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(a) Reference (b) Underlying pixel functions (c) Pixel P (d) Pixel Q

Figure 1: The convergence rate of Monte Carlo integration with correlated (jittered) samples depends on the importance function (light vs.

BSDF). We analyze two Pixels P & Q directly illuminated by a square area light source in (a). Pixel P is fully visible from the light source,

which results in a smooth integrand when performing light source surface area sampling (visualized in bottom-left b) and a convergence rate

of O(N−2) (c: dot-dashed green curve, all plots are in log-log scale). C0 discontinuities in the integrand result in O(N−1.5) convergence,

which can happen: when using homogenization or Cranley-Patterson rotation [CP76] (CPr, solid green curve) since it introduces boundary

discontinuities; when the light source is partially occluded (Pixel Q); or when sampling the BSDF (in magenta) since this treats the boundary

of the light as a C0 discontinuity even when the light is fully visible (visualized in the second column of b).

Abstract

Fourier analysis is gaining popularity in image synthesis as a tool for the analysis of error in Monte Carlo (MC) integration. Still,

existing tools are only able to analyze convergence under simplifying assumptions (such as randomized shifts) which are not

applied in practice during rendering. We reformulate the expressions for bias and variance of sampling-based integrators to

unify non-uniform sample distributions (importance sampling) as well as correlations between samples while respecting finite

sampling domains. Our unified formulation hints at fundamental limitations of Fourier-based tools in performing variance

analysis for MC integration. At the same time, it reveals that, when combined with correlated sampling, importance sampling (IS)

can impact convergence rate by introducing or inhibiting discontinuities in the integrand. We demonstrate that the convergence

of multiple importance sampling (MIS) is determined by the strategy which converges slowest and propose several simple

approaches to overcome this limitation. We show that smoothing light boundaries (as commonly done in production to reduce

variance) can improve (M)IS convergence (at a cost of introducing a small amount of bias) since it removes C0 discontinuities

within the integration domain. We also propose practical integrand- and sample-mirroring approaches which cancel the impact

of boundary discontinuities on the convergence rate of estimators.

CCS Concepts

•Mathematics of computing → Computation of transforms; Stochastic processes; •Computing methodologies → Ray trac-

ing;
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1. Introduction

Monte Carlo (MC) and other sampling-based integration techniques
have become the cornerstone of modern rendering algorithms due to
their ability to approximate high-dimensional integrals. The strategy
used to generate the samples has a crucial impact on approxima-
tion error, and the literature is rich with strategies to mitigate error.
Modern image synthesis algorithms typically combine several strate-
gies to form unified estimators in hopes of exploiting each of their
strengths. While combined estimators are common in practice, their
analysis remains an open problem. In this paper, we analyze impor-
tance sampling when used in conjunction with correlated sampling
patterns.

Importance sampling (IS) [Coc63] is a strategy that mitigates
error by drawing samples from a tailored parent distribution (im-
portance function). The variance of the IS estimator is proportional
to the variance of the effective integrand: the original integrand di-
vided by the importance function. In situations where the qualitative
behavior of the integrand can be predicted, importance functions are
designed, a priori, to reduce the variance of the effective integrand.
The resulting approximation error depends on the choice of impor-
tance function, relative to the integrand, and the benefit due to IS is
independent of the number of samples used. Consequently, despite
IS, the variance convergence rate for pseudorandomly distributed
samples remains at O(N−1) like naïve MC sampling.

Correlated sampling (CS) is another error-mitigation strategy,
which operates by introducing correlations within each realization
of N sample points, e.g. in jittered sampling, correlations are induced
by the relative positions of the cells positioned on a regular grid.
Despite each of the N samples being drawn pseudorandomly within
a single cell, jittered sampling improves convergence rate [Hab70].
Some other strategies, viz. Poisson Disk sampling or Quasi-Monte
Carlo (QMC) sampling, explicitly impose correlations by construc-
tion to improve equidistribution [Zar72].

Tools for analyzing sampling-based integrators can be broadly
classified into three categories: Analysis in the primal domain, the
Fourier domain, and number theoretic approaches. Error analysis of
IS has predominantly been in the primal domain while CS analyses
have favored the latter two categories. The analysis of the combined
estimator requires a unified formulation.

Our formulation builds upon the early work by Sloan and
Joe [SJ94] which analyzed the approximation error—of smooth
periodic functions that have absolute convergent Fourier series
representations—using deterministic lattice methods. We reformu-
late their expression for error in terms of bias and variance to ana-
lyze stochastic sampling-based integrators. Our formulation unifies
non-uniform sample distributions (importance sampling) as well as
correlations between (stochastic) samples while respecting finite
sampling domains. Our formulation further emphasizes the role
of phase information to maximize variance and convergence gains
during correlated and/or importance sampling of C0-discontinuous
integrands, which has previously been ignored by assuming uniform
and random translation/rotation of samples [RAMN12, Ö16].

In this paper we take two steps to tackle the problem of analyzing
and improving combined correlated and importance-sampled MC
estimators:

(1) We resolve important limitations of existing Fourier analyses
(Sec. 4), which have previously assumed a constant importance func-
tion, homogenization, and an infinite sampling domain. Under these
assumptions, the MC integration error can be expressed as the sum
of two terms. Unfortunately, none of these simplifying assumptions
are true in practical rendering scenarios, making the theory mis-
predict error and convergence rates in practice. We derive a third
(previously ignored) term which is needed to properly predict error
once any one of these assumptions is violated, revealing the reason
for prior disagreements between theory and practice. Unfortunately,
our derivations also reveal that directly leveraging this Fourier-based
analysis is likely impractical in the general setting due to the curse
of dimensionality: the complexity of the previously missing third
term grows exponentially with the dimensionality of the problem.

(2) Our Fourier analysis, however, provides key insights which
we leverage indirectly for practical improvement for the simplified
problem of direct illumination with multiple importance sampling
(MIS) [Vea98]. Our analysis reveals that the finite sampling domain,
homogenization and importance sampling all interplay to introduce
or inhibit C0 discontinuities in the integrand, and that this can have a
dramatic impact on not just error, but also convergence rate. We also
show that MIS is not able to overcome these detrimental effects as
it inherits the convergence properties of the worst of the constituent
strategies. With these interactions in mind, we show that (M)IS
convergence improves by 1) removing certain discontinuities (on
the integration domain boundary thanks to a mirroring strategy or
within the domain by integrand filtering) or 2) by pushing them to the
boundary of the integration domain. While pre-filtering introduces
some bias, it allows us to provably retain (in certain situations) the
improved convergence rate of correlated sampling when MISing
BSDF and light sampling for direct illumination.

2. Related work

Sampling-based integrators construct estimates of integrals using
weighted averages of the integrand evaluated at sample locations.
Their error characteristics are dictated by the locations of the sam-
ples and the weights associated with each sample. For uniformly
distributed pseudorandom samples with equal weights, a general
strategy used to improve convergence of the estimator is to intro-
duce correlations between samples. Another approach is to tailor the
distribution of the samples a priori while accordingly adjusting the
weights to maintain desirable properties in the resulting estimator.

Correlated Sampling: Neyman [Ney34] adopts a divide-and-
conquer strategy whereas Cook [Coo86] proposed to impose dis-
tance constraints between samples. The former, or stratification, is
a classical strategy yielding estimators with convergence rates of

O
(

N−1−b/d
)

[Hab70], where d is the dimensionality of the sam-

pling domain and b ∈ R
+ depends on the smoothness properties of

the integrand. Distance-based constraints appear in a variety of con-
texts such as hard-core point processes [IPSS08] and blue noise sam-
pling [Uli87]. In computer graphics, several techiques have been pro-
posed for analysis [DW92,Mit91,Shi91,OF01,LD08,OG12,WW11]
as well as synthesis [Coo86,BSD09,dGBOD12,KTBV16,WPC∗14,
CSHD03,KCODL06,AHD15] of these types of samples. Yet another
class of methods sacrifices stochasticity for equidistribution, and in-
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duces favorable correlations by minimizing a measure known as dis-

crepancy. Such low discrepancy sampling methods [Nie78, KPR12]
and the resulting QMC estimators are considered state of the art in
rendering [PJH16]. They preserve desirable equidistribution prop-
erties without requiring knowledge of the number of samples a
priori and lead to estimators with superior convergence rates for
low and medium dimensional spaces when integrands respect cer-
tain smoothness criteria. C0 discontinuities in the integrand are also
known to adversely affect convergence rates of jittered sampling
estimators [Mit96].

Importance Sampling: The scattering integral over the incident
sphere (or hemisphere) of directions includes radiance, visibility, the
scattering function (BSDF or phase function) and a cosine. The lit-
erature contains numerous methods that use different combinations
of these components [ARBJ03, GKH∗13, Hd14] as parent distribu-
tions either by multiplying them [CJAMJ05, CAM08, JCJ09] or by
averaging them using multiple importance sampling (MIS) [Vea98].
A comprehensive study can be found in PBRT [PJH16]. Impor-
tance sampling has also been combined with pre-filtering [KC08] to
suppress errors.

Error analysis of integrators: The error due to point distribu-
tions [Rip77, IPSS08] have been well studied in the statistical
literature [OZ00, Owe13, Hes03]. In computer graphics, various
measures such as spatial discrepancy [Shi91], statistical tests of
hypothesis [SA07], and pair correlations [Ö16] have been proposed
for quantifying the error characteristics of sampling-based estima-
tors. Since correlations impact the spectral distribution, many re-
searchers [Coo86, DW85, Mit91, Lem09] have analyzed these ap-
proaches in the Fourier domain.

Durand [Dur11], Subr and Kautz [SK13] rewrote MC estima-
tors in the frequency domain and derived expressions for bias and
variance. Pilleboue et al. [PSC∗15] extended these formulations
for correlated samples with isotropic spectral distirbutions allow-
ing in-depth convergence analysis. Singh and Jarosz [SMJ17, SJ17]
later enhanced these formulations for anisotropic power spectra.
Sloan and Joe [SJ94] performed similar error analyses for deter-

ministic samples using the Fourier series to account for the finite
domain sampling. Our analysis also uses the Fourier series due to
finite sampling domains but in contrast to Sloan and Joe [SJ94]
we focus on stochastically generated samples with non-uniform
probability density functions (PDFs) and propose theoretical closed-
form expressions for both bias and variance in terms of the spectral
properties of both the sampler and the integrand involved.

Error due to discontinuities has been well studied in the Fourier
domain. The localization of the Fourier transform around a disconti-
nuity has received considerable attention in mathematics [Hör90].
Recently, Lessig [Les17] address visibility-induced aliasing by ex-
ploiting the fact that the Fourier transform of a discontinuity decays
slowly only in the normal direction. In rendering, Ramamoorthi et
al. [RAMN12] performed a comprehensive analysis of errors due
to partial visibility while integrating in pixel-light space. This work
presented a statistical and Fourier analysis of the impact of discon-
tinuities on estimation error (while ignoring phase information),
and demonstrated that it is possible to mitigate error by randomly
shifting a regular grid. In a similar vein, Oztirelli [Ö16] recently

demonstrated improvements by uniformly rotating strata boundaries
along the discontinuities. Our formulation shows that phase informa-
tion is crucial for variance and convergence improvement which is
lost with uniform and random shifting. We further reveal that conver-
gence rates can be severely impacted due to simplifying assumptions
(e.g. toroidal wrapping and Cranley-patterson rotation [CP76] or
homogenization [PSC∗15]) made in sample generation algorithms
and sampling strategies during integration.

3. Review of Fourier analyses of MC

Consider an N-sample-estimator µN ≈ I where

I :=
∫

[0,1]d

f (x) dx, and µN :=
1
N

N

∑
k=1

αk f (xk). (1)

Here x ∈ [0,1]d is the spatial integration variable and xk ∈ [0,1]d is
the kth sample along with its associated sampling weight αk ∈ R

+.
For an unbiased MC estimator, the expected value 〈µN〉 = I. This
can be achieved by choosing sampling weights as the reciprocal of
the probability density evaluated at the sampled locations [SK13].

In previous work [Dur11, SK13, PSC∗15], the estimator was
rewritten as an inner product of the integrand f and a sampling
function S(x) := 1

N ∑
N
k=1 αkδ(x− xk) where δ denotes the Dirac

delta distribution. Further, since the Fourier transform preserves
inner products, the estimator was written as the inner product of
the complex conjugate of the Fourier transform of the integrand F f

and the Fourier transform of the sampling function FS. This can be
written as an integral over an infinite domain,

µN =

∫

Rd

F f (ν)
∗FS(ν) dν, (2)

where the frequency variable ν is continuous. Since the Fourier
transform operates on an infinite domain, it is unclear how to handle
finite domains.

One possibility is to multiply the integrand (or the sampling
pattern) by a box [SK13] (or its higher dimensional equivalent),
which results in the Fourier spectrum being convolved by a Sinc (or
its high-dimensional analog). Subr and Kautz [SK13] expressed the
variance of the estimator in terms of the expected Fourier spectra
of the sampling pattern and integrand. In the context of computer
graphics, power spectra (real numbers) are often encountered rather
than Fourier spectra (complex numbers). Pilleboue et al. [PSC∗15]
derived the variance in terms of sampling PS(·) and integrand P f (·)
power spectra, under certain assumptions of stationarity:

Var(µN) =

∫

Rd

〈PS(m)〉P f (m) dm − I
2, (3)

where 〈·〉 represents the expectation operator. Without special han-
dling of the finite domain, the d-dimensional expected sampling
power spectrum gets polluted by ∏

d
i Sinc(πmi)

2 term at non-integer
frequencies (see Fig. 2a) resulting in erroneous prediction of vari-
ance (dotted curves in Fig. 2b). We analytically derive expressions
for random and jittered samples’ expected power spectra in the
supplemental Sec. 5.2 (eq. 51) & Sec. 6.3 (eq. 86).
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(a) Expected power spectra (b) Convergence plots

Figure 2: The expected power spectra in (a) for random and jittered

samples is polluted by a Sinc(·)2
term at non-integer frequencies due

to the finite sampling domain (visible as a white cross in the bottom

row). This cross pollutes variance prediction when the continuous

formulation (3) is used to compute variance (dotted curves in b)

since the integral is computed at all real frequencies. This results

in a non-converging behavior. Our Fourier series based variance

formulation (8) ensures that empirical and analytic computations

match correctly (solid curves with and without markers). The plots

(in log-log scale) show the convergence for a tent function f (x)
and a smooth function g(x) for which variance can be computed

analytically (details in suppl. Sec. 7.3).

If the integral is calculated only at integer frequencies, however,
prediction using the same equation matches empirical results on both
test integrands (thick curves in Fig. 2b). Pilleboue et al. managed to
get correct error bounds due to the underlying assumption of toroidal
domain in their experimental setup [KSP∗15]. This highlights the
first gap in existing methods, which is that the formulations as
derived do not handle the finite domain of I and must be modified to
match empirical results.

In order to extend the original equations [Dur11, SK13] to cor-
related samples, Pilleboue et al. [PSC∗15] transformed estimators
to be shift-invariant by assuming each realization of N samples is
translated by a unique random offset. Unfortunately this homoge-

nization step, which was vital for their analysis, significantly alters
the behavior of the estimators leading to incorrect prediction. Fig. 3
demonstrates this disagreement in predicted and observed behavior
due to homogenization for two cases: 1) homogenization destroys
alignment of strata boundaries with the step discontinuities resulting
in worst convergence overall (Fig. 3a), and 2) homogenization intro-
duces boundary discontinuities for asymmetric functions as shown
for a translated Gaussian in Fig. 3b (Sec. 5.2).

Furthermore, a major shortcoming of this assumption is that it
precludes analyses of non-uniform samples in the Fourier domain.
One could imagine using the same formulation (3) for IS by warping
the integrand back in the primary sample space, however, integrand
smoothness would be affected due to homogenization resulting in
bad convergence behavior (Fig. 3). Consequently, existing formula-
tions are ill-suited for analyzing IS in the Fourier domain.

To summarize, previous work on Fourier analysis of Monte Carlo
schemes do not account for non-uniform distributions. They handle
correlated samples implicitly since the expected power spectrum
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(a) Strata alignment (b) Boundary discontinuities

Figure 3: (a) Jittered sampling shows good convergence (dotted

curve) when the strata boundaries align with the step discontinu-

ities introduced at x = 0.25 and x = 0.75 in an otherwise smooth

gaussian and an exponential function. However, homogenization

(CPr) destroys this alignment resulting in bad convergence (shown

in log-log scale) behavior overall (solid curves). (b) A gaussian func-

tion showing best-case convergence from Pilleboue et al. [PSC∗15]

behaves badly (solid magenta) after homogenization when slightly

off-centered (details in Sec. 5.2).

of the sampling function encodes this information. However, these
correlations as well as the relative alignment of the importance
function with the integrand are lost due to homogenization; they are
not handled in the equations for variance in the Fourier domain. In
the following section, we derive a generalized expression for the
error of sampling-based integrators in the Fourier domain, which
accounts for finite domains, includes non-uniform samples and
incorporates correlations between samples.

4. Fourier domain analysis

4.1. New formulation based on Fourier series

We assume that the sampling domain is toroidal. Under this assump-
tion, the integrand and sampling function may be seen as periodic
functions with periodicity given by the extent of the domain (1 along
each axis for integration over the hypercube). This leads to a discrete
spectrum characterized by Fourier series coefficients (Fig. 4).

Finite domain: A d-dimensional, unit-periodic function g(x) can
be expanded in terms of its Fourier series coefficients as:

g(x) := ∑
m∈Zd

gm ei2π(m·x), (4)

where the mth coefficient gm ∈ C
d is

gm :=
∫

[0,1]d

g(x)e−i2π(m·x) dx. (5)

The N-sample estimator µN can be written in terms of Fourier series
coefficients of the integrand (fm ∈ C

d) and those of the sampling
function (Sm ∈ C

d). For simplicity, we will henceforth focus on
d = 1, without loss of generalization. See Fig. 5 for a geometric
interpretation of the first two coefficients (uniform sampling) and
the second coefficient in the case of IS.
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Figure 4: Previous work applied the Fourier transform, which

results in a continuous frequency domain representation of functions.

However, since the sampling domain is finite, the continuous spectra

gets blurred (convolved) with a Sinc(·). In this work, we rectify this

by safely assuming that functions over finite domains are periodic,

and therefore we represent them using their discrete Fourier spectra

(Fourier series).

Substituting the Fourier series expansions of f and S in the esti-
mator µN =

∫ 1
0 f (x)S(x) dx, we obtain (derivation in suppl. Sec. 2):

µN = ∑
m∈Z

f
∗
m Sm (6)

where z∗ denotes the complex conjugate of z ∈ C and the mth coef-
ficient Sm := 1

N ∑
N
k=1 αke−i2π(m·xk) is obtained by substituting the

definition of S (in place of g(x)) in eq. 5. Since Sm is a random
variable, µN is a random variable as expected. If ∆ := I−µN is the
error of a single realization of µN , we analyze bias and variance by
expanding 〈∆〉 and Var(∆) respectively as in previous work.

Bias: Substituting the rhs from eq. 6 in the definition of bias, 〈∆〉=
I−〈µN〉, followed by separation of the summation into DC (m = 0)
and other coefficents (see Sec. 3 of supplemental)

〈∆〉 = f
∗
0 (1−〈S0〉) − ∑

m∈Z,m 6=0
f
∗
m 〈Sm〉 . (7)

This is the discretized version (due to periodicity in the primal) of the
form proposed by prior work [SK13], but our formulation accounts
for the finite domain. Consider the case of random sampling with
sampling weights αk = 1. The first term in eq. 7 vanishes since the
expected DC value of the sampling spectrum is unity. As for the
second term, an intuitive way to visualize 〈Sm〉 is as the average
of points Sm in the complex plane. When all αk = 1, these points
lie on the unit circle. For random sampling and any m ∈ Z, the
points are distributed uniformly on the circle since xk ∈ [0,1]. Their
average is zero, and so the second term in eq. 7 also vanishes for
this case. If the samples are distributed non-uniformly according
to a parent distribution p(x), one way of mitigating bias would
be to ensure that each of the terms† goes to zero. We show that
choosing αk = 1/p(xk) causes both terms to vanish, verifying that
importance sampling is unbiased (see Sec. 3.1 in the supplemental).

Variance: For the general case of non-uniform samples with cor-
relations, applying the variance operator to the rhs of eq. 6 results
in a summation of covariance terms between all pairs of frequency

† It may also be possible that neither term is zero but their difference is zero,
but such an estimator would be more difficult to tailor.

uniform sampling imp. samplingp
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F
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er

(a) (b) (c) (d)

Figure 5: Samples are shown in the primal (circles with black

outline in a) and in the complex plane (circles with red outline in b,c

& d) for m = 1,2. For constant PDF, Fourier counterpart of each

sample stays on a unit circle in the complex plane (dashed circles

in b & c) whereas after IS these samples lie along the orange curve

(Fourier transformed weighting function). Fourier coefficients S1
and S2 are obtained as the sum of the samples in the complex plane.

The Fourier transformed integrand is shown in blue.

variables l,m∈Z (see supplemental Sec. 4 for derivation). We factor
this nested summation into three groups, resulting in

Var(∆) = I
2 Var(S0) + ∑

m∈Z

m 6=0

f
∗
mfm

〈

S
∗
mSm

〉

+ ∑
m∈Z

∑
l∈Z

l 6=m

f
∗
mfl

〈

SmS
∗
l

〉

. (8)

The first term contains the DC contribution, the second contains
the variance terms (diagonal elements if it were a finite covariance
matrix) and the third term contains all other terms (off-diagonal
elements if it were a finite covariance matrix). We choose to express
the variance in this form since the first two terms are exactly the
discrete versions of previous work [PSC∗15]. When homogeniza-
tion is applied, the third term vanishes, thus verifying the result of
Pilleboue et al. We now briefly explain each of the three terms in
the rhs of eq. 8.

The first term is the variance of the DC component of the sampling
spectrum, scaled by the square of the integral. For uniformly random
samples with unit weights, S0 = 1 and therefore zero variance. In
the case of importance sampling, S0 = 1

N ∑
N
k=1 αk is the sum of

the weights and therefore non-zero in general. One way to force
the DC term to vanish, while performing IS, would be to set each
weight to be αk← αk/S0. This case, where the sampling weights
for every secondary IS estimate add up to 1 is commonly known as
normalized importance sampling [Owe13].

The first two terms together represent the discretized version of
eq. 3, where f∗mfm and S∗

mSm are the power spectra of the integrand
and sampling function respectively. Since correlations between sam-
ples are encoded in the power spectra, the second term can be used
to explain some of the benefits due to correlated samples. For exam-
ple, the expected power spectra of jittered and blue-noise sampling
patterns contain less energy at low-frequencies, leading to variance
reduction. The covariance terms, which explicitly represent sample
correlations in the frequency domain, have not been studied before.

The third term in eq. 8 is novel and crucial to explain IS and

CS without homogenization. If the samples are homogenized, then
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the third term vanishes. This can be proven by first defining Sτ
m =

Smei2πτm as the translated Fourier coefficient with τ as the translation
vector, which allows rewriting the translated product of SmS∗

l as:

S
τ
mS

τ∗
l = SmS

∗
l ei2πτme−i2πτl (9)

= SmS
∗
l ei2πτ(m−l). (10)

Following Pilleboue et al. [PSC∗15], homogenization is equivalent
to studying the translated version of each realization and averaging
over all translations, which can be compactly written as:

〈

SmS
∗
l

〉

=

∫

T

SmS
∗
l ei2πτ(m−l) dτ, (11)

where T is the toroidal domain. Note that, in the above integral, the
exponential part is non-zero only for m = l. Since, m 6= l in the third
summation part of the variance equation in eq. 8, it renders the third
term zero. This term also quantifies alignment of the samples with
the integrand (Table 1) which accounts for the phase information.
We study this in detail in the next section (Fig. 6). Previous analy-
ses [RAMN12, PSC∗15, Ö16] safely ignore the phase by relying on
uniform and random translations/rotations of the stratification grid.

4.2. Unifying IS and CS

The expectation of the cross-terms 〈SmS∗
l 〉 in (8) can be simplified

(see Sec. 4.2 of suppl. material) to

〈

SmS
∗
l

〉

=
1
N

1∫

0

1
p(x)

e−i2π(m−l)x dx (12)

+
1

N2

N

∑
k=1

N

∑
j 6=k

1∫

0

1∫

0

e−i2π(mx1−lx2)

p(x1) p(x2)
ρ(x1,x2) dx1 dx2,

where the joint PDF ρ(x1,x2) (related to the pair correlation func-
tion [IPSS08, OG12]) explicitly specifies correlations. The double
integral in eq. 12 is zero when samples are independent (uncorre-
lated) since ρ(x1,x2) = p(x)1 p(x)2, leading to 〈SmS∗

l 〉= Wm−l/N

where Wm ∈ C is the mth Fourier series coefficient of the weighting
function w(x) = 1/p(x), i.e. αk = w(xk) (see Sec. 5 of suppl. ma-
terial). We study the covariance terms by considering non-uniform
distribution and correlations independently.

Perfect IS (1D): Zero variance is achieved in the academic case of
the effective integrand being a constant, i.e. the sampling distribution
is a scaled version of the integrand. Although this is not useful in
practice, it serves as a simple case to highlight the impact of the
third term in eq. 8. Consider a 1D integration problem where the
integrand and the sampling distribution are step functions, with
the discontinuities aligned. The samples are independent. In this
case, we calculated all three terms in eq. 8 analytically (see Sec. 8.2
in the supplemental) and found that the first two terms (known in
previous work) sum to a value of 0.140625/N while the third term
is−0.140625/N. Due to the non-uniform distribution, prior work is
unable to predict the correct variance while the first and third terms
in our formulation are crucial in correcting for the non-uniformity
(top half of Table 1).

Table 1: Here we analyze all three terms from (8) using a 1D

step function for two cases. Case I: Perfect importance sampling

using random samples. Case II: Uniform sampling with jittered

samples while keeping the step discontinuity aligned with one of the

strata boundary for all N. Variance reduction due to IS or strata

boundary alignment with a step is only captured by the third term.

Numerically approximating the third term results in slight deviation

from the expected variance of zero.

N 1st Term 2nd Term 3rd Term Variance Variance
(real, imaginary) (empirical) (expected)

C
as

e
I 4 0.0178056 0.0175754 (-0.0353513, 0.0) 0.00002966 0.0

16 0.0044613 0.0044005 (-0.0088477, 0.0) 0.00001420 0.0
64 0.0010782 0.0010973 (-0.0021738, 0.0) 0.00000172 0.0

C
as

e
II 4 0.0 0.00519631 (-0.0051782, 0.0) 0.00001808017 0.0

16 0.0 0.00032349 (-0.0003256, 0.0) -0.00000214325 0.0
64 0.0 0.00001980 (-0.0000182, 0.0) 0.00000152890 0.0

Correlations due to jittered sampling: Consider integrating a step
function in 1D by sampling a constant PDF but using jittered sam-
ples. If the discontinuity in the integrand aligns perfectly with a
stratum boundary, then the integral can be estimated with zero vari-
ance. Even though the samples are drawn according to a constant
PDF, previous work is unable to predict the correct variance because
the correlations between jittered samples and the integrand are lost
due to homogenization. In our case, the third term cancels with
the second term correctly predicting zero variance when a stratum
is aligned with the discontinuity (bottom half of Table 1). These
calculations require knowledge of the joint PDF, which can be easily
derived for jittered samples in 1D [Ö16] (see also suppl. Sec. 6.1).

The role of phase: Fig. 6 visualizes the components of the third
term in eq. 8 for a step integrand and jittered sampling pattern in 1D.
Each image represents the 2D space spanned by frequency variables
l (horizontal) and m (vertical), with colors indicating the value of
the Fourier coefficients. To avoid numerical issues, we derived the

f∗mfl for
〈

SmS∗
l

〉 〈

SmS∗
l

〉 〈

SmS∗
l

〉

a step function no shift shift=0.01 shift=0.15

R
ea

l
Im

ag
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ar
y

(a) (b) (c) (d)

Figure 6: To emphasize the role of phase in variance reduction, we

visualize the third term from (8) for a 1D step function (a) and 1D

jittered samples (for N = 16 in b,c,d) when all the strata are shifted

as indicated above each column. Green, black, and red indicate

positive, zero, and negative values, respectively.
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(a) Light IS (b) BSDF IS (c) Light IS with occluder (d) BSDF IS with occluder

Figure 7: We illustrate the integrands (top-right in each column) for a shade point directly illuminated by an area light source for light IS and

BSDF IS. (a) Light IS has a smooth underlying integrand when the light source is fully visible, unlike BSDF sampling (b), which sees light

boundary as a C0 discontinuity. Partially occluded shade points, on the other hand, always have a C0 discontinuity (c,d).

values analytically (see suppl. Sec. 6.4 & 7.1). Despite the third
term being real (Table 1, proof in suppl. Sec. 4.1) the sub-terms
within are complex. This necessitates a careful analysis of phase
and highlights the challenges of non-shift-invariant Fourier analysis.

Higher dimensions: The space of 〈SmS∗
l 〉 is spanned by the fre-

quency variables l and m. In our 1D case, this space is C2 which we
visualized using 2D images for the real and complex components
(Figure 6). For a d-dimensional integration domain, this space is
2d-dimensional which then gets projected down to a single num-
ber. Even for a 2D domain, this means that correlations need to be
analyzed in a 4D space.

4.3. Summary

In this section, we presented the first Fourier domain formulation of
error of sampling-based integrators which accounts for the finite do-
mains, non-uniformly distributed samples and correlated sampling.
We expressed estimator variance as a sum of terms where one of
them explicitly captures correlations between samples as well as
alignment of the samples with the integrand. Our derivations sug-
gest that the latter plays a key role in reducing error. Unfortunately,
our analysis also reveals that Fourier analysis is not well suited to
assess alignment since the correlations need to be tracked in a high
(2d)-dimensional space first before projection along all dimensions.

5. Experiments

Our analysis suggests that the improved convergence of correlated
samplers are limited by the presence of discontinuities. In this sec-
tion, we first show that the use of importance functions can com-
pensate for these discontinuities and can improve convergence rates
of the resulting combined estimators. Although it is impractical
to expect all discontinuities to be known a priori, some discon-
tinuities may be avoided by changing the domain of integration
(Sec. 5.1). To counter the effects of boundary discontinuities (dis-
cussed in Sec. 5.2), we propose a novel approach of integrand mir-

roring (Sec. 5.2.1). We further propose smooth boundary area light
sources to avoid certain discontinuities (Sec. 5.2.2). We verified this
in different situations by extending existing empirical tools [SSJ16].
All the scenes are rendered using PBRT [PJH16]. To facilitate the
analysis, we restrict the dimensionality of the underlying integrands
to 2D by only considering the directly illuminated components of all
rendered scenes from one area light source. However, this analysis

directly generalizes to higher dimensions without any loss of gener-
ality. To perform variance analysis, we vary the number of samples
over the area light and the visible hemisphere while shooting only
one primary ray from the center of each pixel.

5.1. Improving convergence rates using IS and CS

Consider the problem of estimating direct illumination (illustrated
in Fig. 7) where sampling incident directions over the visible hemi-
sphere manifests the light source boundaries as C0 discontinuities
(Fig. 7b) within the underlying integrand. These discontinuities,
however, can be avoided by sampling the light sources instead
(Fig. 7(a)). We analyze Pixel P which has a smooth underlying
integrand (bottom-left Fig. 1b) when importance sampled using
light PDF. This results in a convergence rate of O(N−2) (dash-
dotted green curve in Fig. 1c). On the other hand, pixels that are
partially occluded from a light source (Pixel Q), or which are impor-
tance sampled using the BSDF, always have a C0 discontinuity (see
second column Fig. 1b), which restricts their convergence rate to
O(N−1.5) (Fig. 1b and d). Consequently, light importance sampling
can also be seen as shifting the discontinuities within the domain
to the boundaries of the integration domain resulting in a smooth
effective integrand and an improved convergence rate. Our analysis
provides a novel reasoning for why this classical solution improves
the convergence of the estimator and not just the variance.

5.2. Boundary-value discontinuities due to finite domain

Our Fourier series formulation assumes that functions are periodic
and that samples are generated toroidally in the domain. One of the
consequences of the toroidal (mod) wrapping is that functions that
appear smooth within the entirety of the domain might still introduce
a “boundary discontinuity” because the values across the toroidally
wrapped boundary do not coincide (first column in Fig. 9a). We per-
formed experiments to confirm that such “invisible” discontinuities
in otherwise smooth integrands adversely affect convergence.

Toroidally wrapping the samples after homogenization or Cranley-
Patterson rotation (CPr) introduces boundary discontinuities within
the integrand (bottom-left Fig. 9a) due to the asymmetry across the
boundary. This degrades convergence (see subplot b) from O(N−2)
(dash-dotted curve) to O(N−1.5) (solid-green curve).

Incidentally, enforcing shift-invariance via random off-
sets [RAMN12, PSC∗15] has a similar effect as toroidal wrapping
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(a) Reference (b) Underlying pixel functions (c) Pixel U (d) Pixel V

Figure 8: We perform integrand mirroring to avoid boundary discontinuities due to homogenization or Cranley-Patterson rotation (CPr). Two

pixel functions in (b)—importance sampled from a spherical area light—are shown before and after mirroring. For Pixel U, convergence

rate (shown in log-log scale) after mirroring improves to be O(N−2) due to symmetric boundary values despite homogenization. However, a

discontinuous integrand (Pixel V) does not benefit from mirroring (d). The original underlying sampler is jittered.
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(a) Boundary discontinuities (b) Mirroring improves convergence

Figure 9: Toroidally wrapping a sampling pattern results in intro-

ducing discontinuities within an otherwise smooth function (Pixel

P from Fig. 1) as shown in bottom-left (a). However, this can be

avoided by first mirroring the original integrand (top-right). Con-

sequently, mod wrapping this mirrored version does not introduce

discontinuities (bottom-right), and maintains the good convergence

rate of O(N−2) (in log-log scale) despite homogenization (CPr).

Note that the relative variance is still affected by the sampling strat-

egy (details in Sec. 5.2.1). The underlying sampler used is jittered.

and therefore also suffers from degraded convergence when
integrands have unequal values at wrapping boundaries. In Fig. 3(b),
we observe that slightly shifting a 2D Gaussian integrand so that
the values at the boundaries do not match causes a deterioration in
the convergence rate from O(N−2) to O(N−1.5). We confirmed
similar behavior for direct illumination estimators in real scenes
(see Fig. 8 and 12). To counter the effect of boundary discontinuities
we propose integrand mirroring.

5.2.1. Integrand mirroring

Since the boundary discontinuities are caused by the asymmetric
values across the integration domain, we propose to mirror the inte-
grand horizontally and vertically which results in symmetric values
across the boundaries (top-right Fig. 9a and bottom-right Fig. 8b).

Pixel U Sampling
from Fig. 8(b) spectra

(a) Original (b) Mirror-random (c) Mirror-uniform (d)

Figure 10: After integrand mirroring (a→ b,c), the integration do-

main quadruples (in 2D). (b) We keep the original (green) samples

and equally stratify the rest of the domain to generate jittered sam-

ples (magenta). (c) It is also possible to simply mirror the (green)

samples over the full domain (in red) along with the integrand. (d)

This, however, introduces some high energy streaks in the expected

power spectrum (bottom) which are not present for mirror-random

samples (top).

In 2D, this process quadruples the integration domain, e.g. from
[0,1)2 to [0,2)2.

To sample this domain, we adopt two simple strategies. An il-
lustration is shown in Fig. 10 with (green) samples overlaid over
the original integrand. After integrand mirroring, one approach is to
span the stratification grid across the mirrored domain and generate
random samples directly within each stratum (Fig. 10b). This is
equivalent to having four random samples per stratum in the original
integration domain. We call this the mirror-random sampling strat-
egy. Another approach is to simply mirror the green samples in the
original domain (in the spirit of antithetic samples) along with the
integrand (Fig. 10b). In this case, the benefit is that no new samples
need to be generated. We call this strategy mirror-uniform sam-
pling. The corresponding power spectra show that mirror-uniform

sampling imposes certain regularity which is visible as high energy
streaks in the resultant expected power spectrum.

To see the benefits of integrand mirroring, we consider Pixel U
from Fig. 8 which has a smooth underlying integrand with asymmet-
ric boundary values. After mirroring, we observe a convergence rate
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Figure 11: Underlying pixel functions for A & B are shown in b, c & d for a directly illuminated scene in a. The comparison is drawn between

standard spherical lighting vs. smoothed boundary spherical light source (prefilitered). This smoothing is performed by scaling the radiance

using the dot product of the ray direction and the light source normal. Full rendering is shown in (e).
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(a) Light vs BSDF (standard) (b) Light vs MIS (standard) (c) BSDF (standard vs smooth light) (d) MIS (standard vs smooth light)

Figure 12: Convergence rates for Pixel A (unoccluded) & B (partially occluded) from Fig. 11 are plotted (in log-log scale) for jittered

samples. Light IS has faster convergence (a,b) compared to BSDF or MIS for Pixel A. MIS and BSDF IS convergence can be improved by light

boundary smoothing (c,d).

of O(N−2) with and without homogenization (CPr) with both mir-
ror sampling strategies (red and magenta curves in Fig. 9b and 8c).
However, with mirror-random the relative variance is slightly higher
in Fig. 9b (magenta curves) whereas with mirror-uniform variance
is higher in Fig. 8c. Integrands with C0 discontinuities (Fig. 8, Pixel
V) do not benefit from integrand mirroring as shown in Fig. 8d.

5.2.2. Smooth boundary light source

The above analyses show benefits of integrand mirroring with light
IS. The convergence behavior due to BSDF IS does not improve
with mirroring since it sees the finite area light source as a C0
discontinuity within the underlying integrand (Fig. 7b). This also
affects the convergence rate during multiple importance sampling
(MIS). To validate this, we extend Veach’s [Vea98] analysis of light
vs. BSDF IS by investigating convergence rates rather than variance.

The scene in Fig. 11(a) is rendered with light IS by first shooting
one primary ray from the center of the pixel followed by 1024 jit-
tered light (or shadow) ray samples. Pixel A is unoccluded and is
directly illuminated wheras Pixel B is occluded by one of the metal
plates in the scene. As shown in Fig. 12(a) and (b), light PDF sam-

pling would converge at a rate of O(N−2) compared to BSDF sam-
pling (shown with dotted lines) which converges at O(N−1.5) but
only for pixels with unoccluded light rays. However, for occluded
Pixel B, the convergence rate is always O(N−1.5). In Fig. 11(b) we
visualize this behavior for individual pixels for both BSDF and light
sampling.

We also compare light PDF sampling with multiple importance
sampling (MIS) using a power heuristic in Fig. 12(b). For both
pixels A and B, MIS converges with O(N−1.5). This validates that
MIS can be seen as a combination of both light and BSDF sampling
convergence rates, with the expected convergence to be the worst
of the two [SJ17]. Our analysis also identifies correctly that the

convergence rate exhibited by area light sampling would be at least

as good as that achieved by BSDF sampling.

The above reasoning can also be applied to distant illumination
from environment maps. The lack of discontinuities can only be
exploited at points which receive unoccluded illumination, since
otherwise the discontinuities due to occlusion would dominate. Un-
occluded points will enjoy convergence benefits due to light PDF
sampling. However, in practice, since rendering software such as
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PBRT [PJH16] use the luminance channel as the importance func-
tion, the effective integrand in each of the color channels may not en-
tirely be free of discontinuities. So, for a multichannel environment
map, importance sampling each channel will improve convergence
at unoccluded pixels.

Improving MIS & BSDF IS: Based on our convergence analysis
we observe that discontinuities can be introduced or removed by
importance sampling. However, MIS still suffers the worst of the
two convergence rates since the BSDF sampling strategy always
treats an area light source as a discontinuous binary function. We
therefore analyze the convergence by smoothing the light boundary
to improve upon this bottleneck. To demonstrate our hypothesis,
we smooth an area light source (which is a common practical trick
for variance reduction) by multiplying the outgoing power by the
dot product of the ray direction and the normal of the spherical
area light source. The resulting directly illuminated scene is shown
in Fig. 11(c) which is rendered with 16 jittered samples per pixel.
The corresponding convergence plots in Fig. 12(c and d) shows
improved convergence in the case of both BSDF sampling and MIS
for unoccluded hit points at the cost of introducing negligible bias.

6. Conclusion and Future work

We presented a complete formulation for error analysis of sampling-
based integrators in the Fourier domain. Our formulation elegantly
handles finite domains, non-uniform sampling as well as correlations
between samples. We showed using rigorous derivations as well as
empirical evidence that our formulation predicts variance correctly
in many scenarios where existing theory fails. We also identified
the role of discontinuities in integrands in adversely affecting the
convergence rates of sampling-based estimators. We showed that the
convergence rate of the combined estimator (importance sampling
and correlated sampling) can be controlled by changing the impor-
tance function alone. Our analysis highlights the importance of the
integrand discontinuities and how these relate to the sampling PDF
and stratification boundaries. Using these insights, we showed how
to preserve the improved convergence rate of correlated sampling
when using MIS for direct lighting by smoothing out the boundary
of the light source. To counter boundary discontinuities, we propose
integrand mirroring and tailored two simple mirror sampling strate-
gies to sample this mirrored domain. Since the idea of mirroring
is inspired from antithetic sampling [HM56a, HM56b], it would
be an interesting future direction to study the effect of leveraging
antithetic samples for these strategies.

Importance sampling the discontinuities: Our analyses and ex-
perimental results suggest several potential directions for future
research. Our results challenge the conventional view of designing
the importance function to merely be proportional to the value of the
integrand, especially when perfect IS is not possible (as is mostly
the case). Instead, it suggests that it may sometimes be better to
choose the importance function (in conjunction with correlated sam-
ples) so that discontinuities that appear in the correlation structure
align with the integrand. The analysis by Oztireli [Ö16], Singh and
Jarosz [SJ17] already indicate benefits due to alignment but for
uniform samples.

It is, however, also possible to importance sample the discon-
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Figure 13: f (x) is a product of an asymmetric Gaussian and a

Halfspace function. Importance sampling the Halfspace shows im-

provement in convergence rate (blue plot in c) as discontinuities

are importance sampled, resulting in a smooth effective integrand

(inset in c). Top row (in a) shows importance samples drawn from

an Halfspace PDF, which when warped back to the random number

space (b) modifies the integrand accordingly.

tinuities present within the integrand (not shown in our proposed
analysis). We show a simple setup in Fig. 13 where we estimate the
product of a shifted 2D Gaussian and a halfspace (2D step edge)
function (Fig. 13a) using jittered samples distributed according to
the halfspace function as the importance function (Fig. 13b shows
the corners of the strata). Importance sampling the non-axis-aligned
halfspace function induces a mapping between the unit square where
random numbers are drawn, which we call the random number space

and the halfspace as viewed in Fig. 13a, which we call the integrand

space. The integrand evaluated in the random number space is shown
in Fig. 13b. It appears warped due to the mapping.

The combined (IS and jittered) estimator exhibits a convergence
rate of O(N−2) (blue curve in Fig. 13c) compared to O(N−1.5)
without IS (magenta curve) or with IS but also with homogenization
(orange curve). The improvement in convergence rate must be due
to the diminished role of the discontinuity in the effective integrand
f (x)/p(x) (inset in Fig. 13c). Although the effective integrand is
the same for the estimator with homogenization, its convergence
rate suffers due to the boundary discontinuity. In most practical situ-
ations, it is unreasonable to expect the discontinuities to be known a
priori, therefore, developing this idea requires further investigation.

Multiple-lights sampling: Our proposed analysis is performed for
only one light source. For many-light scenarios, current sampling
strategies uses one sample coordinate to randomly select the light
source and uniformly distribute the samples among different light
sources without increasing the dimensionality of the problem. Al-
though simple, this strategy destroys the underlying correlations
within the samples (e.g., stratification) resulting in slower conver-
gence. It would be interest to extend our analysis and design sam-
pling strategies for multiple light sources.

Integrating a pulse train: The covariance (third) term in our
variance formulation suggests to preserve the phase for vari-
ance/convergence improvements which can be interpreted as careful
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Figure 14: With jittered samples, variance and convergence rate

for a train of pulse (in red) depends on the location of the strata

boundary w.r.t. the sample location. In the plots, the sampling strata

are shifted along the horizontal axis by a constant u ∈ [0,1]. The

dashed vertical lines represent the C0 discontinuity locations.

shifting of the strata boundaries w.r.t. the discontinuities. We demon-
strate a simple setup of train of pulses (red curve shown in Fig. 14)
composed of shifted Heavisides H(x−u). Shifting the position of
the first stratum boundary by an offset φ∈ [0,1] is equivalent to shift-
ing the integrand to H(x−u+φ). Thus, as the offset φ is varied, for
a given N, the continuously changing variance of the corresponding
estimator for a Heaviside function is: Var

(

µ js,N,φ

)

= vφ(1−vφ)/N2,
where vφ =N(u−φ)−bN(u−φ)c. The variance of the N-sample jit-
tered sampling estimator integrating a pulse-train simply amounts to
adding the Var

(

µ js,N
)

corresponding to each of the Heavisides. We
calculated these variances analytically and plotted them in Fig. 14.
The plot on the left is of predicted variance vs φ for different values
of N and the plot on the right shows the best-fit convergence rates
obtained for different values of φ. For any given N, the minimum
variance may not necessarily correspond to a φ where a discontinu-
ity is aligned with the strata boundary. Similarly, the best possible
convergence rate of O(N−2.35) is obtained when the strata are offset
by φ = 0.21 or φ = 0.71. This simple experiment demonstrates that
both error and convergence rate might be controlled by tailoring the
relative offsets between sampling patterns and discontinuities in the
integrand. Any arbitrarily discontinuous function can be analyzed
as a pulse train multiplied by a smooth function.

One strategy could be to optimize the position of the strata bound-
aries in jittered sampling w.r.t. the integrand discontinuities (third
term in (8)). While this could potentially improve variance and con-
vergence rate (Fig. 14), in practice this would require knowledge of
all discontinuities, which may be intractable, especially in higher
dimensions. We instead showed that importance sampling according
to different PDFs can move some discontinuities to the boundary of
the integration domain, where their presence does not impact con-
vergence rate. Simultaneously, we can pre-filter the discontinuities
for other sampling strategies, preserving good convergence rates in
the MIS combination for pixels where only these discontinuities are
present in the integrand. While we show improvements only due to
pre-filtered light source boundary, more general pre-filtering of inte-
grand discontinuities could be a fruitful avenue of future research to
leverage improved convergence rates for global illumination.
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