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France
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ABSTRACT

Optimal Transport theory enables the definition of a distance across the set of measures on any given space. This
Wasserstein distance naturally accounts for geometric warping between measures (including, but not exclusive
to, images). We introduce a new, Optimal Transport-based representation learning method in close analogy
with the usual Dictionary Learning problem. This approach typically relies on a matrix dot-product between the
learned dictionary and the codes making up the new representation. The relationship between atoms and data
is thus ultimately linear. By reconstructing our data as Wasserstein barycenters of learned atoms instead, our
approach yields a representation making full use of the Wasserstein distance’s attractive properties and allowing
for non-linear relationships between the dictionary atoms and the datapoints.
We apply our method to a dataset of Euclid-like simulated PSFs (Point Spread Function). ESA’s Euclid mission
will cover a large area of the sky in order to accurately measure the shape of billions of galaxies. PSF estimation
and correction is one of the main sources of systematic errors on those galaxy shape measurements. PSF
variations across the field of view and with the incoming light’s wavelength can be highly non-linear, while still
retaining strong geometrical information, making the use of Optimal Transport distances an attractive prospect.
We show that our representation does indeed succeed at capturing the PSF’s variations.

Keywords: Optimal Transport, Dictionary Learning, Point Spread Function

1. INTRODUCTION

Feature learning, also known as representation learning and often associated with dimensionality reduction, is
the branch of machine learning methods that deal with the preprocessing step of creating new features using the
ones in existing data. The resulting features are more convenient and/or appropriate for whatever tasks must
then be performed. As a typical example, one can think of images: in its rawest form, the data from an image is
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a vector of pixel intensities. This can of course quickly lead to extremely high-dimensional data, not to mention
most of the information is likely to be contained in a small subset of all those pixels. If one wanted to perform,
say, a classification task on a set of images, using pixel intensities as the features would be cumbersome and likely
lead to poor results - using a preliminary feature learning step, however, can give the data a more appropriate
form and dramatically improve the accuracy of the classification to follow.
Dictionary learning is a subset of those methods wherein, instead of reconstructing data using a predetermined
dictionary (e.g., based on wavelets1), the dictionary itself is learned from the data. This is typically achieved
by minimizing a loss function consisting of a similarity term ensuring the outcome successfully reconstructs the
training data, and (optionally) a set of constraint terms that enforce the learned representation exhibits some
desired properties (for instance, sparsity2). In its most common form, the dictionary is a matrix composed of
a certain number of atoms, each of the same dimensionality as a datapoint. Data X is then reconstructed by
performing a matrix dot product between this dictionary D and a set of codes Λ that are learned simultaneously:
X ≈ DΛ.
In this paper, we introduce a new approach where we replace this linear formulation by one based on Optimal
Transport (see section 2). We then illustrate the use of our method on a toy example in subsection 3.1 and on
the problem of modelling a space-based telescope’s Point Spread Function (hereafter PSF) in subsection 3.2.

2. OPTIMAL TRANSPORT

2.1 Wasserstein distances and entropy

Optimal Transport theory3 enables one to define distances (the most common being the Wasserstein distance,
W ) on the set of measures over a given space, which, informally, can be thought of as the minimal cost of moving
a heap of sand µ toward a hole in the ground ν, knowing the effort needed to move quantities of sand to any
other location (see Figure 1).

Figure 1. Graphical representation of the mass transportation problem. The minimal effort cost to transport one measure
into the other defines an Optimal Transport distance between µ and ν.

Formally, let P(Ω) be the set of measures on some space Ω. Let µ, ν ∈ P(Ω), and c : Ω×Ω 7→ R a cost function.
The Monge-Kantorovich problem is:

inf

{
∫

Ω×Ω

c(x1, x2)dπ(x1, x2), π ∈ Π(µ, ν)

}

, (1)

where Π(µ, ν) is the set of transport plans between µ and ν, that is, the set of all measures on Ω × Ω whose
marginals are equal to µ and ν. The so-called Wasserstein distance between µ and ν is defined as the value
reached in (1) when c is a metric on Ω.
In the discrete case, that is, when Ω has cardinal N for some finite N , measures are histograms, i.e.:
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P(Ω) = ΣN :=

{

u ∈ R
N ,

N
∑

i=1

ui = 1

}

.

The cost function c can then be expressed as a matrix C ∈ R
N×N whose entries cij are the cost of transportation

between the ith and the jth element of grid Ω. The Wasserstein distance is then defined simply as:

W (µ, ν) := min
T∈Π(µ,ν)

〈T,C〉, (2)

where the set of admissible transport plans are now:

Π(µ, ν) :=
{

T ∈ R
N×N
+ , T1N = µ, T>

1N = ν
}

.

WhileW is always defined, its computation was only possible in practice for very low values of N . However, it was
recently proposed4 to add an entropy penalty term to its formulation (2), yielding the approximate Wasserstein
distances defined as:

Wγ(µ, ν) := min
T∈Π(µ,ν)

〈T,C〉+ γH(T ), (3)

where H(T ) =
∑

i,j Tij log(Tij − 1) and γ > 0 is a user-selected parameter. The distance can then be computed

using an iterative and efficient scheme based on the celebrated Sinkhorn algorithm.5

2.2 Wasserstein barycenter and dictionary learning

We now consider a set of histograms D = d1, . . . , dS . For any given weights λ = λ1, . . . , λS such that
∑

i λi = 1,
their Euclidean barycenter is defined as:

Pe(D,λ) := argmin
u∈RN

S
∑

s=1

λs‖u− ds‖
2
2 =

S
∑

s=1

λsds.

Since (approximate) Wasserstein distances are made readily computable by the addition of an entropy term as
in (3), Wasserstein barycenters are defined by analogy with their Euclidean counterpart as:6

P (D,λ) := argmin
u∈ΣN

S
∑

s=1

λsWγ(ds, u). (4)

These barycenters can also be computed using an iterative scheme7 based on the Sinkhorn algorithm. A kernel
K that depends only on the cost function and the entropy parameter γ is iteratively scaled by two sets of vectors
a = a1, . . . , aS , b = b1, . . . , bS as follows:

K = exp

(

−
C

γ

)

a(l)s =
ds

Kb
(l−1)
s

(5)

P (l) (D,λ) =

S
∏

s=1

(

K>a(l)s

)λs

(6)

b(l)s =
P (l) (D,λ)

K>a
(l)
s

, (7)
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where ∀s, b
(0)
s = 1N and the exp,

∏

and ÷ operators are applied element-wise.
Unlike its Euclidean counterpart which simply stacks the input histograms by weighted sums, because of its
Optimal Transport-based formulation, the Wasserstein barycenter warps them together. Barycenters of two
simple shapes are shown for several different weights as an illustration in Figure 2 for the Euclidean case and
Figure 3 for the Wasserstein case.

Figure 2. Evolution of the Euclidean barycenter of two images with varying weights.

Figure 3. Evolution of the Wasserstein barycenter of two images with varying weights.

This property is the motivation for using the Wasserstein barycenter in a feature learning setting. Our method
consists in replacing the usual, linear relation between atoms and codes in the dictionary learning problem
(X ≈ DΛ) by the approximate Wasserstein barycenter obtained after L iterations of the Sinkhorn algorithm (6):
X ≈ P(L)(D,Λ), where Λ ∈ R

S×n (with n the number of datapoints and S the user-specified number of atoms)
and P(L)(D,Λ) =

(

P (L)(D,λ1), . . . , P
(L)(D,λn)

)

.
The learning is performed by gradient descent, minimizing the following energy function:

min
D,Λ

EL(D,Λ) :=

n
∑

i=1

L
(

P (L)(D,λi), xi

)

, (8)

Where each xi ∈ R
N is a datapoint (for instance, an image with normalized pixel intensities), and L is an

arbitrary loss function. By additivity, we can consider a single datapoint x without loss of generality (Λ is then
made up of a single set of weights λ). Differentiating (8) yields:

∇DEL(D,Λ) =
[

∂DP (L)(D,λ)
]>

∇L(P (L)(D,λ), x) (9)

∇λEL(D,Λ) =
[

∂λP
(L)(D,λ)

]>

∇L(P (L)(D,λ), x). (10)

The right-hand term is the gradient of the loss in its first argument and is usually readily computable, e.g., if
L(p, q) = ‖p− q‖22 then ∇L(p, q) = 2(p− q) (as will be the case for the applications in section 3). The left hand
term is derived by automatic differentiation, that is, by application of the chain rule to the iterative updates
(5)-(7). These derivations can either be done explicitly, ‘by hand’,8 or, equivalently, by using an automatic
differentiation tool such as the Theano library,9 which computes the gradients after a number of operations
equal to that of the forward loop used to compute the Wasserstein barycenter. This gives us a scheme to obtain
the gradients in both dictionary and weights (9)-(10) which can then be used to find a local minimum in energy
EL, yielding our representation. In the experiments that follow, we used an off-the-shelf L-BFGS solver.10
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3. APPLICATIONS

3.1 Toy example

We first illustrate our method on a toy example. The dataset consists of a set of discretized Gaussian distributions
on an evenly spaced grid of size 11. Each Gaussian is translated slightly on the grid. We then perform dimen-
sionality reduction, fixing the number of atoms (or components) to S = 2, via Principal Components Analysis
(PCA), Non-Negative Matrix Factorization (NMF), that is, dictionary learning with a constraint of positivity
for both the dictionary and the codes, and our method. Despite the simplicity of the transformation, linear
methods fail to describe it with only two components, while our method does reconstruct discretized Gaussians.
Some datapoints, the atoms learned by all three methods, and the reconstructions are shown in Figure 4.
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Figure 4. Learning two atoms from a set of translated discretized Gaussian distributions. Training data is shown in the
first row. Each column underneath shows their reconstruction for all three methods: PCA, NMF and our method (WDL)
for the second to fourth row, respectively. The two learned atoms learned by each method are shown at the ends of each
row, in light purple.

Unlike PCA, both NMF and our approach are obtained by minimizing a non-convex function, and gradient
descent can thus converge to a local minimum. We thus relaunched both several times (the results shown in
Figure 4 are for the run that yielded the lowest value of the energy to minimize).
Not only does our method yield much better reconstructions, each of them are still histograms, unlike those of
both PCA and NMF (which take negative values and do not sum to 1, respectively), as are the atoms we learn.
Wasserstein barycenters of a set of a Gaussian distributions are known to also be Gaussian, so it might sound
surprising that the atoms we learn are Diracs rather than the two extreme Gaussians. This is because the entropy
term added to the definition of the Wasserstein distance in (3) causes the optimal transport plan to get blurred,
which in turn induces a blurring of the Wasserstein barycenters. This can be mitigated by choosing lower values
of γ, with Wγ → W as γ → 0. However, picking too small a value for γ can lead to computational problems
as values within the scaling vectors a and b (see (5), (7)) can then tend to infinity. However, as illustrated with
this toy example, the blurring induced by the entropy term is taken into account by our method, which learns
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sharper atoms - in this case, the atoms follow a Dirac and not a Gaussian distribution, but we have observed
the same phenomenon in practice with more complicated types of data (e.g., natural images).

3.2 Chromatic PSF representation

Modern observational cosmology aims at deriving tight constraints on the cosmological parameters contained
within the standard cosmological model. One of the aims of this approach is to understand the nature of Dark
Energy, and whether or not the λCDM model holds. Under λCDM, Dark Energy is a cosmological constant
which is responsible for the observed acceleration of the expansion of the universe.
Several cosmological probes exist, each of them deriving constraints on our cosmological models by exploiting the
signal we receive from various different sources and our current understanding of the Universe. Under General
Relativity, light’s path follows the curvature of space-time induced by massive objects, thus generating an effect
similar to that of lenses in optics. Weak Lensing is a particularly promising cosmological probe that uses these
effects as signal by measuring the shapes of distant galaxies, and inferring the amount of mass the photons have
been affected by as they traveled towards us. This enables us to probe the Large Scale Structure of the Universe,
and gives us a wealth of information on cosmological parameters, including those related to Dark Matter (as we
cannot observe it directly, but it does cause gravitational lensing effects).
Images produced by telescopes are distorted for several different reasons, including the instrument’s optics. The
PSF is the kernel of these convolutions, and varies both chromatically (with the incoming light’s wavelength)
and spatially (across the instrument’s field of view). Understanding and accounting for the PSF is naturally of
paramount importance in Weak Lensing surveys, as they can otherwise affect the observed shape of galaxies,
thus reducing (or even biasing) the Weak Lensing signal. Up until now, major Weak Lensing surveys have been
conducted from ground-based telescopes,11–13 in which case atmospheric effects largely dominate the contribu-
tions to the PSF.
Several upcoming surveys14,15 are planned to image very large portions of the sky, thus allowing us to measure
the shape of billions of galaxies. In particular, ESA’s Euclid16 is a planned space-based telescope that makes
Weak Lensing analysis one of its main science goals. Due to the sheer amount of galaxies Euclid will observe,
the main sources of error in the Weak Lensing signal will be systematic rather than statistical. PSF estimation
is in turn one of the main sources of systematic error in such studies.
The use of optimal transport in the context of PSF modelling has already been studied17,18 to deal with spatial
variations. However, because Euclid will observe from space, chromatic variations of the PSF will also need to be
precisely accounted for, as opposed to past ground surveys where these variations were very small in comparison
to the atmospheric effects. At any given position in the field of view, chromatic variations happen based only
on the incoming light’s wavelength (see Figure 5), which makes the same sort of approach we used on our toy
example in subsection 3.1 appealing. Namely, we use a set of simulated, Euclid-like PSFs at different wave-
lengths as our training data, and apply dimensionality reduction to learn only S = 2 atoms. Since the variations
occur based on the incoming light wavelength, we can inject prior information in our method by initializing each
PSF’s weight as a function of wavelength, by choosing ∀i, λi := [t, 1 − t] where t is the projection of the data’s
wavelength in [0, 1]. Conversely, the atoms are initialized as uniform histograms (i.e., each pixel’s value is 1/N).
In Figure 6, we show the reconstructions we obtain for the PSFs of the dataset that were featured in Figure 5.

Figure 5. Chromatic variations of Euclid-like PSF between 550 and 900nm.

Despite being initialized without any prior information, the two atoms we learn appear very close to the two
PSFs at extreme wavelength, as shown in Figure 7. Much like in the simplistic case of subsection 3.1, this shows
that our method captures the fact that the training data is composed of intermediate state in a transformation
between two extremes. By comparison, the two first principal components learned by PCA shown in Figure 8
have no relation to actual PSFs.
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Figure 6. Reconstruction of Euclid-like PSF with our method for incoming wavelengths of 550 to 900nm.

Figure 7. Extreme wavelength PSFs in the dataset and atoms learned by our method.

Similarly, the codes associated to these atoms are not monotonous with regards to the data’s wavelength (see
right-hand side of Figure 9). While the weights we learn differ from the linear relation we imposed at initialization,
they remain very clearly linked to the wavelength, as shown in the leftmost figure of Figure 9.

In this case, unlike the example shown in subsection 3.1, NMF atoms also somewhat resemble the two PSFs at
extreme wavelength, as shown in Figure 10. However, our method reaches lower values of the reconstruction
error. In this case, we used L = 1/2‖.‖22, and our method reached a value of 1.71×10−3, while NMF converged at
2.62× 10−3. Looking at the individual reconstruction errors, the gap between the two methods was particularly
pronounced for datapoints lying in the middle of the spectrum, which indicates that the simple stacking of the
two extreme wavelength PSFs (similar to what we observed with Euclidean barycenters in Figure 2) fails at
capturing the actual warping undergone by the PSF as the wavelength varies.

In practice, we use the stars (as they should be close to points sources in the absence of PSF) present in Euclid’s
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Figure 8. First two principal components from a PCA.

Figure 9. Left-hand side: weights reached by our method at convergence. Right-hand side: PCA-learned codes corre-
sponding to the first two principal components.

field of view as measures of the PSF at this given position and for their precise Spectral Energy Distribution
(SED). Ultimately, what matters for Weak Lensing studies is the estimation of the PSF at the position of the
galaxies18 and for this galaxy’s SED. This means that from a set of observed PSFs with arbitrary (but known) star
SEDs, we need to estimate the monochromatic PSF components so that we can then recombine them using the
galaxies’ estimated SED. This study shows that linear methods (NMF) do seem to somewhat capture the variation
of the PSF - however, in a real-life setting where the dataset consists of a set of stacked polychromatic PSF
measurements, one would need to add very strict constraints on the atoms to be learned to force the representation
to capture the variation. Because our approach is based on Optimal Transport, this constraint would naturally
appear if we were to cast the decomposition of polychromatic PSFs into monochromatic components as an
Optimal Transport problem where we modelize the chromatic variations as the displacement interpolation of two
extreme PSFs, that is, the set of their Wasserstein barycenters for all possible weights in [t, 1− t], t ∈ [0, 1].

4. CONCLUSION

This paper introduces a new feature learning method akin to Dictionary Learning. In the latter, however, the
relationship between learned atoms and data remains linear, while our method breaks free from this setting
by using an Optimal Transport-based formulation. This is made possible by recent developments in numerical
Optimal Transport based on the addition of an entropy term and the definition of the Wasserstein barycenter in
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Figure 10. Extreme wavelength PSFs in the dataset and atoms learned by NMF.

analogy with the Euclidean barycenter.
Beyond offering a non-linear Dictionary Learning approach, we show that the Optimal Transport geometry can
capture the variations that appear in real life settings - in this case, the chromatic variation of the Euclid visible
light instrument.
For illustration purposes, the present work focused on displacement interpolation, that is, the case where we
consider the Wasserstein barycenters of two measures. However, this setting is but a particular case of what our
method can achieve, and the generalization to more than two atoms is immediate.
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[8] Bonneel, N., Peyré, G., and Cuturi, M., “Wasserstein barycentric coordinates: Histogram regression using
optimal transport,” ACM Transactions on Graphics (Proceedings of SIGGRAPH 2016) 35(4) (2016).

[9] Theano Development Team, “Theano: A Python framework for fast computation of mathematical expres-
sions,” arXiv e-prints abs/1605.02688 (May 2016).

[10] Morales, J. L. and Nocedal, J., “Remark on “algorithm 778: L-bfgs-b: Fortran subroutines for large-scale
bound constrained optimization”,” ACM Transactions on Mathematical Software (TOMS) 38(1), 7 (2011).

[11] Heymans, C., Van Waerbeke, L., Miller, L., Erben, T., Hildebrandt, H., Hoekstra, H., Kitching, T. D.,
Mellier, Y., Simon, P., Bonnett, C., et al., “Cfhtlens: the canada–france–hawaii telescope lensing survey,”
Monthly Notices of the Royal Astronomical Society 427(1), 146–166 (2012).

[12] de Jong, J. T., Verdoes Kleijn, G. A., Kuijken, K. H., and Valentijn, E. A., “The kilo-degree survey,”
Experimental Astronomy , 1–20 (2013).

[13] Collaboration, D. E. S. et al., “The dark energy survey,” arXiv preprint astro-ph/0510346 (2005).

[14] Ivezic, Z., Tyson, J., Abel, B., Acosta, E., Allsman, R., AlSayyad, Y., Anderson, S., Andrew, J., Angel,
R., Angeli, G., et al., “Lsst: from science drivers to reference design and anticipated data products,” arXiv
preprint arXiv:0805.2366 (2008).

[15] Spergel, D., Gehrels, N., Breckinridge, J., Donahue, M., Dressler, A., Gaudi, B., Greene, T., Guyon, O.,
Hirata, C., Kalirai, J., et al., “Wide-field infrared survey telescope-astrophysics focused telescope assets
wfirst-afta final report,” arXiv preprint arXiv:1305.5422 (2013).

[16] Laureijs, R., Amiaux, J., Arduini, S., Augueres, J.-L., Brinchmann, J., Cole, R., Cropper, M., Dabin, C.,
Duvet, L., Ealet, A., et al., “Euclid definition study report,” arXiv preprint arXiv:1110.3193 (2011).

[17] Irace, Z. and Batatia, H., “Motion-based interpolation to estimate spatially variant psf in positron emission
tomography,” in [Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European ], 1–5,
IEEE (2013).
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