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Wasserstein Dictionary Learning: Optimal Transport-Based Unsupervised
Nonlinear Dictionary Learning∗
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Abstract. This paper introduces a new nonlinear dictionary learning method for histograms in the probability
simplex. The method leverages optimal transport theory, in the sense that our aim is to reconstruct
histograms using so-called displacement interpolations (a.k.a. Wasserstein barycenters) between
dictionary atoms; such atoms are themselves synthetic histograms in the probability simplex. Our
method simultaneously estimates such atoms and, for each datapoint, the vector of weights that
can optimally reconstruct it as an optimal transport barycenter of such atoms. Our method is
computationally tractable thanks to the addition of an entropic regularization to the usual optimal
transportation problem, leading to an approximation scheme that is efficient, parallel, and simple to
differentiate. Both atoms and weights are learned using a gradient-based descent method. Gradients
are obtained by automatic differentiation of the generalized Sinkhorn iterations that yield barycenters
with entropic smoothing. Because of its formulation relying on Wasserstein barycenters instead of the
usual matrix product between dictionary and codes, our method allows for nonlinear relationships
between atoms and the reconstruction of input data. We illustrate its application in several different
image processing settings.
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1. Introduction. The idea of dimensionality reduction is as old as data analysis [57]. Dictio-
nary learning [41], independent component analysis [37], sparse coding [42], autoencoders [35],
or most simply principal component analysis (PCA) are all variations of the idea that each
datapoint of a high-dimensional dataset can be efficiently encoded as a low-dimensional vector.
Dimensionality reduction typically exploits a sufficient amount of data to produce an encoding
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map of datapoints into smaller vectors, coupled with a decoding map able to reconstruct an
approximation of the original datapoints using such vectors. Algorithms to carry out the
encoding and/or the decoding can rely on simple linear combinations of vectors, as is the
case with PCA and nonnegative matrix factorization. They can also be highly nonlinear and
employ kernel methods [72] or neural networks for that purpose [35].

In this work, we consider a very specific type of encoding/decoding pair, which relies on
optimal transport (OT) geometry between probability measures. OT geometry, also known
as Wasserstein or earth mover’s, defines a distance between two probability measures µ, ν by
computing the minimal effort required to morph measure µ into measure ν. Monge’s original
interpretation [50] was that µ would stand for a heap of sand, which should be used to fill in a
hole in the ground of the shape of ν. The effort required to move the pile of sand is usually
parameterized by a cost function to move one atom of sand from any location x in the support
of µ to any location y in the support of ν (see Figure 1). Monge then considered the problem
of finding the optimal (least costly) way to level the ground by transporting the heap into the
hole. That cost defines a geometry between probability measures which has several attractive
properties. In this paper we exploit the fact that shapes and, more generally, images can
be cast as probability measures, and we propose several tools inherited from OT geometry,
such as OT barycenters, to warp and average such images [77]. These tools can be exploited
further to carry out nonlinear inverse problems in a Wasserstein sense [14], and we propose in
this work to extend this approach to carry out nonlinear dictionary learning on images using
Wasserstein geometry.

Figure 1. Graphical representation of the mass transportation problem. The minimal effort cost to transport
one measure into the other defines the OT distance between µ and ν.

1.1. Previous works.

1.1.1. Linear dictionary learning. Several dimensionality reduction approaches rely on
using a predefined orthogonal basis upon which datapoints can be projected. Such bases
are usually defined without even looking at data, as is the case for Fourier transforms or
wavelet-based dictionaries [47]. Dictionary learning methods instead underline the idea that
dictionaries should be customized to fit a particular dataset in an optimal way. Suppose that
the M datapoints of interest can be stored in a matrix X = (x1, . . . , xM ) ∈ R

N×M . The aim of
(linear) dictionary learning is to factorize the data matrix X using two matrices: a dictionary,
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WASSERSTEIN DICTIONARY LEARNING 645

D, whose elements (the atoms) have the same dimension N as those of X, and a list of codes
Λ used to relate the two: X ≈ DΛ.

When no constraints on D or Λ are given, and one simply seeks to minimize the Frobenius
norm of the difference of X and DΛ, the problem amounts to computing the singular value
decomposition of X or, equivalently, the diagonalization of the variance matrix of X. In
practical situations, one may wish to enforce certain properties of that factorization, which
can be done in practice by adding a prior or a constraint on the dictionary D, the codes Λ, or
both. For instance, an l0 or l1 norm penalty on the codes yields a sparse representation of
data [2, 46]. The sparsity constraint might instead be imposed upon the new components (or
atoms), as is the case for sparse PCA [21]. Properties other than sparsity might be desired, for
example, statistical independence between the components, yielding independent component
analysis (ICA) [37], or positivity of both the dictionary entries and the codes, yielding a
nonnegative matrix factorization (NMF) [41]. A third possible modification of the dictionary
learning problem is to change the fitting loss function that measures the discrepancy between
a datapoint and its reconstruction. When data lies in the nonnegative orthant, Lee and Seung
have shown, for instance, the interest of considering the Kullback–Leibler (KL) divergence to
compute such a loss [41] or, more recently, the Wasserstein distance [65], as detailed later in
this section. More advanced fitting losses can also be derived using probabilistic graphical
models, such as those considered in the topic modeling literature [12].

1.1.2. Nonlinear dictionary learning. The methods described above are linear in the sense
that they attempt to reconstruct each datapoint xi by a linear combination of a few dictionary
elements. Nonlinear dictionary learning techniques involve reconstructing such datapoints
using nonlinear operations instead. Autoencoders [35] propose using neural networks and to
use their versatility to encode datapoints into low-dimensional vectors and later decode them
with another network to form a reconstruction. The main motivation behind principal geodesic
analysis [24] is to build such nonlinear operations using geometry, namely by replacing linear
interpolations with geodesic interpolations. Of particular relevance to our paper is the body of
work that relies on Wasserstein geometry to compute geodesic components [11, 13, 74, 85] (see
subsection 5.1).

More generally, when data lies on a Riemannian manifold for which Riemannian exponential
and logarithmic maps are known, Ho, Xie, and Vemuri propose a generalization of both sparse
coding and dictionary learning [36]. Nonlinear dictionary learning can also be performed by
relying on the “kernel trick,” which allows one to learn dictionary atoms that lie in some feature
space of higher, or even infinite, dimension [32, 45, 82]. Equiangular kernel dictionary learning,
proposed by Quan, Bao, and Ji, further enforces stability of the learned sparse codes [62].
Several problems where data is known to belong to a specific manifold are well studied within
this framework, e.g., sparse coding and dictionary learning for Grassmann manifolds [33], or
for positive definite matrices [34], and methods to find appropriate kernels and make full use
of the associated manifold’s geometry have been proposed for the latter [44]. Kernel dictionary
learning has also been studied for the (nonlinear) adaptive filtering framework, where Gao et
al. propose an online approach that discards obsolete dictionary elements as new inputs are
acquired [28]. These methods rely on the choice of a particular feature space and an associated
kernel and achieve nonlinearity through the use of the latter. The learned dictionary atoms
then lie in that feature space. Conversely, our proposed approach requires no choice of kernel.

Lowres version



646 SCHMITZ ET AL.

Moreover, the training data and the atoms we learn belong to the same probability simplex,
which allows for easy representation and interpretation; e.g., our learned atoms can (depending
on the chosen fitting loss) capture the extreme states of a transformation undergone by the
data. This is opposed to kernel dictionary atoms, which cannot be naturally represented in the
same space as datapoints because of their belonging to the chosen high-dimensional feature
space.

1.1.3. Computational optimal transport. Optimal transport has seen significant interest
from mathematicians in recent decades [64, 79, 83]. For many years, that theory was, however,
of limited practical use and mostly restricted to the comparison of small histograms or point
clouds since typical algorithms used to compute them, such as the auction algorithm [10] or
the Hungarian algorithm [39], were intractable beyond a few hundred bins or points. Recent
approaches [63, 75] have ignited interest for fast yet faithful approximations of OT distances.
Of particular interest to this work is the entropic regularization scheme proposed by Cuturi [18],
which finds its roots in the gravity model used in transportation theory [23]. This regularization
can also be tied to the relation between OT and Schrödinger’s problem [73] (as explored by
Léonard [43]). Whereas the original OT problem is a linear problem, regularizing it with an
entropic regularization term results in a strictly convex problem with a unique solution which
can be solved with Sinkhorn’s fixed-point algorithm [76], a.k.a. block coordinate ascent in the
dual regularized OT problem. That iterative fixed-point scheme yields a numerical approach
relying only on elementwise operations on vectors and matrix-vector products. The latter
can in many cases be replaced by a separable convolution operator [77], forgoing the need
to manipulate a full cost matrix of prohibitive dimensions in some use cases of interest (e.g.,
when input measures are large images).

1.1.4. Wasserstein barycenters. Agueh and Carlier introduced the idea of a Wasserstein
barycenter in the space of probability measures [1], namely Fréchet means [26] computed
with the Wasserstein metric. Such barycenters are the basic building block of our proposal
of a nonlinear dictionary learning scheme with Wasserstein geometry. Agueh and Carlier
studied several properties of Wasserstein barycenters and showed very importantly that their
exact computation for empirical measures involves solving a multimarginal optimal transport
problem, namely a linear program with the size growing exponentially with the size of the
support of the considered measures.

Since that work, several algorithms have been proposed to efficiently compute these
barycenters [15, 16, 63, 78, 86]. The computation of such barycenters using regularized
distances [19] is of particular interest to this work. Cuturi and Peyré [20] use entropic
regularization and duality to cast a wide range of problems involving Wasserstein distances
(including the computation of Wasserstein barycenters) as simple convex programs with closed
form derivatives. They also illustrate the fact that the smoothness introduced by the addition
of the entropic penalty can be desirable, beyond its computational gains, in the case of
the Wasserstein barycenter problem. Indeed, when the discretization grid is small, its true
optimum can be highly unstable, which is counteracted by the smoothing introduced by the
entropy [20, section 3.4]. The idea of performing iterative Bregman projections to compute
approximate Wasserstein distances can be extended to the barycenter problem, allowing its
direct computation using a generalized form of the Sinkhorn algorithm [8]. Chizat et al.
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recently proposed a unifying framework for solving unbalanced optimal transport problems [17],
including computing a generalization of the Wasserstein barycenter.

1.1.5. Wasserstein barycentric coordinates. An approach to solving the inverse problem
associated with Wasserstein barycenters was recently proposed [14]: Given a database of S
histograms, a vector of S weights can be associated to any new input histogram, such that
the barycenter of that database with those weights approximates as closely as possible the
input histogram. These weights are obtained by automatic differentiation (with respect to
the weights) of the generalized Sinkhorn algorithm that outputs the approximate Wasserstein
barycenter. This step can be seen as an analogy of, given a dictionary D, finding the best
vector of weights Λ that can help reconstruct a new datapoint using the atoms in the dictionary.
That work can be seen as a precursor for our proposal, whose aim is to learn both weights and
dictionary atoms.

1.1.6. Applications to image processing. OT was introduced into the computer graphics
community by Rubner, Tomasi, and Guibas [67] to retrieve images from their color distribution
by considering images as distributions of pixels within a 3-dimensional color space. Color
processing has remained a recurring application of OT, for instance to color grade an input
image using a photograph of a desired color style [60], or using a database of photographs [14],
or to harmonize multiple images’ colors [15]. Another approach considers grayscale images
as 2-dimensional histograms. OT then allows one to find a transport-based warping between
images [31, 49]. Further image processing applications are reviewed in the habilitation
dissertation of Papadakis [56].

1.1.7. Wasserstein loss and fidelity. Several recent papers have investigated the use of OT
distances as fitting losses that have desirable properties that KL or Euclidean distances cannot
offer. We have already mentioned generalizations of PCA to the set of probability measures via
the use of OT distances [11, 74]. Sandler and Lindenbaum first considered the NMF problem
with a Wasserstein loss [69]. Their computational approach was, however, of limited practical
use. More scalable algorithms for Wasserstein NMF and (linear) dictionary learning were
subsequently proposed [65]. The Wasserstein distance was also used as a loss function with
desirable robustness properties to address multilabel supervised learning problems [27].

Using the Wasserstein distance to quantify the fit between data (an empirical measure)
and a parametric family of densities, or a generative model defined using a parameterized
push-forward map of a base measure, has also received ample attention in the recent literature.
Theoretical properties of such estimators were established by Bassetti, Bodini, and Regazzini
[6] and Bassetti and Regazzini [7], and additional results by Bernton et al. [9]. Entropic
smoothing has facilitated the translation of these ideas into practical algorithms, as illustrated
in the work by Montavon, Müller, and Cuturi, who proposed estimating the parameters of
restricted Boltzmann machines using the Wasserstein distance instead of the KL divergence [51].
Purely generative models, namely degenerate probability measures defined as the push-forward
of a measure supported on a low-dimensional space into a high-dimensional space using a
parameterized function, have also been fitted to observations using a Wasserstein loss [9],
allowing for density fitting without having to choose summary statistics (as is often the case
with usual methods). The Wasserstein distance has also been used in the context of generative

Lowres version



648 SCHMITZ ET AL.

adversarial networks (GANs) [5]. In that work, the authors use a proxy to approximate the
1-Wasserstein distance. Instead of computing the 1-Wasserstein distance using 1-Lipschitz
functions, a classic result from Kantorovich’s dual formulation of OT (see Theorem 1.14
in Villani’s book [83]), the authors restrict that set to multilayer networks with rectified
linear units and boundedness constraints on weights, which allows them to enforce some form
of Lipschitzness of their networks. Unlike the entropic smoothing used in this paper, that
approximation requires solving a nonconvex problem whose optimum, even if attained, would
be arbitrarily far from the true Wassertein distance. More recently, Genevay, Peyré, and Cuturi
introduced a general scheme for using OT distances as the loss in generative models [29], which
relies on both the entropic penalty and automatic differentiation of the Sinkhorn algorithm. Our
work shares some similarities with that paper since we also propose automatically differentiating
the Sinkhorn iterations used in Wasserstein barycenter computations.

1.2. Contributions. In this paper, we introduce a new method for carrying out nonlinear
dictionary learning for probability histograms using OT geometry. Nonlinearity comes from
the fact that we replace the usual linear combination of dictionary atoms by Wasserstein
barycenters. Our goal is to reconstruct datapoints using the closest (according to any arbitrary
fitting loss on the simplex, not necessarily the Wasserstein distance) Wasserstein barycenter to
that point using the dictionary atoms. Namely, instead of considering linear reconstructions
for X ≈ DΛ, our aim is to approximate columns of X ≈ P(D,Λ) using the P operator which
maps atoms D with lists of weights Λ to their respective barycenters.

Similar to many traditional dictionary learning approaches, this is achieved by finding local
minima of a nonconvex energy function. To do so, we propose using automatic differentiation
of the iterative scheme used to compute Wasserstein barycenters. We can thus obtain gradients
with respect to both the dictionary atoms and the weights that can then be used within one’s
solver of choice (in this work, we chose to use an off-the-shelf quasi-Newton approach and
perform both dictionary and code updates simultaneously).

Our nonlinear dictionary learning approach makes full use of the Wasserstein space’s
properties, as illustrated in Figure 2: two atoms are learned from a dataset made up of five
discretized Gaussian distributions in 1D, each slightly translated on the grid. Despite the
simplicity of the transformation (translation), linear generative models fail to capture the
changes of the geometrical space, as opposed to our OT approach. Moreover, the atoms we
learn are also discrete measures, unlike the PCA and NMF components.

We also offer several variants and improvements to our method:
• Arbitrarily sharp reconstructions can be reached by performing the barycenter compu-

tation in the log-domain.
• We offer a general method to make use of the separability of the kernel involved and

greatly alleviate the computational cost of this log-domain stabilization.
• Our representation is learned from the differentiation of an iterative, Sinkhorn-like
algorithm, whose convergence can be accelerated by using information from previous
Sinkhorn loops at each initialization (warm start) or adding a momentum term to the
Sinkhorn iterations (heavyball).

• We expand our method to the unbalanced transport framework.
Part of this work was previously presented as a conference proceedings [70], featuring an
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Figure 2. Top row: data points. Bottom three rows: On the far sides, in purple, are the two atoms learned
by PCA, NMF, and our method (WDL), respectively. In between the two atoms are the reconstructions of the
five datapoints for each method. The latter two were relaunched a few times with randomized initializations, and
the best local minimum was kept. As discussed in section 2, the addition of an entropy penalty to the usual
OT program causes a blur in the reconstructions. When the parameter associated with the entropy is high, our
method yields atoms that are sharper than the dataset on which it was trained, as is observed here where the
atoms are Dirac despite the dataset consisting of discretized Gaussians. See subsection 4.1 for a method to reach
arbitrarily low values of the entropy parameter and counteract the blurring effect.

initial version of our method, without any of the above improvements and variants, and in the
case where we were only interested in learning two different atoms.

Additional background on OT is given in section 2. The method itself and an efficient
implementation are presented in section 3. We highlight other extensions in section 4. We
showcase its use in several image processing applications in section 5.

1.3. Notation. We denote Σd the simplex of Rd, that is,

Σd :=

{

u ∈ R
d
+,

d
∑

i=1

ui = 1

}

.

For any positive matrix T , we define its negative entropy as

H(T ) :=
∑

i,j

Tij log(Tij − 1).

� denotes the Hadamard product between matrices or vectors. Throughout this paper, when
applied to matrices,

∏

,÷, and exp notations refer to elementwise operators. The scalar product
between two matrices denotes the usual inner product, that is,

〈A,B〉 := Tr(A>B) =
∑

i,j

AijBij ,
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where A> is the transpose of A. For (p, q) ∈ Σ2
N , we denote their set of couplings as

Π(p, q) :=
{

T ∈ R
N×N
+ , T1N = p, T>

1N = q
}

,(1)

where 1N = (1, . . . , 1)> ∈ R
N . ∆ denotes the diag operator, such that if u ∈ R

N , then

∆(u) :=







u1
. . .

uN






∈ R

N×N .

ι is the indicator function, such that for two vectors u, v,

ι{u}(v) =

{

0 if u = v,

+∞ otherwise,
(2)

and KL(.|.) is their KL divergence, defined here as

KL(u|v) =
∑

i

ui log

(

ui
vi

)

− ui + vi.

For a concatenated family of vectors t =
[

t>1 , . . . , t
>
S

]>
∈ R

NS , we write the ith element of ts
as [ts]i. We denote the rows of matrix M as Mi. and its columns as M.j . IN and 0N×N are
the N ×N identity and zero matrices, respectively.

2. Optimal transport.

2.1. OT distances. In the present work, we restrict ourselves to the discrete setting; i.e.,
our measures of interest will be histograms, discretized on a fixed grid of size N (Eulerian
discretization) and represented as vectors in ΣN . In this case, the cost function is represented
as a cost matrix C ∈ R

N×N , containing the costs of transportation between any two locations
in the discretization grid. The OT distance between two histograms (p, q) ∈ Σ2

N is the solution
to the discretized Monge–Kantorovich problem:

W (p, q) := min
T∈Π(p,q)

〈T,C〉.

As defined in (1), Π(p, q) is the set of admissible couplings between p and q, that is, the set of
matrices with rows summing to p and columns to q. A solution, T ∗ ∈ R

N×N , is an optimal
transport plan.

Villani’s books give extended theoretical overviews of OT [83, 84] and, in particular, several
properties of such distances. The particular case where the cost matrix is derived from a metric
on the chosen discretization grid yields the so-called Wasserstein distance (sometimes called
the earth mover’s distance). For example, if Cij = ‖xi − xj‖

2
2 (where xi, xj are the positions

on the grid), the above formulation yields the squared 2-Wasserstein distance, the square-root
of which is indeed a distance in the mathematical sense. Despite its intuitive formulation, the
computation of Wasserstein distances grows supercubicly in N , making them impractical as
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dimensions reach the order of one thousand grid points. This issue has motivated the recent
introduction of several approximations that can be obtained at a lower computational cost (see
subsection 1.1.3). Among such approximations, the entropic regularization of OT distances [18]
relies on the addition of a penalty term as follows:

Wγ(p, q) := min
T∈Π(p,q)

〈T,C〉+ γH(T ),(3)

where γ > 0 is a hyperparameter. As γ → 0, Wγ converges to the original Wasserstein
distance, while higher values of γ promote more diffuse transport matrices. The addition of a
negentropic penalty makes the problem γ-strongly convex; first-order conditions show that the
problem can be analyzed as a matrix-scaling problem which can be solved using Sinkhorn’s
algorithm [76] (also known as the iterative proportional fitting procedure (IPFP) [22]). The
Sinkhorn algorithm can be interpreted in several ways: for instance, it can be thought of as an
alternate projection scheme under a KL divergence for couplings [8] or as a block-coordinate
ascent on a dual problem [19]. The Sinkhorn algorithm consists in using the following iterations
for l ≥ 1, starting with b(0) = 1N :

a(l) =
q

K>b(l−1)
,(4)

b(l) =
p

Ka(l)
,

where K := exp
(

−C
γ

)

is the elementwise exponential of the negative of the rescaled cost matrix.
Note that when γ gets close to 0, some values of K become negligible, and values within the
scaling vectors, a(l) and b(l), can also result in numerical instability in practice (we will study
workarounds for that issue in subsection 4.1). Application of the matrix K can often be closely
approximated by a separable operation [77] (see subsection 4.1.2 for separability even in the
log-domain). In the case where the histograms are defined on a uniform grid and the cost matrix
is the squared Euclidean distance, the convolution kernel is simply Gaussian with standard
deviation

√

γ/2. The two vectors a(l), b(l) converge linearly towards the optimal scalings [25]
corresponding to the optimal solution of (3). Notice finally that the Sinkhorn algorithm at each
iteration l ≥ 1 results in an approximate optimal transport matrix T (l) = ∆(b(l))K∆(a(l)).

2.2. Wasserstein barycenter. Analogous to the usual Euclidean barycenter, the Wasser-
stein barycenter of a family of measures is defined as the minimizer of the (weighted) sum of
squared Wasserstein distances from the variable to each of the measures in that family [1].
For measures with the same discrete support, we define, using entropic regularization, the
barycenter of histograms (d1, . . . , dS) ∈ (ΣN )S with barycentric weights λ = (λ1, . . . , λS) ∈ ΣS

as

P (D,λ) := argmin
u∈ΣN

S
∑

s=1

λsWγ(ds, u),(5)

where D := (d>1 , . . . , d
>
S )

> ∈ R
NS . The addition of the entropy term ensures strict convexity

and thus that the Wasserstein barycenter is uniquely defined. It also yields a simple and
efficient iterative scheme to compute approximate Wasserstein barycenters, which can be seen
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(a) Wasserstein simplex; γ = 8 (b) Wasserstein simplex; γ = 1

Figure 3. Wasserstein simplices: barycenters of the three images in the corners with varying barycentric
weights. Middle row: λ =

[

1
2
, 1
2
, 0
]

,
[

1
3
, 1
3
, 1
3

]

,
[

0, 1
2
, 1
2

]

. Bottom row, center:
[

1
2
, 0, 1

2

]

.

as a particular case of the unbalanced OT setting [17]. This scheme, a generalization of the
Sinkhorn algorithm, once again relies on two scaling vectors:

a(l)s =
ds

Kb
(l−1)
s

,(6)

P (l) (D,λ) =

S
∏

s=1

(

K>a(l)s

)λs

,(7)

b(l)s =
P (l) (D,λ)

K>a
(l)
s

,(8)

where, as before, K = exp
(

−C
γ

)

. In this case, however, the scaling vectors are of size NS,

such that a(l) =
(

a
(l)>
1 , . . . , a

(l)>
S

)>
, b(l) =

(

b
(l)>
1 , . . . , b

(l)>
S

)>
and b(0) = 1NS . Note that one

can perform both scaling vector updates at once (and avoid storing both) by plugging one of
(6), (8) into the other. An illustration of the Wasserstein barycenter, as well as the impact of
the γ parameter, is given in Figure 3.

3. Wasserstein dictionary learning.

3.1. Overview. Given data X ∈ R
N×M in the form of histograms, i.e., each column

xi ∈ ΣN (for instance a list of M images with normalized pixel intensities), and the desired
number of atoms S, we aim to learn a dictionary D made up of histograms (d1, . . . , dS) ∈ (ΣN )S

and a list of barycentric weights Λ = (λ1, . . . , λM ) ∈ (ΣS)
M so that for each input, P (D,λi) is

the best approximation of xi according to some criterion L (see Table 1 for examples). Namely,
our representation is obtained by solving the problem

min
D,Λ

E(D,Λ) :=
M
∑

i=1

L (P (D,λi), xi) .(9)

Note the similarity between the usual dictionary learning formulation (see subsection 1.1.1)
and the one above. In our case, however, the reconstruction of the original data happens via
the nonlinear Wasserstein barycenter operator, P(D,Λ) = (P (D,λi))i, instead of the (linear)
matrix product DΛ.
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Table 1

Examples of similarity criteria and their gradient in p. See Figure 14 for the atoms yielded by our method
for these various fitting losses.

Name L(p, q) ∇L

Total variation ‖p− q‖1 sign(p− q)
Quadratic ‖p− q‖22 2(p− q)

KL KL(p|q) log(p/q)− 1

Wasserstein1 W
(L)
γ (p, q) γ log(a(L))

Differentiation of (9) relies in part on the computation of the Wasserstein barycenter
operator’s Jacobians with regard to either the barycentric weights or the atoms. While it
is possible to obtain their analytical formulae, for example by using the fact that Sinkhorn
updates (7)–(8) become fixed-point equations when convergence is reached, they rely on solving
a linear system of prohibitive dimensionality for our settings of interest where N is typically
large (Bonneel, Peyré, and Cuturi derived the expression with regard to barycentric weights and
discussed the issue in [14, section 4.1]). Moreover, in practice, the true Wasserstein barycenters
with entropic penalty P (D,λi) are unknown and approximated by sufficient Sinkhorn iterations
(7)–(8). As is now common practice in some machine learning methods (a typical example
being backward propagation for neural nets), and following recent works [14], we instead take
an approach in the vein of automatic differentiation [30]. That is, we recursively differentiate
the iterative scheme yielding our algorithm instead of the analytical formula of our Wasserstein
barycenter. In our case, this is the generalization of the Sinkhorn algorithm for barycenters.
Instead of (9), we thus aim to minimize

min
D,Λ

EL(D,Λ) :=
M
∑

i=1

L
(

P (L)(D,λi), xi

)

,(10)

where P (L) is the approximate barycenter after L iterations, defined as in (7). Even when using
an entropy penalty term, we have no guarantee on the convexity of the above problem, whether
jointly in D and Λ or for each separately, contrary to the case of OT distance computation in
(3). We thus aim to reach a local minimum of energy landscape EL by computing its gradients
and applying a descent method. By additivity of EL and without loss of generality, we will
focus on the derivations of such gradients for a single datapoint x ∈ ΣN (in which case Λ only
comprises one list of weights λ ∈ ΣS). Differentiation of (10) yields

∇DEL(D,Λ) =
[

∂DP
(L)(D,λ)

]>
∇L(P (L)(D,λ), x),(11)

∇λEL(D,Λ) =
[

∂λP
(L)(D,λ)

]>
∇L(P (L)(D,λ), x).(12)

The right-hand term in both cases is the gradient of the loss which is typically readily
computable (see Table 1) and depends on the choice of fitting loss. The left-hand terms are

1In this case, the loss is computed iteratively as explained in subsection 2.1, and a(L) in the gradient’s
expression is obtained after L iterations as in (4).
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the Jacobians of the Wasserstein barycenter operator with regard to either the weights or
the dictionary. These can be obtained either by performing the analytical differentiation of
the P (l) operator, as is done in subsection 3.2 (and Appendix A), or by using an automatic
differentiation library such as Theano [80]. The latter approach ensures that the complexity of
the backward loop is the same as that of the forward, but it can lead to memory problems
due to the storing of all objects being part of the gradient computation graph (as can be
the case, for instance, when performing the forward Sinkhorn loop in the log-domain as
in subsection 4.1.1; for this specific case, an alternative is given in subsection 4.1.2). The
resulting numerical scheme relies only on elementwise operations and on the application of
the matrix K (or its transpose), which often amounts to applying a separable convolution [77]
(see subsection 4.1.2). The resulting algorithm is given in Algorithm 3.1. At first, a “forward”
loop is performed, which amounts to the exact same operations as those used to compute the
approximate Wasserstein barycenter using updates (7)–(8) (the barycenter for current weights
and atoms is thus computed as a by-product). Two additional vectors of size SNL are stored
and then used in the recursive backward differentiation loops that compute the gradients with
regard to the dictionary and the weights.

Using the above scheme to compute gradients, or its automatically computed counterpart
from an automatic differentiation tool, one can find a local minimum of the energy landscape
(10), and thus the eventual representation Λ and dictionary D, by applying any appropriate
optimization method under the constraints that both the atoms and the weights belong to
their respective simplices ΣN ,ΣS .

For the applications shown in section 5, we chose to enforce these constraints through the
following change of variables:

∀i, di := FN (αi) :=
eαi

∑N
j=1 e

[αi]j
, λ := FS(β) :=

eβ
∑S

j=1 e
βj

.

The energy to minimize (with regard to α, β) then reads as

GL(α, β) := EL(F (α), FS(β)),(13)

where F (α) := (FN (α1), . . . , FN (αS)) = D. Differentiating (13) yields

∇αGL(α, β) = [∂F (α)]>∇DEL (F (α), FS(β)) = [∂F (α)]>∇DEL (D,Λ) ,

∇βGL(α, β) = [∂FS(β)]
>∇λEL (F (α), FS(β)) = [∂FS(β)]

>∇λEL (D,Λ) ,

where [∂Fp(u)]
> = ∂Fp(u) =

(

Ip − Fp(u)1
>
p

)

∆(Fp(u)), p being either N or S for each atom
or the weights, respectively, and both derivatives of EL are computed using either automatic
differentiation or as given in (11), (12) with Algorithm 3.1 (see subsection 3.2). The optimization
can then be performed with no constraints over α, β.

Since the resulting problem is one where the function to minimize is differentiable and we
are left with no constraints, in this work we chose to use a quasi-Newton method (though
our approach can be used with any appropriate solver); that is, at each iteration t, an
approximation of the inverse Hessian matrix of the objective function, B(t), is updated, and
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Algorithm 3.1 SinkhornGrads: Computation of dictionary and barycentric weights gradients

Inputs: Data x ∈ ΣN , atoms d1, . . . , dS ∈ ΣN , current weights λ ∈ ΣS

comment: Sinkhorn loop

∀s, b
(0)
s := 1N

for l = 1 to L step 1 do

∀s, ϕ
(l)
s := K> ds

Kb
(l−1)
s

p :=
∏

s

(

ϕ
(l)
s

)λs

∀s, b
(l)
s := p

ϕ
(l)
s

od

comment: Backward loop - weights
w := 0S
r := 0S×N

g := ∇L(p, x)� p
for l = L to 1 step − 1 do

∀s, ws := ws + 〈logϕ
(l)
s , g〉

∀s, rs := −K>

(

K

(

λsg−rs

ϕ
(l)
s

)

� ds

(Kb
(l−1)
s )2

)

� b
(l−1)
s

g :=
∑

s rs
od

comment: Backward loop - dictionary
y := 0S×N

z := 0S×N

n := ∇L(p, x)
for l = L to 1 step − 1 do

∀s, cs := K((λsn− zs)� b
(l)
s )

∀s, ys := ys +
cs

Kb
(l−1)
s

∀s, zs := − 1N

ϕ
(l−1)
s

�K> ds�cs

(Kb
(l−1)
s )2

n :=
∑

s zs
od

Outputs: P (L)(D,λ) := p,∇DE
(L) := y,∇λE

(L) := w

the logistic variables for the atoms and weights are updated as

α(t+1) := α(t) − ρ(t)α B(t)
α ∇αGL(α, β), β(t+1) := β(t) − ρ

(t)
β B

(t)
β ∇βGL(α, β),

where the ρ(t) are step sizes. An overall algorithm yielding our representation in this particular
setup of quasi-Newton after a logistic change of variables is given in Algorithm 3.2.

In the applications of section 5, B(t) and ρ(t) were chosen using an off-the-shelf L-BFGS
solver [52]. We chose to perform updates to atoms and weights simultaneously. Note that in
this case, both are fed to the solver of choice as a concatenated vector. It is then beneficial
to add a “variable scale” hyperparameter ζ and to multiply all gradient entries related to
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the weights by that value. Otherwise, the solver might reach its convergence criterion when
approaching a local minimum with regards to either dictionary atoms or weights, even if
convergence is not yet achieved in the other. Setting either a low or high value of ζ bypasses
the problem by forcing the solver to keep optimizing with regard to one of the two variables in
particular. In practice, and as expected, we have observed that relaunching the optimization
with different ζ values upon convergence can increase the quality of the learned representation.
While analogous to the usual alternated optimization scheme often used in dictionary learning
problems, this approach avoids having to compute two different forward Sinkhorn loops to
obtain the derivatives in both variables.

Algorithm 3.2 Quasi-Newton implementation of the Wasserstein dictionary learning algorithm

Inputs: Data X ∈ R
N×M , initial guesses α(0), β

(0)
1 , . . . , β

(0)
M , convergence criterion

t := 0
while convergence not achieved do

D(t) := F (α(t))

α(t+1) := α(t)

for i = 1 to M step 1 do

λ
(t)
i := FS(β

(t)
i )

pi, g
D
i , gλi := SinkhornGrads(xi, D

(t), λ
(t)
i )

Select ρ
(t)
α , ρ

(t)
i B

(t)
α , B

(t)
i (L-BFGS)

α(t+1) := α(t+1) − ρ
(t)
α B

(t)
α ∂F (α(t))gDi

β
(t+1)
i := β

(t)
i − ρ

(t)
i B

(t)
i ∂FS(β

(t)
i )gλi

od

t := t+ 1
od

Outputs: D = F
(

α(t)
)

, Λ =
(

FS

(

β
(t)
1

)

, . . . , FS

(

β
(t)
S

))

3.2. Backward recursive differentiation. To differentiate P (L)(D,Λ), we first rewrite its
definition (7) by introducing the following notations:

P (l)(D,λ) = Ψ(b(l−1)(D,λ), D, λ),(14)

b(l)(D,λ) = Φ(b(l−1)(D,λ), D, λ),(15)

where

Ψ(b,D, λ) :=
∏

s

(

K> ds
Kbs

)λs

,(16)

Φ(b,D, λ) :=





(

Ψ(b,D, λ)

K> d1
Kb1

)>

, . . . ,

(

Ψ(b,D, λ)

K> dS
KbS

)>




>

.(17)
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Finally, we introduce the following notations for readability:

ξ(l)y :=
[

∂yξ(b
(l), D, λ)

]>
, B(l)

y :=
[

∂yb
(l)(D,λ)

]>
,

where ξ can be Ψ or Φ, and y can be D or λ.

Proposition 3.1.

∇DEL(D,λ) = Ψ
(L−1)
D

(

∇L(P (L)(D,λ), x)
)

+

L−2
∑

l=0

Φ
(l)
D

(

v(l+1)
)

,(18)

∇λEL(D,λ) = Ψ
(L−1)
λ

(

∇L(P (L)(D,λ), x)
)

+

L−2
∑

l=0

Φ
(l)
λ

(

v(l+1)
)

,(19)

where

v(L−1) := Ψ
(L−1)
b

(

∇L(P (L)(D,λ), x)
)

,(20)

∀l < L− 1, v(l−1) := Φ
(l−1)
b

(

v(l)
)

.(21)

See Appendix A for the proof.

4. Extensions.

4.1. Log-domain stabilization.

4.1.1. Stabilization. In its most general framework, representation learning aims at finding
a useful representation of data, rather than one allowing for perfect reconstruction. In some
particular cases, however, it might also be desirable to achieve a very low reconstruction error,
for instance if the representation is to be used for compression of data rather than a task such
as classification. In the case of our method, the quality of the reconstruction is directly linked
to the selected value of the entropy parameter γ, as it introduces a blur in the reconstructed
images as illustrated in Figure 3. In the case where sharp features in the reconstructed images
are desired, we need to take extremely low values of γ, which can lead to numerical problems,
e.g., because values within the scaling vectors a and b can then tend to infinity. As suggested
by Chizat et al. [17] and Schmitzer [71], we can instead perform the generalized Sinkhorn

updates (7)–(8) in the log-domain. Indeed, noting u
(l)
s , v

(l)
s as the dual scaling variables, that is,

a(l)s := exp

(

u
(l)
s

γ

)

, b(l)s := exp

(

v
(l)
s

γ

)

,

the quantity −cij + ui + vj is known to be bounded and thus remains numerically stable. We
can then introduce the stabilized kernel K̃(u, v) defined as

K̃(u, v) := exp

(

−C + u1> + 1v>

γ

)

,(22)
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and notice that we then have

u(l)s = γ
[

log(ds)− log(Kb(l−1)
s )

]

,

[

log(Kb(l−1)
s )

]

i
= log





∑

j

exp

(

−cij + v
(l−1)
j

γ

)





= log





∑

j

K̃(u(l−1)
s , v(l−1)

s ).j



−

[

u
(l−1)
s

]

i

γ
.

With similar computations for the vs updates, we can then reformulate the Sinkhorn updates
in the stabilized domain as

u(l)s := γ



log(ds)− log





∑

j

K̃(u(l−1)
s , v(l−1)

s ).j







+ u(l−1)
s ,(23)

v(l)s := γ

[

log(P (l))− log

(

∑

i

K̃(u(l)s , v(l−1)
s )i.

)]

+ v(l−1)
s .(24)

This provides a forward scheme for computing Wasserstein barycenters with arbitrarily low
values of γ, which could be expanded to the backward loop of our method either by applying
an automatic differentiation tool to the stabilized forward barycenter algorithm or by changing
the steps in the backward loop of Algorithm 3.1 to make them rely solely on stable quantities.
However, this would imply computing a great number of stabilized kernels as in (22), which
relies on nonseparable operations. Each of those kernels would also have to either be stored
in memory or recomputed when performing the backward loop. In both cases, the cost in
memory or number of operations, respectively, can easily be too high in large scale settings.

4.1.2. Separable log kernel. These issues can be avoided by noticing that when the
application of the kernel K is separable, this operation can be performed at a much lower
cost. For a d-dimensional histogram of N = nd bins, applying a separable kernel amounts to
performing a sequence of d steps, where each step computes n operations per bin. It results in

an O(nd+1) = O(N
d+1
d ) cost instead of O(N2). As mentioned previously, the stabilized kernel

(22) is not separable, prompting us to introduce a new stable and separable kernel suitable for
log-domain processing. We illustrate this process using 2-dimensional kernels without loss of
generality. Let X be a 2-dimensional domain discretized as an n× n grid. Applying a kernel
of the form K = exp

(

− C
γ

)

to a 2-dimensional image b ∈ X is performed as such:

R(i, j) :=

n
∑

k=1

n
∑

l=1

exp

(

−
C((i, j), (k, l))

γ

)

b(k, l) ,

where C((i, j), (k, l)) denotes the cost to transport mass between the points (i, j) and (k, l).
Assuming a separable cost such that C((i, j), (k, l)) := Cy(i, k) + Cx(j, l) , it amounts to
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performing two sets of 1-dimensional kernel applications:

A(k, j) =

n
∑

l=1

exp

(

Cx(j, l)

γ

)

b(k, l),

R(i, j) =

n
∑

k=1

exp

(

Cy(i, k)

γ

)

A(k, j) .

In order to stabilize the computation and avoid reaching representation limits, we transfer
it to the log-domain (v := log(b)). Moreover, we shift the input values by their maximum and
add it at the end. The final process can be written as the operator KLS : log(b) → log(K(b)),
with K a separable kernel, and is described in Algorithm 4.1.

Algorithm 4.1 LogSeparableKer KLS : Application of a 2-dimensional separable kernel in
log-domain

Inputs: Cost matrix C ∈ R
N×N , image in log-domain v ∈ R

n×n

∀k, j, xl(k, j) :=
Cx(j,l)

γ
+ v(k, l)

∀k, j, A′(k, j) := log (
∑n

l exp(xl −maxl xl)) + maxl xl

∀i, j, yk(i, j) :=
Cy(i,k)

γ
+A′(k, j)

∀i, j, R′(i, j) := log (
∑n

k exp(yk −maxk yk)) + maxk yk
Outputs: Image in log-domain KLS(v) = R′

This operator can be used directly in the forward loop, as seen in Algorithm 4.2. For
backward loops, intermediate values can be negative and real-valued logarithms are not suited.
While complex-valued logarithms solve this problem, they come at a prohibitive computational
cost. Instead, we store the sign of the input values and compute logarithms of absolute values.
When exponentiating, the stored sign is used to recover the correct value.

4.2. Warm start. Warm start, often used in optimization problems, consists in using the
solution of a previous optimization problem, close to the current one, as the initialization point
in order to speed up the convergence. Our method relies on performing an iterative optimization
process (for example, L-BFGS in the following experiments) which, at each iteration, calls
upon another iterative scheme: the forward Sinkhorn loop to compute the barycenter and
its automatic differentiation to obtain gradients. As described in subsection 2.2, this second,
nested iterative scheme is usually initialized with constant scaling vectors. However, in our
case, since each iteration of our descent method performs a new Sinkhorn loop, the scaling
vectors of the previous iteration can be used to set the values of b(0) instead of the usual 1NS ,
thus “warm-starting” the barycenter computation. In the remainder of this subsection, for
illustrative purposes, we will focus on our particular case where the chosen descent method is
L-BFGS, though the idea of applying warm start to the generalized Sinkhorn algorithm should
be directly applicable with any other optimization scheme.

As an example, in our case, instead of a single L-BFGS step after L = 500 Sinkhorn
iterations, we perform an L-BFGS step every L = 10 iterations, initializing the scaling vectors
as the ones reached at the end of the previous 10. This technique accumulates the Sinkhorn
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Algorithm 4.2 logSinkhornGrads: Computation of dictionary and barycentric weights
gradients in log-domain. Log-domain variables are marked with a tilde.

Inputs: Data x ∈ ΣN , atoms d1, . . . , dS ∈ ΣN , current weights λ ∈ ΣS

comment: Sinkhorn loop

∀s, v
(0)
s := 0N

for l = 1 to L step 1 do

∀s, ϕ̃
(l)
s := KLS

(

log(ds)−KLS(v
(l−1)
s )

)

p̃ :=
∑

s λsϕ̃
(l)
s

∀s, v
(l)
s := p̃− ϕ̃

(l)
s

od

p = exp(p̃)
comment: Backward loop - weights
w := 0S
r := 0S×N

g := ∇L(p, x)� p
for l = L to 1 step − 1 do

∀s, ws := ws + 〈ϕ̃
(l)
s , g〉

∀s, t̃s := KLS

(

log(λsg − rs)− ϕ̃
(l)
s

)

+ log(ds)− 2 ∗KLS(v
(l−1)
s )

∀s, rs := exp
(

KLS(t̃s) + v
(l−1)
s

)

g := −
∑

s rs
od

comment: Backward loop - dictionary
y := 0S×N

z := 0S×N

n := ∇L(p, x)
for l = L to 1 step − 1 do

∀s, c̃s := KLS

(

log(λsn+ zs) + v
(l)
s

)

∀s, ys := ys + exp
(

c̃s −KLS(v
(l−1)
s )

)

∀s, zs := exp
(

−ϕ̃
(l−1)
s +KLS

(

log(ds) + c̃s − 2 ∗KLS(v
(l−1)
s )

))

n := −
∑

s zs
od

Outputs: P (L)(D,λ) := p,∇DE
(L) := y,∇λE

(L) := w

iterations as we accumulate L-BFGS steps. This has several consequences: a gain in precision
and time, a potential increase in the instability of the scaling vectors, and changes in the
energy we minimize.

First, the last scaling vectors of the previous overall iteration are closer to that of the
current one than a vector of constant value. Therefore, the Sinkhorn algorithm converges more
rapidly, and the final barycenters computed at each iteration gain accuracy compared to the
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Figure 4. Evolution of the mean PSNR of the reconstructions per L-BFGS iteration, for three configurations,
on two datasets. The KL loss was used for this experiment. We see that the warm start yields better reconstructions
with the same number of Sinkhorn iterations (L) in roughly the same time.

classical version of the algorithm.
Second, as mentioned in subsection 4.1, the scaling vectors may become unstable when

computing a large number of iterations of the Sinkhorn algorithm. When using a warm start
strategy, Sinkhorn iterations tend to accumulate, which may consequently degrade the stability
of the scaling vectors. For example, using 20 Sinkhorn iterations running through 50 L-BFGS
steps, a warm start would lead to barycenters computed using scaling vectors comparable to
those obtained after 1000 Sinkhorn iterations. When instabilities become an issue, we couple
the warm start approach with our log-domain stabilization. The reduced speed of log-domain
computations is largely compensated by the fact that our warm start allows the computation
of fewer Sinkhorn iterations for an equivalent or better result.

Third, when differentiating (10), we consider the initial, warm-started (as opposed to
initializing b(0) to 1NS) values given to the scaling vectors to be constant and independent
of weights and atoms. This amounts to considering a different energy to minimize at each
L-BFGS step.

We demonstrate the benefits of the warm start in Figure 4. We plot the evolution of
the mean peak signal-to-noise ratio (PSNR) of the reconstructions throughout the L-BFGS
iterations for different settings for the two datasets used in subsection 5.4. For these examples,
we used the KL loss (since it gave the best reconstructions overall), we did not have to use the
log-domain stabilization, and we restarted L-BFGS every 10 iterations. At an equal number of
Sinkhorn iterations (L), enabling the warm start always yields better reconstructions after a
certain number of iterations. It comes at a small overhead cost in time (around 25%) because
the L-BFGS line search routine requires more evaluations at the start. For the example in
Figure 4a, the computation times are 20 minutes for L = 2, 25 minutes for the warm restart
and L = 2, and 15 hours for L = 100. In this particular case, enabling the warm start with two
Sinkhorn iterations yields even better results than having 100 Sinkhorn iterations without a
warm start and with a 36 gain factor in time. For the second dataset (Figure 4b), enabling the
warm start does not yield results as good as when running 100 Sinkhorn iterations. However,

Lowres version



662 SCHMITZ ET AL.

it would require considerably more than two Sinkhorn iterations, and hence a lot more time,
to achieve the same result without it. The computation times in all three cases are similar to
the previous example.

4.3. Sinkhorn heavyball. As part of a generalization of the Sinkhorn algorithm for solving
OT between tensor fields [59], Peyré et al. introduced relaxation variables. In the particular
case of scalar OT (our framework in the present work), these relaxation variables amount to
an averaging step in the Sinkhorn updates; for instance, in the case of the barycenter scaling
updates (6), (8),

ã(l)s =
ds

Kb
(l−1)
s

,(25)

a(l)s =
(

a(l−1)
s

)τ (

ã(l)s

)1−τ

,

b̃(l)s =
P (l) (D,λ)

K>a
(l)
s

,(26)

b(l)s =
(

b(l−1)
s

)τ (

b̃(l)s

)1−τ

.

τ = 0 yields the usual Sinkhorn iterations, but it has been shown that negative values of τ
produce extrapolation and can lead to a considerable increase in the rate of convergence of the
Sinkhorn algorithm [59, Remark 6]. This effect can be thought of in the same way as the heavy
ball method [53, 87], often used in optimization problems and dating back to Polyak [61], i.e.,

as the addition of a momentum term (e.g., (a
(l−1)
s /ã

(l)
s )τ , which amounts to τ(u

(l−1)
s − ũ

(l)
s )

in the log-domain) to the usual Sinkhorn updates. This acceleration scheme can be used
within our method by applying an automatic differentiation tool [80] to the forward Sinkhorn
loop yielding the barycenter (shown in Algorithm SM2.1 in the supplementary materials) and
feeding the gradients to Algorithm 3.2.

4.4. Unbalanced. In (1), we defined the set of admissible transport plans Π(p, q) as the
set of matrices whose marginals are equal to the two input measures, that is, with rows
summing to p and columns summing to q. Equivalently, we can reformulate the definition of
the approximate Wasserstein distance (3) as

Wγ(p, q) := min
T∈RN×N

+

〈T,C〉+ γH(T ) + ι{p}(T1N ) + ι{q}(T
>
1N ),

where ι is the indicator function defined in (2). Chizat et al. introduce the notion of unbalanced
transport problems [17], wherein this equality constraint between the marginals of the OT
plan and the input measures is replaced by some other similarity criterion. Using entropic
regularization, they introduce matrix scaling algorithms generalizing the Sinkhorn algorithm to
compute, among others, unbalanced barycenters. This generalizes the notion of approximate
Wasserstein barycenters that we have focused on thus far.

In particular, using the KL divergence between the transport plan’s marginals and the
input measures allows for less stringent constraints on mass conservation, which can in turn
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yield barycenters which maintain more of the structure seen in the input measures. This
amounts to using the following definition of Wγ in the barycenter formulation (5):

Wγ(p, q) := min
T∈RN×N

+

〈T,C〉+ γH(T ) + ρ
(

KL(T1N |p) + KL(T>
1N |q)

)

,

where ρ > 0 is the parameter determining how far from the balanced OT case we can stray,
with ρ = ∞ yielding the usual OT formulation. In this case, the iterative matrix scaling
updates (7)–(8) read, respectively [17], as

P (l) (D,λ) =

(

S
∑

s=1

λs

(

K>a(l)s

)
γ

ρ+γ

)

ρ+γ
γ

,

a(l)s =
(

ã(l)s

)
ρ

ρ+γ
, b(l)s =

(

b̃(l)s

)
ρ

ρ+γ
,

where ã
(l)
s , b̃

(l)
s are obtained from the usual Sinkhorn updates as in (25), (26).

Algorithm SM2.2, given in the supplementary materials, performs the barycenter computa-
tion (forward loop) including both the unbalanced formulation and the acceleration scheme
shown in subsection 4.3. Automatic differentiation can then be performed using an appropriate
library [80] to obtain the dictionary and weights gradients, which can then be plugged into
Algorithm 3.2 to obtain a representation relying on unbalanced barycenters.

5. Applications.

5.1. Comparison with Wasserstein principal geodesics. As mentioned in subsection 1.1,
an approach to generalize PCA to the set of probability measures on some space, endowed
with the Wasserstein distance, has recently been proposed [74]. Given a set of input measures,
an approximation of their Wasserstein principal geodesics (WPG) can be computed, namely
geodesics that pass through their isobarycenter (in the Wasserstein sense) and are close to all
input measures. Because of the close link between Wasserstein geodesics and the Wasserstein
barycenter, it would stand to reason that the set of barycenters of S = 2 atoms learned using
our method could be fairly close to the first WPG. In order to test this, and to compare
both approaches, we reproduce the setting of the WPG paper [74] experiment on the MNIST
dataset within our framework.

We first run our method to learn two atoms on samples of 1000 images for each of the first
four nonzero digits, with parameters γ = 2.5, L = 30, and compare the geodesic that runs in
between the two learned atoms with the first WPG. An example of the former is shown in
Figure 5. Interestingly, in this case, as with the 3’s and 4’s, the two appear visually extremely
close (see the first columns of [74, Figure 5] for the first WPG). It appears our method can thus
capture WPGs. We do not seem to recover the first WPG when running on the dataset made
up of 1’s, however. This is not unexpected, as several factors can cause the representation we
learn to vary from this computation of the first WPG:

• In our case, there is no guarantee the isobarycenter of all input measures lies within
the span of the learned dictionary.

• Even when it does, since we minimize a nonconvex function, the algorithm might
converge toward another local minimum.
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• In this experiment, the WPGs are computed using several approximations [74], including
some for the computation of the geodesics themselves, which we are not required to
make in order to learn our representation.

Note that in the case of this particular experiment (on a subsample of MNIST 1’s), we tried
relaunching our method several times with different random initializations and never observed
a span similar to the first WPG computed using these approximations.

Figure 5. Span of our 2-atom dictionary for weights (1− t, t), t ∈ {0, 1
4
, 1
2
, 3
4
, 1}, when trained on images of

digit 2.

Our approach further enables us to combine, in a straightforward way, each of the captured
variations when learning more than two atoms. This is illustrated in Figure 6, where we run
our method with S = 3. Warpings similar to those captured when learning only S = 2 atoms
(the appearance of a loop within the 2) are also captured, along with others (shrinking of
the vertical size of the digit toward the right). Intermediate values of the weight given to
each of the three atoms allow our representation to cover the whole simplex, thus arbitrarily
combining any of these captured warpings (e.g., vertically shrinked, loopless 2 in the middle of
the bottom row).

Figures similar to Figures 5 and 6 for all other digits are given in the supplementary
materials, subsection SM3.1.

Figure 6. Span of a 3-atom dictionary learned on a set of 2’s. Weights along each edge are the same as in
Figure 5 for the two extreme vertices and 0 for the other, while the three center barycenters have a weight of 1

2

for the atom corresponding to the closest vertex and 1
4
for each of the other two.
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5.2. Point spread functions. As with every optical system, observations from astrophysical
telescopes suffer from a blurring related to the instrument’s optics and various other effects
(such as the telescope’s jitter for space-based instruments). The blurring function, or point
spread function (PSF), can vary spatially (across the instrument’s field of view), temporally,
and chromatically (with the incoming light’s wavelength). In order to reach its scientific goals,
the European Space Agency’s upcoming Euclid space mission [40] will need to measure the
shape of one billion galaxies extremely accurately, and therefore correcting the PSF effects is of
paramount importance. The use of OT for PSF modeling has been investigated by Irace and
Batatia [38] and Ngolè and Starck [54], both with the aim of capturing the spatial variation of
the PSF. For any given position in the field of view, the transformations undergone by the PSF
depending on the incoming light’s wavelength are also known to contain strong geometrical
information, as illustrated in Figure 7. It is therefore tempting to express these variations as
the intermediary steps in the optimal transportation between the PSFs at the two extreme
wavelengths. This succession of intermediary steps, the displacement interpolation (also known
as McCann’s interpolation [48]) between two measures, can be computed (in the case of the
2-Wasserstein distance) as their Wasserstein barycenters with weights λ = (1−t, t), t ∈ [0, 1] [1].

We thus ran our method on a dataset of simulated, Euclid-like PSFs [55, section 4.1] at
various wavelengths and learned only two atoms. The weights were initialized as a projection
of the wavelengths into [0, 1] but allowed to vary. The atoms were initialized without using
any prior information as two uniform images with all pixels set at 1/N , N being the number
of pixels (in this case 402). The fitting loss was quadratic, the entropic parameter γ set to a
value of 0.5 to allow for sharp reconstructions, and the number of Sinkhorn iterations set at
120, with a heavyball parameter τ = −0.1.

The learned atoms, as well as the actual PSFs at both ends of the spectrum, are shown
in Figure 8. Our method does indeed learn atoms that are extremely close visually to the
two extremal PSFs. The reconstructed PSFs at the same wavelength as those of Figure 7
are shown in Figure 9 (the corresponding final barycentric weights are shown in Figure 11b).
This shows that OT, and in particular displacement interpolation, does indeed capture the
geometry of the polychromatic transformations undergone by the PSF. On the other hand,
when one learns only two components using a PCA, they have no direct interpretation (see
Figure 10), and the weights given to the 2nd principal component appear to have no direct
link to the PSF’s wavelength, as shown in Figure 11a.

(a) 550nm (b) 600nm (c) 650nm (d) 700nm (e) 750nm (f) 800nm (g) 850nm (h) 900nm

Figure 7. Simulated Euclid-like PSF variation at a fixed position in the field of view for varying incoming
wavelengths.

Note that while adding constraints can also make linear generative methods yield two
atoms that are visually close to the extreme PSFs, for instance by using NMF instead of
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Figure 8. Extreme wavelength PSFs in the dataset and the atoms making up the learned dictionary.

(a) 550nm (b) 600nm (c) 650nm (d) 700nm (e) 750nm (f) 800nm (g) 850nm (h) 900nm

Figure 9. Polychromatic variations of PSFs by displacement interpolation.

PCA (see Figure SM5 in the supplementary materials for the atoms learned), our method
yields lower reconstruction error, with an average normalized mean square error of 1.71× 10−3

across the whole dataset, as opposed to 2.62× 10−3 for NMF. As expected, this difference in
reconstruction error is particularly noticeable for datapoints corresponding to wavelengths in
the middle of the spectrum, as the NMF reconstruction then simply corresponds to a weighted
sum of the two atoms, while our method captures more complex warping between them.
This shows that the OT representation allows us to better capture the nonlinear geometrical
variations due to the optical characteristics of the telescope.

5.3. Cardiac sequences. We tested our dictionary learning algorithm on a reconstructed
MRI sequence of a beating heart. The goal was to learn a dictionary of four atoms, representing

Lowres version



WASSERSTEIN DICTIONARY LEARNING 667

Figure 10. PCA-learned components.

(a) Weights for the first two principal components
learned by PCA.

(b) Barycentric weights learned by our method.
The dashed lines are the initialization.

Figure 11. Evolution of representation coefficients by wavelength.

the key frames of the sequence.
An advantageous side effect of the weights learned by our method lying in the simplex

is that it provides a natural way to visualize them: by associating each atom di with a
fiducial position (xi, yi) ∈ R

2, each set of weights can be represented as one point placed at
the position of the Euclidean barycenter of these positions, with individual weights given to
the corresponding atom. Up to rotations and inverse ordering, there are only as many such
representations as there are possible orderings of the atoms. In the present case of S = 4,
we can further use the fact that any of the four weights λi is perfectly known through the
other three as 1−

∑

j 6=i λj . By giving atoms’ fiducial positions in R
3 and ignoring one of them

or, equivalently, assigning it the (0, 0, 0) position, we thus obtain a unique representation of
the weights as seen in Figure 12. The “barycentric path” (polyline of the barycentric points)
is a cycle, which means the algorithm is successful at finding those key frames that, when
interpolated, can represent the whole dataset. This is confirmed by the similarity between the
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Figure 12. Left: Comparison between four frames (out of 13) of the measures (lower row) and the same
reconstructed frames (upper row). Right: plot of the reconstructed frames (blue points) by their barycentric
coordinates in the 4-atom basis, with each atom (red points) at the vertices of the tetrahedra. The green point is
the first frame.

reconstructions and the input measures.
For this application, we used 13 frames of 272× 240, a regularization γ = 2, and a scale

between weights and atoms of ζ = N/(100 ∗M), N = 272× 240, M = 13 frames. Initialization
was random for the weights and constant for the atoms. We used a quadratic loss because it
provided the best results in terms of reconstruction and representation. We found 25 iterations
for the Sinkhorn algorithm to be a good trade-off between computation time and precision.

5.4. Wasserstein faces. It has been shown that images of faces, when properly aligned,
span a low-dimensional space that can be obtained via PCA. These principal components,
called Eigenfaces, have been used for face recognition [81]. We show that, with the right
setting, our dictionary learning algorithm can produce atoms that can be interpreted more
easily than their linear counterparts and can be used to edit a human face’s appearance.

We illustrate this application on the MUG facial expression dataset [3]. From the raw
images of the MUG database, we isolated faces and converted the images to grayscale. The
resulting images are in Figure 13(a). We can optionally invert the colors and apply a power
factor α similarly to a gamma-correction. We used a total of 20 (224× 224) images of a single
person performing five facial expressions and learned dictionaries of five atoms using PCA,
NMF, a K-SVD implementation [66], and our proposed method. For the last, we set the
number of Sinkhorn iterations to 100 and the maximum number of L-BFGS iterations to 450.
The weights were randomly initialized, and the atoms were initialized as constant.

We performed a cross validation using two datasets, four loss functions, four values for α
(1, 2.2, 3, 5), and colors either inverted or not. We found that none of the α values we tested
gave significantly better results (in terms of reconstruction errors). Interestingly, however,
inverting colors improved the result for our method in most cases. We can conclude that when
dealing with faces, it is better to transport the thin and dark zones (eyebrows, mouth, creases)
than the large and bright ones (cheeks, forehead, chin).
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As illustrated by Figure 13 (and SM6 in the supplementary materials), our method reaches
similarly successful reconstructions given the low number of atoms, with a slightly higher
mean PSNR of 33.8 compared to PSNRs of 33.6, 33.5, and 33.6 for PCA, NMF, and K-SVD,
respectively.

We show in Figure 14 (and SM7 in the supplementary materials) the atoms obtained when
using different loss functions. This shows how sensible the learned atoms are to the chosen
fitting loss, which highlights the necessity for its careful selection if atoms’ interpretability is
important for the application at hand.

Finally, we showcase an appealing feature of our method: the atoms that it computes
allow for facial editing. We demonstrate this application in Figure 15. Starting from the
isobarycenter of the atoms, by interpolating weights towards a particular atom, we add some
of the corresponding emotion to the face.

5.5. Literature learning. We use our algorithm to represent literary work. To this end,
we use a bag-of-words representation [68], where each book is represented by a histogram of
its words. In this particular application, the cost matrix C (distance between each word) is
computed exhaustively and stored. We use a semantic distance between words. These distances
were computed from the Euclidian embedding provided by the GloVe database (Global Vectors
for Word Representation) [58].

Our learning algorithm is unsupervised and considers similarity between books based on
their lexical fields. Consequently, we expect it to sort books by either author, writing style, or
genre.

To demonstrate our algorithm’s performance, we created a database of 20 books by five
different authors. In order to keep the problem size reasonable, we only considered words that
are between seven and eight letters long. In our case, it is better to deal with long words
because they have a higher chance of holding discriminative information than shorter ones.

The results can be seen in Figure 16. Our algorithm is able to group the novels by author,
recognizing the proximity of lexical fields across the different books. Atom 0 seems to be
representing Charlotte Brontë’s style, atoms 1 and 4 that of Mark Twain, atom 2 that of
Arthur Conan Doyle, and atom 3 that of Jane Austen. Charles Dickens appears to share
an extended amount of vocabulary with the other authors without it differing enough to be
represented by its own atom, like others are.

5.6. Multimodal distributions. It is a well-known limitation of the regular OT-based
Wasserstein barycenters that when there are several distinct areas containing mass, the supports
of which are disjoint on the grid, the barycenter operator will still produce barycenters with
mass in between them. To illustrate the advantages of using the unbalanced version of our
method introduced in subsection 4.4 and the use cases where it might be preferable to do so,
we place ourselves in such a setting.

We generate a dataset as follows: A 1-dimensional grid is separated into three equal parts,
and while the center part is left empty, we place two discretized and truncated 1-dimensional
Gaussians with the same standard deviation, their mean randomly drawn from every other
appropriate position on the grid. We draw 40 such datapoints, yielding several distributions
with either one (if the same mean is drawn twice) or two modes in one of the two extreme
parts of the grid or one mode in each.
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Figure 13. We compare our method with Eigenfaces [81], NMF, and K-SVD [66] as a tool to represent
faces on a low-dimensional space. Given a dataset of 20 images of the same person from the MUG dataset [3]
performing five facial expressions four times (row (a) illustrates each expression), we project the dataset on
the first five Eigenfaces (row (b)). The reconstructed faces corresponding to the highlighted input images are
shown in row (f). Rows (c) and (d), respectively, show atoms obtained using NMF and K-SVD and rows (g)
and (h) their respective reconstructions. Using our method, we obtain five atoms shown in row (e) that produce
the reconstructions in row (i).
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Figure 14. We compare the atoms (columns 1 to 5) obtained using different loss functions, ordered by
the fidelity of the reconstructions to the input measures (using the mean PSNR), from best to worst: the KL
divergence (a) PSNR = 32.03, the quadratic loss (b) PSNR = 31.93, the total variation loss (c) PSNR = 31.41,
and the Wasserstein loss (d) PSNR = 30.33. In the last column, we show the reconstruction of the same input
image for each loss. We notice that from (a) to (d), the atoms’ visual appearance seems to increase even though
the reconstruction quality decreases.

We then run our method in both the balanced and the unbalanced settings. In both cases,
γ is set to 7, 100 Sinkhorn iterations are performed, the loss is quadratic, and the learned
dictionary is made up of three atoms. In the unbalanced case, the KL-regularization parameter
is set as ρ = 20.

Figure 17 shows examples of the input data and its reconstructions in both settings. In
the unbalanced case, our method always yields the right number of modes in the right parts
of the grid. Running our method with balanced Wasserstein barycenters, however, leads
to reconstructions featuring mass in parts of the grid where there was none in the original
datapoint (the two left-most examples). Parts of the grid where the datapoint featured a mode
can also be reconstructed as empty (the third example). Finally, we observe mass in areas of
the grid that were empty for all datapoints (the fourth example).

6. Conclusion. This paper introduces a nonlinear dictionary learning approach that uses
OT geometry by fitting data to Wasserstein barycenters of a list of learned atoms. We offer
schemes to compute this representation based on the addition of an entropic penalty to the
definition of OT distances, as well as several variants and extensions of our method. We
illustrate the representation our approach yields on several different applications.

Some very recent works present a faster Sinkhorn routine, such as the Greenkhorn algo-
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Figure 15. Face editing: Using the atoms shown in row (a) of Figure SM7, we interpolate between the
atoms’ isobarycenter (top image) and each one of the atoms (giving it a relative contribution of 70%). This
allows us to emphasize each emotion (bottom images) when starting from a neutral face.
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Figure 16. Using our algorithm, we look at word histograms of novels and learn five atoms in a sample of
20 books by five authors. Each book is plotted according to its barycentric coordinates with regard to the learned
atoms, as explained in subsection 5.3.

rithm [4] or a multiscale approach [71]. These could be integrated into our method along with
automatic differentiation in order to speed up the algorithm.

Appendix A. Proof of Proposition 3.1. By differentiating (14) with regard to the
dictionary or one of the barycentric weights, we can rewrite the Jacobians in (11), (12),
respectively, while separating the differentiations with regard to the dictionary D, the weights
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Figure 17. Four different original datapoints (in blue) and their reconstructions (in yellow) from our method
in both the balanced (top row) and unbalanced (bottom row) settings. In the balanced case, we see the appearance
of spurious modes where there was no mass in the original data or a lack of mass where there was a mode
originally (the third example). Conversely, in the unbalanced case, our approach always places mass at the right
positions on the grid.

λi, and the scaling vector b by total differentiation and the chain rule:

[

∂DP
(l)(D,λ)

]>
= Ψ

(l−1)
D +B

(l−1)
D Ψ

(l−1)
b ,(27)

[

∂λP
(l)(D,λ)

]>
= Ψ

(l−1)
λ +B

(l−1)
λ Ψ

(l−1)
b .(28)

And, differentiating (15),

B
(l)
D = Φ

(l−1)
D +B

(l−1)
D Φ

(l−1)
b ,(29)

B
(l)
λ = Φ

(l−1)
λ +B

(l−1)
λ Φ

(l−1)
b .(30)

We then have, by definitions (20)–(21) and by plugging (27) and (29) into (11),

∇DEL(D,λ) = Ψ
(L−1)
D

(

∇L(P (L)(D,λ), x)
)

+B
(L−1)
D v(L−1)

= Ψ
(L−1)
D

(

∇L(P (L)(D,λ), x)
)

+Φ
(L−2)
D

(

v(L−1)
)

+B
(L−2)
D

(

v(L−2)
)

= · · ·

∇DEL(D,λ) = Ψ
(L−1)
D

(

∇L(P (L)(D,λ), x)
)

+

L−2
∑

l=0

Φ
(l)
D

(

v(l+1)
)

,(31)

where the sum starts at 0 because B
(0)
D = 0 since we initialized b(0) as a constant vector. This
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proves (18). Similarly, differentiating with regard to λ yields

∇λEL(D,λ) = Ψ
(L−1)
λ

(

∇L(P (L)(D,λ), x)
)

+

L−2
∑

l=0

Φ
(l)
λ

(

v(l+1)
)

.

Hence, this proves (19). The detailed derivation of the differentials of ϕ, Φ, and Ψ with regard
to all three variables is given in the supplementary materials, section SM1.
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