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Abstract

This paper introduces a robust normal vector estimator for point cloud data.
It can handle sharp features as well as smooth areas. Our method is based
on the inclusion of a robust estimator into a Principal Component Analy-
sis in the neighborhood of the studied point which can detect and reject
outliers automatically during the estimation. A projection process ensures
robustness against noise. Two automatic initializations are computed leading
to independent optimizations making the algorithm robust to neighborhood
anisotropy around sharp features. An evaluation has been carried out in
which the algorithm is compared to state-of-the-art methods. The results
show that it is more robust against a low and/or a non-uniform sampling,
a high noise level and outliers. Moreover, our algorithm is fast relatively to
existing methods handling sharp features. The code and data sets will be
available online.

Keywords: Normal vector, Point cloud, Edge-aware, sharp features,
M-estimator, Weighted PCA

1. Introduction

Recent developments of laser scanning devices lead to an increasing quan-
tity of 3D point cloud data. These data can be used in various contexts such
as indoor scenes modeling (Ochmann et al., 2016), navigation (Cadena et al.,
2016), or default detection among many others. They can be acquired using5
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various sensors, from very accurate ones yielding millions of points to poorly
accurate ones, yielding tens of thousands of points and introducing more
noise. To handle all these data, multiple processes have been developed and
many of them require surface normal estimation, such as denoising (Jones
et al., 2003), registration (Bae and Lichti, 2008), segmentation (Rabbani10

et al., 2006), surface reconstruction (Berger et al., 2014) or visualization (Re-
mondino, 2003).

In a point cloud, normal vectors are computed locally at a point using
a defined neighborhood. Although many works have been proposed in this
research field as detailed in the related works section, normal estimation still15

has to deal with various issues. Firstly, the accuracy on smooth surfaces
could be improved, notably for noisy point clouds or non-uniformly sam-
pled areas. Secondly, the computational efficiency should be bettered and
a complete automatization should be reached to process very dense point
clouds. Thirdly, the curvature discontinuities must be taken into account in20

the estimation.
This work presents a method for accurate local normal vector estimation

in point clouds sampled on piecewise smooth surfaces with singularities. The
estimation is based on a robust optimization integrating a weighted PCA to
smoothly separate the neighbors into inliers and outliers. The anisotropy25

around sharp features is then handled through a double automatic initiali-
zation. The proposed method does not need any prior local curvature in-
formation and requires few parameters tuning. It is particularly adapted to
analyze patterns or objects in structured scenes such as indoor environments
scanned by LiDAR sensors but also gives reliable results on objects with30

curved surfaces. The proposed algorithm is more accurate than the existing
methods which compute normals handling the issue of edges and can han-
dle very dense point clouds (cf. Section 6.2). The method is validated on
synthetic data, on CAD models, on LiDAR simulations and finally on real
data acquired with three types of sensors to demonstrate its good perfor-35

mances for a wide range of applications (cf. Section 6). Moreover, a wide
comparison is performed against 8 state-of-the-art methods on all kinds of
data emphasizing the main advantages and drawbacks of all methods.

Section 2 briefly describes related methods. In Section 3, we recall some
concepts which are used in our optimization. Section 4 contains the descrip-40

tion of the proposed method. In Sections 5 and 6, the evaluation procedure
is detailed and the results are provided. We finally conclude in Section 7.
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2. Related works

To estimate a normal vector on a surface sampled by points, a local
neighborhood must be selected (Rabbani et al., 2006; Weinmann et al., 2015),45

the direction of the normal must be determined from the neighborhood and
finally the normal orientation can be deduced (Kim et al., 2018; Hoppe et al.,
1992). This work focuses on the second step and our method seeks the
direction of the normals related to a point cloud.

There exist four main categories of methods which aim at solving this50

problem: methods based on surface fitting, post-processes to correct an initial
normals guess, methods based on the analysis of a set of raw normals and
methods based on a Voronoi diagram construction.

The methods of the first category fit different models onto the local neigh-
borhood. The simplest model to fit is a plane (Hoffman and K., 1987) and a55

classical method is to analyze the neighborhood covariance through a PCA
to deduce the direction of the smallest local variation of points (Hoppe et al.,
1992). It is equivalent to minimize the distance of the neighbors to the plane
in a least squares sense (Mitra et al., 2003). More complex surfaces can be
fitted such as spheres (Guennebaud and Gross, 2007), quadric surfaces (Yang60

and Lee, 1999), (Ouyang and Yung, 2005) or local 2-jets (Cazals and Pouget,
2005) to increase precision on curved areas.

Although the `2 norm is commonly used to fit surfaces because of its
robustness to Gaussian noise and its simplicity of implementation, other me-
thods have been proposed in order to better reject outliers. Fleishman et al.65

(2005), for instance, use an extended Least Median of Squares (LMS) to
initialize their algorithm. Lipman et al. (2007) go further with the Locally
Optimal Projection (LOP) to deal with outliers when performing consolida-
tion. They solve an `1-median problem to project points onto the supporting
surface uniformly. Another possibility is to introduce weights into the opti-70

mization. In the plane fitting case, Pauly et al. (2002) introduce a weighted
version of PCA to give more impact to the closest points of the neighborhood.
In a similar vein, the Moving Least Square (MLS) Projection is developed
in Lipman et al. (2003) and Alexa et al. (2003). This method consists in
fitting iteratively a reference plane to the neighborhood using the projection75

of the studied point onto it, to weight the neighbors. Then, a polynomial
surface is fitted to the weighted neighbors. Belton (2008) also uses an iter-
ative weighting scheme, however, the weights are actualized with a defined
step value relatively to the local planes similarity.
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Although these methods can reach high precision on smooth surfaces, they80

remain sensitive to noise and do not handle the singularities issue. Fleish-
man et al. (2005) handle sharp features separating the neighborhood into
various surface pieces in the Robust Moving Least-Squares method (RMLS).
Before using an MLS step, an extended LMS is performed and points are
added to the initial model while their distance to the surface is lower than a85

threshold. This method needs a dense sampling and relies on the first LMS
estimation which is not robust to noise nor sampling anisotropy. Mederos
et al. (2003) extend the plane fitting introducing a robust estimator called
M-estimator (Huber, 2011) calibrated to reject outliers in the least squares
approach. We will detail the use of such an estimator in the next sections.90

They solve the M-estimation with a Newton method. However, this method
is sensitive to local minima and the convergence strongly depends on the size
of the kernel estimator. Moreover, it is not robust to anisotropy.

The second category of methods holds post-processes: starting from an
initial normal field smoothed, these methods aims at smoothing the normal95

field while recovering the curvature discontinuities. Some authors propose
filters to correct the normal field locally. Yagou et al. introduce three fil-
ters: the mean filter, the median filter and the alpha-trimming filter which
is a compromise between the two previous filters to reduce the sensitivity
to noise while handling curvature discontinuity (Yagou et al., 2002, 2003).100

Other extensions of these filters have been proposed to enhance such fea-
tures (Yuzhong and E., 2004; Sun et al., 2007). Jones et al. (2003) and
Fleishman et al. (2003) apply bilateral filters in order to smooth a mesh tak-
ing account of sharp features. Then, Jones et al. (2004) derive the normal
estimation from the differentiation of the projection procedure. Zheng et al.105

(2011) directly apply the bilateral filter to the normals, the weights are com-
puted relatively to the distance of the neighbors to the studied points and
the likeliness of their normals. Zheng et al. (2018) and Öztireli et al. (2009)
use this process to initialize respectively their denoising and reconstruction
methods. This kind of method requires a reliable input normal field, a dense110

sampling and cannot reach high accuracy on curved surfaces. After a PCA
estimation, Zhang et al. (2018) seek planes which minimize a cost function
implying points pairs in the neighborhood, weighted depending on their nor-
mals likeliness. The authors also resort to M-estimators to reject outliers and
the sampling anisotropy issue is handled through a new weighting scheme.115

This algorithm named Pair Consistency Voting (PCV) is efficient on low
noise point clouds but it is slow compared to the actual existing methods.
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Other normals correcting methods rely on a global optimization of the nor-
mal field which is expected to be piecewise smooth. In order to reflect the
sparsity issue, Zheng et al. (2011) use a weighted `2 optimization, Avron120

et al. (2010) use the `1 norm and Sun et al. (2015) go further using the `0
norm. However, these global approaches tend to distort smooth curved parts
of the point clouds.

In the context of mesh denoising, some authors propose to couple nor-
mal filters iteratively with vertices displacement in a procedure “two-steps,125

one-stage” (Sun et al., 2007). It consists, at each iteration, in updating alter-
natively the normal field and all vertices position so they fit the new normal
field using the connection relations in the mesh (Taubin, 2001) (Yagou et al.,
2002). In the point cloud consolidation context, Huang et al. (2013) use this
strategy coupling the bilateral filter (Zheng et al., 2011) and the weighted130

LOP to move the points away from edges. The sharp areas are upsampled
afterwards using an integration algorithm.

The third category of methods relies on the Voronoi diagram of the point
cloud. The normal vector at a point can then be estimated from the geometry
of its Voronoi cell: using polar Voronoi vertices (Amenta and Bern, 1999; Dey135

and Sun, 2006), a PCA (Alliez et al., 2007), or a more advanced convolutional
approach (Mérigot et al., 2011). The later approach intrinsically detects
sharp features but it still yields smoothed normals in the neighborhood of
the sharp features and its robustness to noise is limited as it will be shown
in the evaluation section. Che and Olsen (2018) introduce an edge detection140

with a local triangulation for the purpose of normal estimation improvement.
The fourth category is based on the estimation of a raw normals set from

randomly selected triplets of points in the local neighborhood. Then the
suitable normal can be deduced as being the average of the set (Gouraud,
1971), or the weighted average (Jin et al., 2005). Nevertheless, these methods145

cannot handle sharp features and they tend to smooth the edges. Boulch and
Marlet (2012) build a histogram on raw normals and use a voting strategy
inspired by the Hough transform to extract the proper normal. This method
correctly enhances the discontinuities but it can lead to significant errors on
curved surfaces. Moreover, its robustness to noise is limited and the handling150

of non-uniform samplings implies a great increase of computational time and
requires new parameters. An extension of this method is proposed by Boulch
and Marlet (2016), replacing the voting process by a neural network to take
the final decision of the normal direction. Unfortunately, this method is
not as accurate as the former one when the noise is limited and, for real155
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LiDAR data acquisitions, the network relies on the quality of the ground
truth normals which are difficult to obtain.

Recently, Guerrero et al. (2018) have proposed a new method based on
neural networks named PCP-net. They apply symmetric functions and rota-
tions to the neighborhood to make it independent of the spatial order at the160

network input. However, this method is more adapted to objects with many
curvature details and/or high levels of noise than simple piecewise smooth
surfaces.

Contributions: we propose an algorithm to get an accurate estimation
of the normal vectors in a noisy point cloud taking account of sharp features.165

Our method is particularly adapted to piecewise planar surfaces but it can
handle smooth curved surfaces with a good accuracy. It performs the estima-
tion at each point using only its neighbor’s position and does not require any
prior local surface information. It uses an iterative weighted process which
estimates the normal while dividing the neighborhood between inliers and170

outliers. A projection process makes it robust to noise and two automatic
initializations make it robust to anisotropy. Its low computation time makes
it suitable for very dense point clouds processing.

3. Preliminaries

We rapidly recall two of the tools we will use in the normal estimation175

algorithm: the weighted PCA and the M-estimators.

3.1. Weighted PCA

We formulate the problem as follows: let p0 be a point of a point cloud
and {pi}i=1...N its N neighbors. We seek the normal n computed at p0 using
its neighborhood.180

The concept of PCA (Principal Component Analysis) for normal estima-
tion (Hoppe et al., 1992; Mitra et al., 2003) is recalled in Appendix A in
order to set up the notation.

We consider here a weighted version of the covariance matrix. More
precisely, for any vector M of weights {mi}i=0...N associated to the neighbors,
the weighted covariance matrix is defined as:

CM :=
1∑
i mi

P Tdiag(M)P . (1)
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The estimated normal vector n∗ at p0 is still the eigenvector associated with
the smallest eigenvalue and this corresponds to the solution of the following185

least squares minimization:

n∗ = argmin
||n||=1

∑
i

mi(n · (pi − p0))
2 . (2)

This process is equivalent to the classical weighted Principal Component
Analysis (PCA) performed by Pauly et al. (2002) modifying the PCA ref-
erence point which is the neighborhood centroid by p0. This modification
leads to better results when introducing a robust estimator (cf. Section 4.1).190

3.2. M-estimators

The M-estimators are robust statistic tools which allow to fit a model onto
points while rejecting outliers (Huber, 2011). Let θ be a set of parameters
we seek and {ei}i=1...N be output errors of a system, relative to θ (ei will be
a fitting residual in our method). Then, the M-estimation is a method which
outputs the parameters θ∗ seeking the minimum-likelihood of the relative
errors such that:

θ∗ := argmin
θ

∑
i

ρ(ei(θ)) , (3)

where the function ρ(x) is a user-specified robust filtering kernel, so called the
M-estimator. This minimization is usually achieved through an Iteratively
Reweighted Least Squares IRLS procedure (William, 1979). At each iteration
k, two steps are performed successively: first, the weights are set using Eq. (4)
from θk−1, then, the optimization problem Eq. (5) is solved to update the
current solution θk:

wi
k :=

1

ei(θk−1)

∂ρ

∂ei
(ei(θ

k−1)) (4)

θk := argmin
θ

∑
i

wi
k · ei(θ)2. (5)

The reader is invited to refer to (William, 1979) for more information. Then,
quadratic solvers (such as Gauss-Newton or Levenberg-Marquardt) can be
applied and the difficulty of the optimization problem in Eq. (5) mostly
depends on the regularity of ei with respect to θ.195
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4. Robust piecewise smooth normal vector estimation

Our algorithm uses a fitting procedure with an M-estimator in the neigh-
borhood of the studied point which yields a normal direction and a separation
of the neighbors into inliers and outliers. We explain how the optimization of
such an estimator leads to the integration of a weighted PCA to an iterative200

process in Section 4.1. Then, a detailed description of the algorithm is given
in Section 4.2.

4.1. Iterative weighted PCA

Our method aims at separating the neighborhood between inliers, which
represent the neighbors lying on the same smooth surface piece as p0 below205

some noise level, and outliers which can be noisy points or points lying on
another smooth surface piece. Therefore, an M-estimation is used to charac-
terize such outliers and obtain refined normal vector estimations such as in
the work of Mederos et al. (2003). In that context, let us suppose that we
have an estimate of the normal vector at p0, denoted n. Thus, the residual210

relative to the neighbor pi is given by ri(n) := n · (pi − p0).
The choice of the estimator kernel is critical to insure the good conver-

gence of the optimization. We chose the following M-estimator:

ρ(ri(n)) :=
µri(n)2

2(µ+ ri(n)2)
, (6)

which is a scaled version of the Geman-McClure estimator (He et al., 2014,
Chapter 5) parameterized by a scalar µ. Contrary to the work of Mederos
et al. (2003) in which the authors resort to a Newton method to solve the
optimization, an IRLS minimization is performed. Each weight wi is com-215

puted as:

wi(n) :=

(
µ

µ+ ri(n)2

)2

, (7)

and then, the following expression is minimized considering constant weights:∑
i

wi · ri(n)2 . (8)

Eq. (8) is exactly Eq. (2), hence, it can be solved by PCA (cf. Section 3.1).
Starting from a well selected initial direction ninit at p0, two steps are alter-
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nated: the weights are updated relatively to the current estimated normal220

and the new estimation is computed through a weighted PCA. The weight-
ing function Eq. (7) is represented in Figure 1 for three different values of
the parameter µ. It can be observed that if r2i � µ, wi is close to 1 and
pi strongly impacts the normal estimation. On the contrary, if r2i � µ, the
weight wi is low and pi is excluded from the computation. If µ is fixed for all225

iterations to too high a value, the normal estimation will remain far from the
real normal direction. If µ is fixed to too low a value, local minima may ap-
pear and the algorithm may not converge to the optimal solution. Therefore,
the parameter µ in Eq. (7) is decreased at each iteration so the weighting
function is calibrated on the inlier residuals which decrease too.230

Figure 1: Weighting function depending on the error. Representation for three values of
the parameter µ.

4.2. Algorithm description

In this section, we explain how the optimization procedure is divided into
two successive steps: a rough estimation of n is obtained and a refinement
is performed. Then, we explain how to handle the problem of face confusion
in a sharp edge neighborhood.235

4.2.1. Elementary steps

In these steps, the normal vector n is iteratively estimated using a weighted
PCA and actualizing the weights at each iteration with Eq. (7). The initial
estimated vector normal is computed with a classical PCA (cf. Figure 2a)
and is called ninit1 (see the next section for the rationale behind the “1” sub-240

script). In the first step, only the direction of the normal vector is optimized.
In the second step, the position of the PCA reference point is also modified
to refine the normal vector estimation in the presence of noise.
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• Rough estimation: µ is initialized as the square of the maximum
residual computed in the neighborhood: µinit = (max

i
(ri))

2. At each245

iteration, µ is decreased to scale the weights onto the residual values. If
the decrease is too fast, the algorithm can fall into a local minimum. If
the decrease is too slow, the algorithm might be longer than necessary.
We have used a scaling factor of 1.01 per iteration in all our experi-
ments. The effect of this scaling factor is detailed in Figure B.22. The250

iterations are performed until µ reaches a threshold µlim which depends
on the curvature and the noise in the model. The tuning of this para-
meter is discussed in Section 4.2.3. The number of iterations is then:
ln(µinit / µlim)

ln(1.01)
. The resulting estimated normal is shown in Figure 2b.

• Refinement: this second part is a refinement step to deal with the255

noise on the reference point used to perform PCA. So far, the normal
vector is given using a weighted PCA with a fixed reference point p0

(cf. Eq. (2)). We can further improve the stability of the results by
updating the reference position in an iterative framework: a candidate
normal vector n is estimated, we shift the reference point along n by260 ∑
i

wiri(n)/
∑
i

wi, and we iterate. The resulting estimated normal is

denoted n1 and an example is given in Figure 2c. The final PCA
reference position is denoted p01. Note that p01 is only used to refine
the estimation of the normal vector and we do not actually move the
input point p0 (mandatory for some LiDAR applications). The effect265

of the refinement step is evaluated in Appendix B, Figure B.18.

4.2.2. Anisotropy challenge: second initialization

If p0 lies in the neighborhood of an edge, the resulting normal of the
previous algorithm might be attracted to the side where more points are
lying and/or where the surface piece has less curvature. For these reasons, a
second initial direction is computed and a second optimization is performed
to get another estimated normal vector (cf. bottom row of Figure 2). In order
to minimize the chances to retrieve the first alternative normal, the second
initial normal must be 90° away from n1 and from the edge direction ν1.
The edge direction is derived from the cross product between ninit1 and n1,
making the hypothesis that the normal vector was optimized following a
plane perpendicular to the edge due to its symmetry. The second initial
normal, given by

ninit2 := n1 ∧ ν1 ,
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is shown in Figure 2d. Then, the two elementary steps are performed leading
respectively to the results in Figure 2e and Figure 2f.

(a) Initialization 1 (b) Rough estimation (c) Refinement

(d) Initialization 2 (e) Rough estimation (f) Refinement

0 0.2 0.4 0.6 0.8 1

Figure 2: Evolution of the normal and the weights in a sharp feature with non-uniform
sampling. The color scale represents the neighbors’ weights from 0 (blue) to 1 (red). (a),
(b) and (c) correspond to the computation steps leading to n1, (d), (e), and (f) correspond
to the computation steps leading to n2. (a) and (d) correspond to the two initialization
steps before weighting the process. (b) and (e) correspond to the rough estimation results.
(c) and (f) correspond to the refinement results.

For the second optimization, µ must be initialized to a smaller value than270

in the first one, in order to get a different estimation from n1. In all our
experiments, we chose to initialize µ to the value of the 33th percentile of
the squared residuals. We call this second estimated normal n2 and the new
PCA reference position p02. After the second optimization, a choice must be
made between the two estimations n1 and n2. Firstly, the estimated normals275
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are oriented to the exterior of the curvature: both vectors n1 and n2 must
satisfy the condition Eq. (9).∑

i

(nk · (pi − p0)) < 0, k ∈ {1, 2} . (9)

Secondly, the values {nk · (p0k − p0)}k=1,2 are computed and the minimum
value corresponds to the selected normal. The effect of this double initiali-
zation is evaluated in Appendix B.280

4.2.3. Convergence properties and parameters setting

Our algorithm stops when µ reaches the prescribed value µlim. We recall
that µ represents the bandwidth of the estimator, i.e. it defines inliers in
the neighborhood. If µlim is too high, the algorithm might not converge to
the optimal normal. If µlim is too low, the algorithm can diverge. The error285

is bounded by a classical PCA estimation error when increasing µlim. An
optimal value for µlim can be sought as it only depends on the noise level
and the curvature of the model. To help to derive this value for all models,
the maximum acceptable residual rmax can be sought in the neighborhood.
Then, µlim can be computed as µlim = rmax

2, so the weight is 0.5 for neighbors290

which have a residual equal to rmax, it tends to 0 for neighbors which have
an residual much greater than rmax and to 1 for neighbors which have a very
low residual. If the studied model can be represented by pieces of planes,
rmax only depends on the Gaussian noise level of the model represented by
the standard deviation σ. For other models, the effect of the curvature has295

to be taken into account. Indeed, as shown on the 2D example of smooth
curved surface in Figure 3, all neighbors need to be taken into account in
the normal vector estimation to preserve the symmetry of the inliers while
converging. Hence, for all models containing smooth curvature, a minimal
curvature radius Rmin must be defined by the user. If the points have no300

noise, rmax can be defined as the residual of the farthest neighbor if the
neighborhood were on a surface of curvature radius Rmin. Let Xmax be this
residual, it is represented in Figure 3.
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dmax
Xmax

Rmin θm

Figure 3: Representation of a curved surface projected in 2D (red). Xmax is the maximum
acceptable residual for neighbors to be considered as inliers. The normal is computed in p0

using neighbors {p1 . . .p10}. If some neighbors are not taken into account, the orientation
of the estimated normal vector can be corrupted.

It is linked with Rmin and the distance dmax of the farthest neighbor from
p0 with the following relation: Xmax = dmax

2

2Rmin
. Therefore, we integrate the305

curvature and the noise information using: rmax = Xmax+0.5σ′, with σ′ = σ√
3

being the noise standard deviation in one direction of the space. Therefore,
Rmin and σ are the parameters of our algorithm. In practice, σ must be
tuned relatively to the LiDAR sensor used and a high Rmin is suitable for
piecewise planar objects. In Appendix B, the effect of µlim on the results is310

evaluated and this corroborates the practical choice.

4.2.4. Pre-selection of input points

In order to make the algorithm faster, the iterative optimization can be
only applied for points detected on edges. Indeed, after the first classical PCA
initialization, we compute the standard deviation of the neighbors’ residuals315

relatively to the plane defined by the normal in the centroid location. If
it is lower than a threshold τ , we suppose that the neighborhood does not
contain any curvature discontinuity and the iterations can be avoided. τ is
defined as the theoretical standard deviation of all points of the continuous
underlying shape with a specific curvature radius Rmin. This theoretical320
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standard deviation can then be estimated by integration as:

τ :=

√
R2
min

2

(
1 +

sin(θm)

θm

)
− p2 . (10)

With θm the aperture angle defined as:

θm := 2 arccos

(
Rmin −Xmax

Rmin

)
. (11)

And p being the theoretical mean defined as:

p := 2Rmin

sin( θm
2

)

θm
. (12)

The higher Rmin is fixed, the more neighbors will be processed by the
optimization step. This pre-selection is evaluated in Appendix B.

5. Evaluation procedure

To evaluate our algorithm, we compare it with 8 other methods: PCA325

(Hoppe et al., 1992), 2-jets (Cazals and Pouget, 2005), VCM (Mérigot et al.,
2011), the bilateral filter extension (Huang et al., 2013), the Hough based
method (Boulch and Marlet, 2012), its neural network extension (Boulch
and Marlet, 2016), PCV method (Zhang et al., 2018) and PCP-net neural
network (Guerrero et al., 2018). These methods represent the categories de-330

scribed in Section 2, namely: surface fitting algorithms, Voronoi cells based
methods, post-processes, random selection based methods and neural net-
works. All methods were evaluated with the same number of neighbors for
each model excepting PCP-net which is trained with a fixed neighborhood
radius. PCA and 2-jets only need this parameter. VCM is only evaluated on335

synthetic models. It takes two radii as parameters. The offset radius is set
to 5 times the mean distance between nearest neighbors. The convolution
radius r is computed so it corresponds to the number of neighbors required
in the other methods. An approximation is made: the area of the neighbor-
hood named Aneigh is linked with the total area of the object named Atot as340

follows:

Aneigh = πr2 =
Nneigh

Ntot

Atot ,
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with Nneigh and Ntot being respectively the number of points lying in the
neighborhood and in the total cloud. Hence, r can be deduced from this
equation when the sampling is uniform. The bilateral filter extended with
the LOP process is applied after a PCA initialization. Its sharpness parame-345

ter is set to 25° and 5 iterations are performed. The Hough based method is
used with a maximum pair selection number of 20 000 and 10 bins compose
the histogram. The clustering method is used to deal with the discretiza-
tion issues. The CNN extension of this method is used with the pretrained
network supplied by the authors. We use the Computational Geometry Algo-350

rithms Library (CGAL) implementations to test PCA, 2-jets, VCM methods
and the bilateral filter. We use the online code supplied by the authors to
test the Hough based method, its deep learning extension, PCP-net and the
code provided by the authors to test PCV with default parameters. Our
algorithm is evaluated modifying two parameters depending on the tested355

data set: the estimated standard deviation of the noise and the minimum
curvature radius tolerated (cf. Section 4.2.3). If not specified, the selection
of input points is performed. It is to note that the bilateral filter internally
moves the point p0. However, all point clouds are shown with their initial
position. As evaluation tools, we use the mean angle error, the Root Mean360

Squared (RMS) angle error which are well-known statistical tools and the
thresholded RMS (RMSτ) as introduced by Boulch and Marlet (2012) and
used by Zhang et al. (2018) with the same threshold, i.e. 10°. This last value
is an RMS computation but the angles greater than the threshold are set to
90° in the averaging. It penalizes the smoothing effect of the algorithms.365

In the following, first we evaluate our algorithm on synthetic basic models
in order to study the relevant features of each algorithm. Then, the method
is evaluated on point clouds extracted from CAD meshes of objects which
contain curved parts and sharp features. A LiDAR scanner is also simulated
in indoor scenes represented by meshes in order to get point clouds close to370

real acquisitions with high levels of sampling anisotropy while preserving a
reliable ground truth. Finally, real data provided by LiDAR scanners are
used to validate the proposed method visually. All values for our algorithm’s
parameters are shown in Table 1.
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Table 1: Setting of our algorithm’s parameter values for all data sets.

Estimated s.d.
of noise (cm)

Min. curvature
radius tolerated (cm)

Planes
model

[0, 2] ∞

Cylinders
model

[0, 1] 10

CAD data set [0, 0.2] 8

Simulated
LiDAR data

0.1 ∞

Real
LiDAR data

1 ∞

6. Results375

In this section, we first evaluate the methods in terms of accuracy and
then in terms of computational efficiency.

6.1. Accuracy and robustness

6.1.1. Synthetic models

A first basic synthetic model is used for evaluation. It is an intersection380

of two planes containing 15 000 points randomly sampled. Each of the planes
is 1 m long and 0.5 m large. The edge is 1 m long. The angle between the two
planes is 90°. Gaussian noise is added to the points with a standard deviation
of 108% of the mean distance between nearest neighbors. The neighborhood
is defined by 300 points. First, the different categories of methods (described385

in Section 2) are tested to enhance visually their features and a part of this
model is extracted for visibility (cf. Figure 4). The corresponding normals are
presented in Figure 5. Surface fitting techniques (PCA and 2-jets) cannot
handle sharp features and smooth the edge. Voronoi cells based method
(VCM) yields an improvement but the normals stay far from their ground390

truth orientations. The post-processes such as the bilateral filter tested here,
usually correct the normals whose neighborhood contains the edge but tend to
corrupt the accuracy of the other normals. The random trials based methods
(Hough based method here) seem to enhance correctly the discontinuity but
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some points are allocated to the incorrect smooth surface piece. With a395

neural network (Hough-CNN method here), some normals remain smoothed
near the edge. Finally, our method can handle this kind of situation with a
good accuracy.

Figure 4: Planes intersection with ground truth normals used as synthetic model to eval-
uate our algorithm.

(a) Reference (b) PCA (c) 2-Jets (d) VCM

(e) BF (f) Hough (g) Hough-CNN (h) Our method

Figure 5: 2D projection of the normal estimations on the intersection of two planes.
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Then, the cumulative histograms of normals relatively to the angular error
for three different levels of Gaussian noise are represented in Figure 6 and400

the graph of Figure 7 shows more statistic results for 16 Gaussian noise levels
for the same model. As all algorithms have good performances on planes and
84% of the points have a neighborhood exclusively on a plane, the interesting
parts of the graphs in Figure 6 lie in the interval [90%,100%]. PCA, 2-jets
and VCM methods lead to errors always lower than 50° but the number of405

normals having an error greater than 5° is high because of the smoothing
effect near the edge. The Hough based method well handles the edge of the
model but it has a significant rate of inverted normals, i.e., belonging to the
other surface piece lying in their neighborhood. This leads to various points
having a high angle error (> 80°). The extension does not separate as clearly410

the normals on edges as the classical method and leads to more angular error

(a) σ = 0 % (b) σ = 108 %

(c) σ = 217 %

Figure 6: Cumulative histograms of normals evaluated on the intersection of two planes
(1×0.5 m) containing 15 000 points randomly sampled showing the percentage of normals
having an error lower than the x-axis value. 3 different Gaussian noise levels are added to
the model. The best results correspond to the curves on the top left. The neighborhood
is defined by 300 points. σ corresponds to the standard deviation of the Gaussian noise
evaluated in % of the mean distance between the nearest neighbors.
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in the noise-free case. However, it is more robust against a certain level
of noise on smooth areas (< 200% of the mean distance between nearest
neighbors). The bilateral filter corrects the normals on sharp features and
is robust against Gaussian noise. However, it leads to numerous normals415

having a low angle error (< 10°) even in the noise-free case. Regarding PCV
algorithm, the results are reliable on this model but its robustness to noise
is not as good as our algorithm’s. Our method has the best behavior in this
experiment.

Hough Hough-CNN Bilateral filter PCV Our method
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Figure 7: Percentage of resulting normals above three angular error thresholds (5°, 10°, 80°)
on the intersection of two planes (1×0.5 m) containing 15 000 points randomly sampled,
for 16 Gaussian noise levels (from 0% to 400% of the mean distance between the nearest
neighbors). The neighborhood is defined by 300 points.

To compare the results of all algorithms on planar piecewise models and420

on structures with smooth curvature, we introduce a second synthetic model:
a pipe bend containing 100 000 points randomly sampled. Each bend side is
0.2 m long with a radius of 0.1 m and the pipes intersect at 90°. The neigh-
borhood is defined by 200 points. The angular errors are represented for this
model in Figure 8. It confirms the features of each algorithm observed above425

and it allows to see that VCM, the bilateral filter, Hough and Hough-CNN
based methods lead to unwanted errors on the smooth parts of the pipes.
PCV separates correctly the smooth parts of the surface but its accuracy
remains lower than our method’s. Our algorithm reaches a good accuracy
on the smooth parts as well as on the neighborhood of the curvature discon-430

tinuity. Moreover, it can handle a small angle between two smooth parts as
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it can be seen on the side of the pipes bend.

(a) PCA (b) 2-Jets (c) VCM (d) Bilateral filter

(d) Hough (e) Hough-CNN (f) PCV (g) Our method

Angle error (°)

Figure 8: Angular error evaluated on the pipe bend. The neighborhood is defined by 200
points.

In Figures 9 and 10, the robustness to Gaussian noise is tested on both
models. Our algorithm yields a mean angle error lower than the other for all
noise levels for both the planes model and the pipes model and the accuracy435

decreases slower than with the Hough based method or PCV when the noise
level increases. The neural network extension has a bad behavior for high
levels of noise and does not reach the accuracy of the basic Hough based me-
thod in the noise-free cases. PCV accuracy decreases faster when processing
curved surfaces than planes relatively to the noise level. It is to note that the440

pre-selection of points leads to a small decrease of accuracy when the noise
level is greater than 100% of the mean distance between nearest neighbors.
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Figure 9: Mean angle error evaluated on the intersection of two planes (1×0.5 m) randomly
sampled by 15 000 points, for increasing Gaussian noise levels (the noise level is expressed
as a percentage of the standard deviation relatively to the mean distance between the
nearest neighbors). The neighborhood is defined by 300 points. Our algorithm is evaluated
pre-selecting or not the input points for the optimization.

Figure 10: Mean angle error evaluated on the pipe bend (0.2 m long and 0.1 m of radius)
randomly sampled by 100 000 points, for increasing Gaussian noise levels (noise level ex-
pressed as a percentage of the standard deviation relatively to the mean distance between
the nearest neighbors). The neighborhood is defined by 200 points. Our algorithm is
evaluated pre-selecting or not the input points for the optimization.
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Figure 11 allows to study the behavior of the algorithms when the neigh-
borhood is increased. PCA, 2-jets and the bilateral filter reach their best
results for a particular neighborhood size and then lead to an increasing er-445

ror. On the contrary, the results of the other methods are improved when the
neighborhood is increased. The Hough-CNN based method is very sensitive
to the reduction of neighbors selected as it can be seen on Figure 11 with
a mean angle error multiplied by three when the neighborhood is reduced
from 400 points to 100 points.450

Figure 11: Mean angle error evaluated when varying the neighborhood size on the inter-
section of two planes (1×0.5 m) randomly sampled by 15 000 points. An average of the
mean angle error is performed for 16 Gaussian noise levels from 0% to 400% of the mean
distance between the nearest neighbors.

Note that PCP-net is not included in this evaluation section because of
its poor performances on synthetic smooth models (cf. Appendix C).

6.1.2. CAD meshes

Then, the methods are evaluated on 14 CAD meshes mixing planes,
smooth curved areas and including discontinuities in the curvature. An455

overview of these data is given in Figure 12. Each mesh is scaled for the dia-
gonal length of the bounding box to be 1 and upsampled using the midpoint
method until all the edges have a length smaller than 1% of this diagonal.
The face centroids and their normals are extracted. At the end, the objects
contain between 54 000 and 493 000 points. Gaussian noise is added to each460

mesh with a standard deviation within [0%, 0.2%] of the diagonal length with
9 values regularly spaced. For each CAD model, the neighborhood is defined
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Figure 12: CAD meshes used for evaluation. The meshes are normalized so the diagonal
of their bounding box is 1. They contain between 54 000 and 493 000 points.

(a) RMS angular error (b) RMSτ angular error

Figure 13: Angular error depending on the Gaussian noise level on a data set of 14 CAD
objects containing between 54 000 and 493 000 points. The noise level is expressed as a
percentage of the standard deviation relatively to the bounding box diagonal length.

by 200 points. The results are presented in Figure 13. The curvature radius
parameter of our algorithm is set to 8% of the diagonal length in all cases.
Our algorithm reaches the minimal RMS angular error on this data set.465

PCV obtains similar results to ours but its computation time is up to 25
times higher (cf. Section 6.2). Due to its poor accuracy on smooth regions,
PCP-net obtains the worst RMSτ result.
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6.1.3. LiDAR simulations

To evaluate our algorithm in conditions close to reality, a LiDAR scanner470

is simulated in 4 CAD environments representing indoor scenes which are
shown in Figure 14. The point clouds have high levels of anisotropy due to
the internal working of a LiDAR device (cf. Figure 15a). On each mesh, we
sampled 320 000 points adding a Gaussian noise of 0.1% of the bounding box
diagonal, as it is a common noise in real data (cf. Figure 15b). As the models475

(a) Conference room (b) Living room 1

(c) Living room 2 (d) House

Figure 14: Meshes of indoor scenes. A LiDAR device is simulated for evaluation.

(a) No noisy version (b) Noisy version

Figure 15: Point cloud obtained after a LiDAR scanner simulation in a CAD mesh model
of an indoor scene called Living room 1.
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are mostly planar, the curvature radius parameter of our algorithm is set to
infinity. The results are shown in Figure 16. It appears that PCV and Hough-
CNN algorithms are unstable on noisy inputs with non-uniform samplings.
PCA and 2-jets yield reliable results but the angular error induced by the
normals smoothing is still high. Hough based method and the bilateral filter480

limit this smoothing effect, but our algorithm reaches the highest accuracy
on this data set.

Figure 16: Mean angle error computed on a LiDAR point cloud simulated in indoor scenes
represented by meshes. Gaussian noise is added with a standard deviation of 0.1% of the
bounding box diagonal. The neighborhood is defined by 200 points.

6.1.4. Real LiDAR point clouds

To evaluate our algorithm on real data containing more points with
various levels of noise and sensor artifacts, we tested three different point485

clouds whose features are summarized in Table 2. The first one is extracted
from the data set “apartment”, available on the Autonomous System Lab
website (Pomerleau et al., 2012). The second and the third ones are ex-
tracted from the data sets “Patio” and “PAVIN” respectively, available online
(Sanchez et al., 2017). All point clouds were acquired in structured scenes.490

The local neighborhoods are defined by 100 points for all real data acquisi-
tions, the curvature radius parameter of our algorithm is set to infinity and
the noise estimation parameter is set to 1 cm for the Hokuyo and the Leica
point clouds, and to 2 cm for the Velodyne point cloud. The results of our
algorithm are shown in Figure 17. These results show that it is robust to a495
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Data set Sensor Accuracy Points Resolution

Apartment
Hokuyo

UTM-30LX
±3 cm 370 000 6 mm

Patio
Leica
P20

±3 mm 3 210 000 3 mm

PAVIN
Velodyne
HDL-32E

±2 cm 60 000 8 cm

Table 2: Features of the three point clouds extracted from LiDAR data sets.

(a) Hokuyo sensor (b) Leica sensor

(c) Velodyne sensor

Figure 17: Normals estimated by our algorithm on real data acquired with three different
sensors in structured scenes. The RGB components correspond to the projection value of
the normals on the x, y, and z axis respectively.
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low and anisotropic sampling ( particularly notable for the Hokuyo and Velo-
dyne sensors) and that it recovers curved parts of the structures with a good
accuracy. Moreover, it can detect narrow planes such as the door boundaries
of the room scanned by the Leica sensor in Figure 17.

6.2. Computation time500

For the model of pipes bend, the average for each method of the com-
putation times for different noise levels are shown in Table 3 for estimations
using respectively 50, 100, 200, 300 and 400 neighbors (processor: Intel i5–
7440HQ, 2.80 GHz). Each algorithm is run in a single thread. The Gaussian
noise level is increased from 0% to 200% of the mean distance between near-505

est neighbors with 16 values. Note that the algorithms which cannot handle
sharp features are always faster than the others. Our algorithm is faster than
the Hough based methods on these kinds of data. The bilateral filter is faster
when the neighborhood is small but gets slower when the neighborhood con-
tains more than 100 points. The Hough based method is the only one which510

has a decreasing computation time with respect to the neighborhood size.
Indeed, its duration mainly depends on the number of tested pairs of points
in the neighborhood to reach a certainty threshold.

Method
Number of neighbors

50 100 200 300 400

PCA 0.5 1 2 3 4

2-Jets 24 4 8 11 14

VCM 10 10 11 12 11

Bilateral Filter 7 13 27 42 52

Hough 111 76 57 56 54

Hough-CNN 36 38 42 40 43

Our method 11 13 16 22 29

Table 3: Mean computation times (in seconds) for the pipe bend (0.2 m long and 0.1 m of
radius) randomly sampled by 100 000 points, for 16 Gaussian noise levels with standard
deviations from 0% to 200% of the mean distance between the nearest neighbors.

The computation times are also evaluated on the CAD objects data set
with the maximum Gaussian noise level (0.2%) and on the simulated indoor515
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acquisitions (cf. Table 4). Our algorithm is slower than the Hough-CNN
method and the bilateral filter on both data sets because of the great number
of sharp edges in the models, however, it remains faster than the Hough based
method on the objects data set. As PCV algorithm was implemented for
Matlab and PCP-net was implemented to run on GPU by the authors, their520

computation times could not be properly integrated to this study. However,
PCV is slow relatively to all considered algorithms in this work. Indeed, for
the CAD data set, PCV algorithm computation time can reach up to 6h for
one model when the maximum computation time of the Hough based method
is 40 minutes and our algorithm’s is 12 minutes. For simulated indoor scenes,525

PCV computation time reaches 80 minutes for one model when the maximum
durations of Hough based method and our algorithm are 25 minutes and 35
seconds respectively. PCP-net maximum computation times are 65 minutes
for the CAD data set and 5 minutes for the LiDAR simulations data set, this
makes it much slower than our algorithm but faster than PCV.530

PCA 2-Jets Hough Hough-CNN
Bilateral

filter
Our

method

Objects 2 9 410 46 34 141

Indoor
scenes

6 20 477 105 73 520

Table 4: Mean computation times (in seconds) for 14 CAD objects with 0.2% Gaussian
noise and for simulated LiDAR acquisitions with 0.1% Gaussian noise.

Finally, the computation times are evaluated on real data acquisitions.
They are gathered in Table 5. Our algorithm has higher computation times
than the Hough-CNN method for the first and the third point cloud. How-
ever, it is faster for the second one. The basic Hough based method is the
slowest one on the first and the third point clouds, however this method and535

the bilateral filter lead to too high a memory consumption on the second one
and could not be validated while our algorithm can handle this kind of data
in a limited time.

It is to note that the proposed method can be entirely parallelized because
each normal estimation is independent of the others.540
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Method
LiDAR sensor

Hokuyo Leica Velodyne

PCA 4 29 0.6

2-Jets 16 120 2

VCM 37 308 9

Bilateral Filter 46 n.a. 79

Hough 1235 n.a. 106

Hough-CNN 135 1117 22

Our method 147 630 134

Table 5: Mean computation times (in seconds) to estimate normals on three point clouds
acquired with different LiDAR sensors in structured environments. n.a. indicates that no
results have been obtained (memory consumption exceeding).

7. Conclusion

This paper proposes a new approach to estimate normal vectors in a point
cloud sampled on a piecewise smooth surface. It is based on a weighted PCA
integrated in an iterative algorithm. The process is divided into two phases
to make it robust to Gaussian noise and a double automatic initialization is545

performed to solve the issue of anisotropy in the neighborhood of sharp fea-
tures. Our algorithm has been evaluated on synthetic data, on CAD objects,
on point clouds obtained by LiDAR simulations and on data acquired with
different LiDAR sensors. On all these tested data, it handled correctly noisy
data and low samplings. It has a relatively low computation time which550

makes it suitable to process large point clouds such as real LiDAR acquisi-
tions. In future work, we plan to extend the method with more advanced
surface fittings such as sphere or higher degree polynomials, keeping the it-
erative weighting framework in order to improve its performance on smooth
surfaces. Moreover, we will use this new normal estimation to improve well-555

known processes on LiDAR point clouds such as registration, segmentation
and indoor scene modeling.
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Appendix A. PCA

If the plane to fit contains p0, the equivalence in the least squares sense
is to find n∗ (such that ||n∗|| = 1) which minimizes the following function:∑

i

(n · (pi − p0))
2 . (A.1)

The covariance matrix is defined as:705

C :=
1

N
P TP , (A.2)

with

P :=

 (p1x − p0x) (p1y − p0y) (p1z − p0z)
...

(pNx − p0x) (pNy − p0y) (pNz − p0z)


Thus, the minimization of (A.1) can be rewritten in bilinear form:

min
||n||=1

nTCn . (A.3)

The solution of Eq. (A.3) is the eigenvector corresponding to the smallest
eigenvalue of the matrix C.

Appendix B. Internal evaluation

Firstly, the resulting normals of the proposed algorithm are evaluated
with and without the refinement step (cf. Figure B.18) on the first syn-710

thetic model: an intersection of two planes containing 15 000 points ran-
domly sampled (please refer to Section 6 for more information about the
models). Gaussian noise is added to the points with a standard deviation
lying between 1 mm and 2 cm. The neighborhood is defined by 300 points.
Figure B.18 shows that the refinement step leads to more robustness against715

noise. The mean angular error with respect to the ground truth normals is
reduced up to six times when it is added to the process.

Secondly, in Figure B.19, the accuracy of our algorithm is compared with
and without the second optimization on the same synthetic model without
noise, varying the density of points independently on the two planes. We720
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observe that this step leads to a reduction of the mean angle error. No-
tably, when one face contains 2 times more points than the other, the second
optimization allows reducing 90 times the mean angle error.

Figure B.18: Mean angle error resulting from our algorithm on the intersection of two
planes (1×0.5 m) sampled by 15 000 points with increasing Gaussian noise (noise levels
expressed as a percentage of the standard deviation relatively to the mean distance between
the nearest neighbors). The first optimization is evaluated with and without the refinement
step using 300 neighbors.

Figure B.19: Mean angle resulting from our algorithm on the intersection of two planes
(1 × 0.5 m) sampled by 15 000 points in a non-uniform way: one face contains more
points than the other. The ratio between the density of the two faces is increased. The
neighborhood is defined by 300 points.

Thirdly, the convergence parameters are studied. Figure B.20 shows the
variation of the mean angle error depending on the value of rmax (cf. Section725

4.2.3) on the planes model, for four different noise levels. It can be noticed
that the mean angle error decreases when µlim decreases, until an optimal
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point. When µlim is too small, the algorithm may diverge and the error
can increase. Moreover, this graph confirms that a good value for rmax is
rmax = 0.5σ′ when the model does not contain curvature, with σ′ the standard730

deviation of the noise in one direction of the space.

Figure B.20: Mean angle error evaluated on the intersection of two planes (1×0.5 m)
randomly sampled by 15 000 points. The value of rmax is increased (please refer to text
for variables definition). The neighborhood is defined by 300 points. The evaluation is
performed for 4 Gaussian noise levels (noise level expressed as the standard deviation
in mm). The errors resulting from PCA normal estimations are represented with dashed
lines.

Then, for models including curvature, we define rmax = X + 0.5σ′ with X
the effect induced by curvature. A model of two intersecting pipes is sampled
by 100 000 points to evaluate the effect of curvature (please refer to Section 6
for more information about the models). Figure B.21 shows the variation735

of the mean angle error depending on the value of X for four Gaussian
noise levels. It shows that the best results are obtained for a value close to
X = 0.8 mm which corresponds to the length Xmax defined in Section 4.2.3.
Hence, it confirms that Xmax is a good choice to set up the convergence
parameter µlim. Furthermore, in these two graphs, it can be verified that the740

PCA estimations correspond to the asymptotes of the curves relative to the
proposed algorithm when µlim tends to infinity.
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Figure B.21: Mean angle error evaluated on the pipe bend (0.2 m long and 0.1 m of radius)
randomly sampled by 100 000 points. The neighborhood is defined by 200 points. The
value of X is increased (please refer to text for variables definition). The evaluation is
performed for 4 Gaussian noise levels (noise level expressed as the standard deviation
in mm). The errors resulting from PCA normal estimations are represented with dashed
lines.

The effect of the scaling factor on the accuracy is shown in Figure B.22a.
Its impact on computation time is represented in Figure B.22b.

(a) Mean angle error. (b) Computation time.

Figure B.22: Evaluation of the algorithm when varying the value of the scaling factor
(please refer to text for variables definition) on the intersection of two planes (1×0.5 m)
sampled by 15 000 points for 16 Gaussian noise levels with standard deviations from 0% to
400% of the mean distance between the nearest neighbors. The neighborhood is defined
by 300 points.
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These figures show that the division factor has a limited influence on the745

accuracy of the result. Nevertheless, a compromise must be found to limit
the computation time while optimizing the accuracy of the algorithm. We
experimentally chose 1.01 in all experiments of this work.

Finally, we present an evaluation in Table B.6 to prove the efficiency of
the selection of points to limit the number of optimizations performed as750

explained in Section 4.2.4. This table shows that there is little difference
between mean angle errors when the input points are all processed by the
iterative optimizations or when input points are pre-selected. However, the
time can be significantly reduced (up to 4 times). Then, the computation
time of the algorithm is directly linked with the geometry of the model: the755

algorithm gets slower as the number of neighborhoods containing a curvature
discontinuity increases.

Planes Pipes

PCA
Mean error (°) 3.35 1.27

Time (s) 1 2

Without threshold
Mean error (°) 0.72 0.68

Time (s) 53 59

With threshold
Mean error (°) 0.83 0.71

Time (s) 34 14

Table B.6: Evaluation of the selection of input points of the optimization step on two
synthetic models (please refer to text for more information about these models), giving
the computation time and average of the mean angle errors for 16 Gaussian noise levels.
The standard deviation of the noise is increased from 0% to 400% of the mean distance
between the nearest neighbors for the planes model and from 0% to 200% for the pipes
model.
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Appendix C. PCP-net evaluation

PCA Our method PCP-net

Planes intersection 3.35 0.81 23.86

Pipes bend 1.27 0.71 3.02

Table C.7: Mean angular error (in degrees) of normals resulting from PCP-net algorithm
for synthetic data.

Figure C.23: Angle error on the pipe bend model with the same color scale as used in
Figure 8 (cf. Section 6.1.1).
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