluation, we have considered
our own implementation of the shrouds approach [27] that
may differ slightly from the original version as the authors
code is not available. Implementation details are given in

supplementary material and our code is publicly available
in the DGtal library [55], release 1.1 [56].

In the experiments of Figures 4 and 15, the topological
clamping constraint (ii) has been considered. For all the
other tests, we have not considered such constraint as no
topological issues have been observed in the regularized
surface.

4.2 Mono-label surface reconstruction
We first compare our regularization to alternative ap-
proaches on the boundary of a single set of voxels. We
mainly compare our method to two classical iso-surface
contouring techniques: the Marching-Cubes (MC) [16] and
the Dual-Contouring (DC) [23] (see Fig. 6). On binary voxel
sets, the MC approach generates an iso-surface between
the voxel set and its complement using local patches of
triangles. DC approaches construct an iso-surface from Her-
mite data (position and normal vectors) edges of the dual
grid (see Fig. 6). Given position and normal vectors of the
implicit function on the lattice grid, DC generates vertices
within local configurations of voxels minimizing a quadratic
error function (QEF): the vertex v in each configuration
minimizes ∑

j

(nj · (v − sj))
2 ,

where {sj} and {nj} denotes the positions and normal
vectors on the edges of the voxel configuration (see Fig. 6).
As detailed in the supplementary material, the quality of
the DC surface is very sensitive to the quality of the input
positions and normal vectors.

In Figure 7, we compare several approaches on an object
with different voxel sizes. In this experiment, DC input
normal vectors are obtained as gradients of the binary map
(please refer to the supplementary material for further dis-
cussions). In our approach, we have considered both trivial
normal vectors (similarly to DC) and quad perpendicular
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Fig. 6. Classical contouring techniques, representing P on the dual
grid where squares (empty or not) represent the voxels (inside or out-
side) (a): the MC sets vertices in-between two voxels with different
labels (b) whereas DC sets vertices within voxel configurations from
Hermite data (position and normal vectors in blue) (c).

unit vectors and normal vectors obtained from [42]. For a
complete comparison, we have also considered a state-of-
the-art mesh denoising approach on the MC surface using
[36], and the shrouds approach [27].

As illustrated in Figure 7, our regularization approach
produces smoother and more regular surfaces, even on very
low resolution voxel sets with very poor quality input nor-
mal vectors (fifth column). When using anisotropic normal
vector field (sixth column), we better capture the surface
singularities. Note that the same α, β and γ parameters
have been used for all shapes. Furthermore, we keep a
mapping between the original and regularized quads, which
will be used for voxel art regularization later in Section 4.3.
Results on higher voxel resolution are given in Figure 8.
In the supplementary material, we explicit the theoretical
proximity and stability results of our approach.

In Figure 9, we highlight the impact of the fairness term
in the regularization: the aspect ratios of quads (shortest
diagonal by the longest one) are optimized when using a
fairness term leading to a more regular surface.

4.3 Multi-labeled surfaces and voxel art reconstruction

In Figure 10, we first consider a simple multi-labeled image
defined by four shapes (cube, torus, sphere, cone). Follow-
ing Section 3.5, our approach can regularize all interfaces
in a way that each patch is a combinatorial 2-manifold
with perfect sewing on non-manifold edges (edges adjacent
to at least 3 different labels). Thanks to the stability of
the input normal vector field and the smoothness of the
regularized surface, no self-intersection of the interfaces
have been observed, even on complex shapes. In Figure 10,
we have also experimented the volumetric tetrahedrization
approach of CGAL [57] (using both a Lloyd’s optimization
and a sliver exudation process). Note that CGAL allows the
user to explicitly define additional 1D features (polylines)
the volumetric reconstruction has to preserve. This option
has not been considered in this test as it would have only
impacted the 1D boundaries between interfaces and not
the regularity of the overall surface mesh (less smooth on
the low resolution voxel input). Furthermore, extracting 1D
smooth feature polylines is a problem that needs to be
solved first (defining the feature lines as sequences of edges

of the original digital surface would have produced similar
results on low resolution domain).

In Figures 1 and 11, we illustrate our final result on
low-resolution voxel arts: we use the one-to-one mapping
between input voxel quads and regularized ones to transfer
colorimetric or material information to the smooth recon-
struction. The first row of Figure 11 illustrates the color
mapping on a single digital surface. Note that even on
thin voxel structures, our approach is able to reconstruct
a smooth and self-intersection free surface. From the input
labeled voxels, instead of creating interfaces per label, we
can decide which set of labels defines a region that is later
used to define the interfaces. For instance, in the second
column of Figure 11, we have defined two regions, one for
the helmet glass and one for the rest of the object. The
mapping between quads allows us to project voxel labels
(and thus colors) onto the regularized surfaces. In the third
column, four regions have been defined: one for the sea, one
for the ship, one for the cloud and one for the islands. One
can see that the regularized surfaces perfectly reflects the
voxel art aspect with piecewise smooth appearance.

4.4 Performances
In Table 1, we provide the performances of our regulariza-
tion approach. Following a normal vector field estimation
given by [53], we detail timing of the energy minimization
using a CPU linear solver ([54], SimplicialLDLT solver
for sparse matrix on single-core Intel Xeon E5); and a GPU
based iterative conjugate gradient solver (OpenCL imple-
mentation on a AMD FirePro D500). The iterative GPU
solver can also be used to visualize the surface interac-
tively during regularization. As illustrated in supplemen-
tary video, less than 20 steps are enough to obtain a visually
good surface for the dragon object (≈11ms per step).

4.5 Extensions
A classical drawback when performing some geometry pro-
cessing tasks on digital surfaces is that the original isothetic
quad surface may not capture the proper metric of the un-
derlying smooth object. As illustrated in Figure 12 (a), com-
puting exact geodesics, using [58], on the original surface
exhibits some non-isotropic distance artefacts. Thanks to the
stability results (Sec. 3.3), we can perform the computation
on the regularized surface and map back the results onto the
digital object (Fig. 12 (b)). Note that this geometrical proxy
can be either explicitly represented, or implicitly computed
when performing the task.

As our reconstruction framework performs well on low
resolution voxel geometry, we can upscale coarse voxel
objects by reconstructing their interface and voxelizing them
to higher resolution grids (cf. Fig. 13). Note that in this
process, one can voxelize directly the regularized quad
surface without the need of explicitly representing it.

Finally, additional constraints could be considered in
the energy formulation of (2). For instance, we illustrate a
simple update of the fairness term, which takes into account
colorimetric information of labeled voxels, in order to obtain
a texture aware quadrangulation. On the ball example of
Fig. 11 (first row, second column), the fairness term regularizes
the geometry of the quad with tangential constraints which
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Input Marching-Cubes Dual-Contouring Mesh denoising [36] Shrouds [27] Our approach (trivial
normal vectors)

Our approach (stable
normal vectors)

Fig. 7. Comparisons with existing approaches on low resolution voxel objects (ball+tet shape, 103, 203 and 403 bounding boxes). For the
last two columns (our results), we have used the same weights for all shapes (α = 10−3, β = 1 and γ = 10−1).

Input digital surfaces [27] (closed surface only) Our method

Fig. 8. Regularization on high resolution voxel shapes: Our reconstruction technique allows us to generate high quality quadrangulation for high
resolution objects(2563 for the Dragon and 1283 for the granular material). The Shrouds approach [27] also produces a smooth output but only for
closed surfaces, and with many degenerate faces (see Fig. 9).

TABLE 1
Performances. The normal vector fields have been extracted using [53] (with radius r = 4). The precomputation step consists in preparing the

linear operator encoding the regularization problem. For the iterative solver on GPU, timings have been obtained with the following stopping
criterion: ‖∇E‖2 < 10−3 (timings are given in seconds)

Object Domain # of quads Normal vectors Precomputation CPU Solve GPU Solve
ball+tet 403 20838 2.280 1.052 13.379 0.494 (689.183 iter/s)

bunny 1283 55262 5.559 2.317 49.831 1.264 (206.428 iter/s)
dragon 2563 104916 10.773 4.282 52.103 3.600 (105.812 iter/s)

granular 2563 236712 32.532 11.900 382.202 6.644 (48.3137 iter/s)
torus 2563 367660 68.265 23.000 1001.160 1.695 (35.9826 iter/s)
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Fig. 9. Quality evaluation of the polygonal faces: When considering the surface area or the aspect ratio (ratio between the third and the
second eigenvalue of the vertices covariance matrix) of the faces (polygonal for [27], quads in our case), we first observe that [27] produces
many degenerates faces (aspect ratio for this approach has been clamped to 5 in the second row). Even without the fairness term in the energy
formulation, our regularization approach produces more uniform faces, which is further improved using the fairness term.

(a) (b) (c) (d)

Fig. 10. Multi-labeled image example: given the input shapes of (a) in a 753 domain, (b) and (c) illustrate the regularization obtained by our
approach (α = 10−3, β = 1 and γ = 10−1). In (d) we have the interfaces obtained using a volumetric tetrahedrization from [57].

makes zigzags along the texture discontinuities. A simple
workaround consists in discarding some neighbors in the
barycenter computation of the fairness term according to
the local configuration of neighboring labels (Fig. 14). This
will force some quad edge alignments without changing
the global convexity of Eq. (2). We leave more complex
intrinsic constraints, e.g. alignments of quads with respect
to a prescribed crossfield, as interesting future works.

5 DISCUSSIONS AND LIMITATIONS

Our reconstruction approach efficiently produces piecewise
smooth and regular quadrangulation from labeled images
of low to high resolutions. Thanks to the mapping between
digital interfaces quads to regularized ones, we can transfer
information from the original data (e.g. material informa-
tion) to the smooth version. Our approach relies on an input
normal vector field estimation that is used in a quadratic
variational formulation whose minimization produces the
results. As illustrated in the ablation study in Fig. 15, each

term of the energy function has a controllable impact in the
final result.

The main limitation concerns the interactive interac-
tion with the voxel objects. Our minimization can be
implemented efficiently on GPU producing real time or
interactive-time regularization. The main bottleneck is the
input normal vector field estimated on CPU at this point.
An interesting future work would consist in estimating
the normal vectors on GPU and thus in being able to
visualize smooth surfaces while interactively modifying the
voxel geometry. In such voxel based geometric modeling
context, larger scenes would require adaptive or hierarchical
approaches. Our energy formulation could be extended to
handle irregular quad inputs (e.g. boundary of multires-
olution voxel sets), but the main challenge would be to
design efficient data structures to perform fast updates of
the energy gradient.
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Fig. 11. Voxel art reconstruction results. First row, a 503 ball and a 453 voxel scene with very thin structures. Second row: 25× 20× 65 volume
with 2 regions, one for the helmet glass and one for the rest. Third row: 1273 volume with four regions: the sea, the ship, the cloud and the island. All
experiments have been obtained with the same parameters (α = 10−3, β = 1 and γ = 10−1). Voxel artwork courtesy of Elbriga and Mike Judge.

(a) (b)

Fig. 12. Regularization as a geometrical proxy: When performing
some geometry processing on the digital surface (e.g. exact geodesics),
the anisotropic nature of digital surfaces may induce metric issues (a).
When using the smooth regularized surface as a proxy on which the
computation is implicitly performed, we can use the one-to-one mapping
of quads to project back the results onto the original digital surface (b).
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Fig. 13. Voxel upscaling: starting from a low resolution Bunny object
(643), we can reconstruct its surface (blue piecewise smooth surface)
and use it to upscale the input object to 2563 and 5123 resolutions
(middle and right).
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[50] Q. Mérigot, M. Ovsjanikov, and L. Guibas, “Voronoi-
based curvature and feature estimation from point
clouds,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 17, no. 6, pp. 743–756, 2011.

[51] H. Pottman, A. Asperl, M. Hofer, A. Kilian, and D.
Bentley, Architectural geometry. Bentley Institute Press
Exton, 2007, vol. 724.



13

[52] J. Lachaud and B. Thibert, “Properties of gauss digi-
tized shapes and digital surface integration,” Journal
of Mathematical Imaging and Vision, vol. 54, no. 2,
pp. 162–180, 2016.

[53] J.-O. Lachaud, D. Coeurjolly, and J. Levallois, “Robust
and Convergent Curvature and Normal Estimators
with Digital Integral Invariants,” in Modern Approaches
to Discrete Curvature, ser. Lecture Notes in Mathemat-
ics, P. R. Laurent Najman, Ed., vol. 2184, Springer-
Verlag, 2017.

[54] G. Guennebaud, B. Jacob, et al., Eigen v3,
http://eigen.tuxfamily.org, 2010.

[55] The DGtal Project, DGtal, D. Coeurjolly and J.-O.
Lachaud, Eds., 2010. [Online]. Available: https : / /
dgtal.org.

[56] ——, DGtal, D. Coeurjolly and J.-O. Lachaud, Eds.,
version 1.1, Oct. 2020. [Online]. Available: https : / /
github.com/DGtal-team/DGtal/releases/tag/1.1.

[57] P. Alliez, C. Jamin, L. Rineau, S. Tayeb, J. Tournois, and
M. Yvinec, “3D mesh generation,” in CGAL User and
Reference Manual, 4.11, CGAL Editorial Board, 2017.
[Online]. Available: http : / / doc . cgal . org / 4 . 11 /
Manual/packages.html%5C#PkgMesh 3Summary.

[58] J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou,
“The discrete geodesic problem,” SIAM Journal on
Computing, vol. 16, no. 4, pp. 647–668, 1987.

APPENDIX

We detail the proof of Proposition 2 (self-intersection free
reconstruction).

Proof. We assume, without loss of generality, that the grid
step h is 1. We prove it for arbitrary meshes P̂ , hence it
will hold for the optimal mesh P ∗ since it is a minimum
in a compact space. For any vertex pi of P , let Cεi be its
associated cube, i.e. Cεi := {q ∈ R3, ‖q− pi‖∞ ≤ 1−ε

2 }.
Using the increasing property of the convex hull

function Conv(·), for an arbitrary face fk bordered
by vertices (p̂i1 , p̂i2 , p̂i3 , p̂i4) of P̂ , we have fk ⊂
Conv({p̂i1 , p̂i2 , p̂i3 , p̂i4}) ⊂ Conv(Cεi1 ∪C

ε
i2
∪Cεi3 ∪C

ε
i4

) =:
Qk, where the first inclusion comes from rule (i), while
the second inclusion comes from rule (ii), which implies
p̂i ∈ Cεi .

The face of P , say f ′k, corresponding to the face fk of P̂
is an axis-aligned unit quad that is included in the interior
of the four cubes C0

i1
∪ C0

i2
∪ C0

i3
∪ C0

i4
. We write f ′k ⊂

Rk := Int(C0
i1
∪ C0

i2
∪ C0

i3
∪ C0

i4
). Since for any j, Cεj ⊂ C0

j ,
we conclude that fk ⊂ Qk ⊂ Rk. By definition of digital
surfaces, for two faces f ′k and f ′j of P , we have Rk ∩Rj 6= ∅
if and only if the faces fk and fj share an edge or a vertex.
By the above relation (fk ⊂ Qk ⊂ Rk), the two faces fk
and fj may only intersect if they share an edge or a vertex.
Since they obviously intersect when they share a vertex or
an edge, it is a necessary and sufficient condition.

Last, the fact that a non-empty intersection between two
faces fk and fj is exactly their common edge or common
vertex comes from the fact that this is the case for the
tetrahedra Conv(fk) and Conv(fj).
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