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Abstract. Convexity is one of the useful geometric properties of digital
sets in digital image processing. There are various applications which
require deforming digital convex sets while preserving their convexity. In
this article, we consider the contraction of such digital sets by removing
digital points one by one. For this aim, we use some tools of combina-
torics on words to detect a set of removable points and to define such
convexity-preserving contraction of a digital set as an operation of re-
writing its boundary word. In order to chose one of removable points
for each contraction step, we present three geometrical strategies, which
are related to vertex angle and area changes. We also show experimental
results of applying the methods to repair some non-convex digital sets,
which are obtained by rotations of convex digital sets.

Keywords: Digital convexity · Digital set contraction · Christoffel words · Lyn-
don words

1 Introduction

Convexity is one of the useful geometric properties of digital sets in digital image
processing. There are various applications which require deforming digital convex
sets while preserving their convexity. In this article, we consider the contraction
of such digital sets by removing digital points one by one. For this aim, we use
some tools of combinatorics on words to detect a set of removable points and to
define such convexity-preserving contraction of a digital set as an operation of
re-writing its boundary word.

A relation between combinatorics on words [16] and digital geometry [15] has
afforded many advantages to both areas and has led to interesting results. Indeed,
such a connection realizes through the so-called Freeman coding, introduced by
Freeman in 1961 [13], that allows to uniquely determine a 4- or 8-connected
finite set of points in the discrete plane by means of its boundary word, i.e. a
word over the alphabet of cardinal four A = {0, 1, 2, 3}. This code was the bridge
between these two worlds. In this article, we deal with one of the main notions of
convexity for polyominos presenting in literature: digital convexity. During the

? This work was partly funded by the French National Research Agency, grant agree-
ments ANR-10-LABX-58 (Labex Bézout) and ANR-15-CE40-0006 (CoMeDiC).
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2 L. Tarsissi et al.

last decades, many definitions were given; it started with Minsky and Papert in
1969 [18] and then Hubler (further notions and related studies can be found in
[4, 5, 9, 10]). A subset C in a digital image is convex if the straight line segment
joining any two pixels P and Q of C lies entirely in C. We also present another
notion of digital convexity with a help of the convex hull of C. In this article,
we rely on a recent result by Berleck and al. [3], who have defined a set to be
digitally convex if and only if the Lyndon factorization of its boundary word is
made of Christoffel words. Based on this definition, we show how we can deflate
a digitally convex set by choosing correct digital points to remove and preserving
the convexity at the same time. We can find some previous studies on inflating
digitally convex sets [11]. One of the main contributions of this article is to
give three different strategies that allow us to determine an order to follow in
removing digital points.

This article is decomposed into four parts. We first introduce digital convexity
and give some related notions about two families of words. Then, we show the link
between digital convexity and combinatorics on words. In the second part, we do
modifications on the border of a digital convex set, and show all the perturbations
obtained after removing a digital point. The third part is for presenting three
different techniques in choosing a certain order for deflating digital convex sets.
The last part is dedicated for showing experimental results, where we apply our
methods to a rotated digital convex set, which is not convex anymore, in order
to repair its convexity by making the convex hull and deflating it by removing
some digital points.

2 Digital convexity and combinatorics on words

In this section, we introduce the basic notions needed in the following sections.
Precisely, we recall basic notions in combinatorics on words. Then we define
digital convexity and two particular families in combinatorics on words, that are
Christoffel and Lyndon words [1, 16].

2.1 Basic notions of Combinatorics

An alphabet A is a finite set of symbols such that its elements are called letters.
A word w over an alphabet A is a finite sequence of letters over A. In another
way, a word w is obtained by concatenating letters of A, we write w ∈ A∗, where
A∗ represents the set of all the words formed by A, with the empty word

ε being the identity element for the concatenation. We denote wn ∈ A* the
concatenation of the word w, n times, such that: wn = w.w.w · · ·w where w is
repeated n times with the convention of w0 = ε. A word w is said primitive if
it is not the power of a nonempty word.

Let w ∈ A∗. The length of w is the number of letters of w denoted by |w|.
Note that |ε| = 0. For all ` ∈ A, |w|` denotes the number of occurrences of the

letter ` in the word w, so that: |w| =
∑

`∈A

|w|` .
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Convexity Preserving Contraction of Digital Sets 3

Two words w and w′ are conjugate of order k, with k 6= 0, denoted by
w ≡k w′, if and only if there exist u, v ∈ A∗ such that |u| = k, w = u.v and
w′ = v.u. When the exact value of k is not relevant, we simply write w ≡ w′. We
can set several order relations over A∗. Here, we choose the total lexicographic

order, or simply the dictionary order that is a total order and denoted by <.

Definition 1. Let w1, w2 ∈ A∗, we say that:

w1 < w2 if

{
w2 = w1.w

′, where w′ ∈ A∗; or
w1 = u.a.v1 and w2 = u.b.v2 where u, v1, v2 ∈ A∗ and a < b ∈ A.

.

2.2 Polyomino and boundary words

Let us consider the lattice Z2, which is the set of all the vectors having integer
components. The canonical basis of the Euclidean vector space R2 is {e1, e2}.
We call by a finite discrete set any finite subset of Z2. We define a path in Z2

from point X to point Y a sequence of points (pi)1≤i≤n with pi ∈ Z2 where
p1 = X and pn = Y . A path in Z2 is 4-connected if for any 1 ≤ i ≤ n − 1,
pi+1 − pi ∈ {±e1,±e2}. A polyomino P is a simply 4-connected finite set of
digital points, without hole, that can be visualized as set of a unit squares. The
Freeman chain code allows us to represent any path over Z2 as a word over an
alphabet of four letters A = {0, 1, 2, 3} [13] such that:

– 0 denotes a right horizontal step.
– 2 denotes a left horizontal step.
– 1 denotes an upside vertical step.
– 3 denotes a downward vertical step.

The boundary word of a polyomino P , denoted by Bd(P ), is the word ob-
tained by coding its perimeter using the alphabet A. For each polyomino, we
can have an equivalent class of words that are the conjugates to each other. We
choose the representative of these words to be the one that starts from the left
lowermost side of the polyomino.

In the last decades, many researchers [3] have studied the digital convexity
and worked on finding the link between it and combinatorics on words. In the
following two sections, we introduce two families of words, that are essential for
this work and we introduce some results.

2.3 Christoffel words and digital line segments

The first family of words is Christoffel words. From the geometric point of view,
we can consider any Christoffel word as the discretization of a line segment of
rational slope [1, 2]. In this case, we restrict our work to the binary alphabet
A = {0, 1}, and start by defining a Christoffel path which is a sequence of
unitary steps joining two points of integer lattice. Let a and b be two coprime
numbers, the lower Christoffel path of slope a/b is the path joining the origin
O(0, 0) to the point (b, a) and respecting the following characteristics:
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4 L. Tarsissi et al.

1. it is the nearest path below the line segment joining these two points;
2. there are no point of Z2 between the path and line segment.

Analogously, the upper Christoffel path is the path that lies above the line seg-
ment. By convention, the Christoffel path is exactly the lower Christoffel path.
We remark that the upper Christoffel path of slope a/b is the image of the lower

Christoffel path obtained by a rotation of angle 180◦ (see Figure 1 for examples).
Using the binary alphabet A = {0, 1}, and by assigning to each horizontal

(resp. vertical) step the letter 0 (resp. 1), we get the Christoffel word w of slope
a
b
, denoted by C(a

b
), where the fraction a

b
is exactly |w|1

|w|0
(see Figure 2). We

define the morphism ρ : A∗ −→ Q ∪ {∞} by:

ρ(ε) = 1 and ρ(w) =
|w|1
|w|0

, ∀ w 6= ε ∈ A∗;

where 1
0 = ∞. This morphism determines the slope for each given word in A∗.

In particular:

1. For a = 0, we get the Christoffel word of slope 0, C( 01 ) = 0.
2. For b = 0, we have the Christoffel word of slope ∞, C( 10 ) = 1.

Christoffel words have several properties and characterizations [1, 8, 16]. Here,
we only mention a few of them. Let w̃ = wn · · ·w2.w1 be the reversal of the
word w = w1w2 . . . wn; we say that w is a palindrome if w̃ = w.

Property 1. The Christoffel word of slope a
b
6= 0,∞, can be written as: C

(
a
b

)
=

0p1, where p is a palindrome.

O(0, 0)

(8,5)

O(0, 0)

(8,5)

Fig. 1. The lower and upper Christoffel paths of slope 5/8 respectively.

(0, 0)

(5, 3)

0 0

1 0 0

1 0

1

Fig. 2. The Christoffel path from (0,0) to (5,3) and the Christoffel word C( 3
5
) =

00100101.
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Convexity Preserving Contraction of Digital Sets 5

In addition, any Christoffel word can be factorized into two Christoffel words,
using the standard factorization [2] defined as follows:

Property 2. Let w be any Christoffel word of slope a
b
, w can be written in a

unique way as w = (w1, w2), where both w1 and w2 are Christoffel words and of
minimal length equal to 1.

Note that the slopes of the new Christoffel words, obtained by the standard
factorization, bound the initial slope.

Property 3. Let w = (w1, w2), such that ρ(w1) =
a
b

and ρ(w2) =
c
d
. We have:

1. a
b
< ρ(w) < c

d

2. det(ρ(w1), ρ(w2)) = det

(
|w1|0 |w2|0
|w1|1 |w2|1

)
= cb− ad = 1.

Using this factorization, we are able to define two functions φ0 and φ1 from
A∗×A∗ into itself as follows: φ0(w1, w2) = (w1, w1w2); φ1(w1, w2) = (w1w2, w2).

Property 4. Any Christoffel word is constructed by an iteration of these two
functions φ0, and φ1, on (0, 1).

Consequently, the standard factorization of any Christoffel word is unique, i.e,
there exists a unique point of the Christoffel path, where we can do this fac-
torization. This point is exactly the closest point of the Christoffel path with
respect to the line segment, that divides the initial Christoffel word into two
concatenated Christoffel words. For the Figure 2, we note that the standard
factorization of C( 35 ) = (001, 00101).

2.4 Lyndon factorization

The second family of words that is useful for our purpose is the family of Lyndon

words [17].

Definition 2. A word w ∈ A∗ is a Lyndon word if for all u, v ∈ A∗ \ ε such

that w = u.v, we have w < v.u.

In other words, we can say that w is Lyndon word if w is the smallest word
among all its conjugates. Based on this definition, we can deduce one of the
properties of this family of words. In fact, Lyndon words are primitive words;
otherwise, we can have an equality between at least one of the conjugates of w.
Therefore, if w is a Lyndon word, w.w is not Lyndon. For example, let w = 0110,
and X be the set of all the possible conjugates of w.The smallest element of X
in lexicographic order is w′ = 0011. Therefore, w is not a Lyndon word. A
factorization introduced in 1958 by Chen, Fox and Lyndon [7].

Definition 3. Every non-empty word w admits a unique factorization as a

lexicographically decreasing sequence of Lyndon words: w = ln1

1 ln2

2 · · · lnk

k , s.t

ρ(l1) > ρ(l2) > · · · > ρ(lk) where ni ≥ 1 and li are Lyndon words.

This factorization is called Lyndon factorization. In 1980 Duval proved that
this factorization can be computed in a linear time [12]. For example, the Lyndon
factorization of w = 100101100101010 is (1)(001011)(0010101)(0).
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6 L. Tarsissi et al.

2.5 Digital convexity by combinatorics

Now, we introduce the link between these two families of words and digital
convexity for polyominos.

Definition 4. A polyomino P , is said digitally convex if the convex hull of P ,

conv(P ), satisfies conv(P ) ∩ Z2 ⊂ P .

Each digital convex polyomino P can be bounded by a rectangle box. We
denote the points of intersection of each side of the bounding box with P by
(W)est, (N)orth, (E)ast and (S)outh, starting from the leftmost side and in a
clockwise order as shown in Figure 3.

The boundary word of P , Bd(P ) can be divided into 4 sub-words, w1, w2, w3

and w4, where each word codes respectively the WN, NE, ES and SW side
of P . We note that w1 starts with the letter 1, while w2, w3 and w4 start with
0, 3 and 2 respectively. Each word uses only two letters from the four of the
alphabet, and hence, we deal on each side with a binary word.

In this section, we consider the WN-word of the boundary word of the digital
convex set, and introduce the result of Brleck et al. [3] about digital convexity:
a characterization for this path using the two previous families of words.

Property 5. [3] A word w is WN -convex if and only if its unique Lyndon factor-
ization wn1

1 wn2

2 . . . wnk

k is such that all wi are primitive Christoffel words.

See Fig. 4 for an example of Lyndon factorization: (1)1(011)1(01)2(0001)1(0)1

where 1, 011, 01, 0001 and 0 are all Christoffel words. The Christoffel words are
arranged in a weakly decreasing order of slopes: 1

0 > 2
1 > 1

1 > 1
3 > 0

1 . With this
result, the WN convex path is decomposed into line segments with decreasing
slopes using a linear algorithm [3]. As mentioned before, we know that line
segments are represented by Christoffel words, and the decreasing lexicographic
order that appears in the Lyndon factorization can explain the condition of
decreasing order of slopes.

Fig. 3. A digital convex polyomino bounded in a rectangle, where W, N, E and S are
the first points of intersection with the left, upper, right and lower sides of the bounding
box.
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Convexity Preserving Contraction of Digital Sets 7

Fig. 4. Example of a WN -convex word 101101010001, formed of Christoffel words
using the Lyndon factorization.

Due to this, we have the following property:

Property 6. [3] Each vertex of the convex hull of any digital convex set C is
exactly at the end of each factor of the Lyndon factorization of its boundary
word Bd(C).

Such a vertex is exactly at the factor of either 10, 03, 32 or 21, depending on
which side of C it is located, either in WN, NE, ES and SW respectively.

3 Contraction of digitally convex set

Deflating a digital convex set in a geometric point of view can be obtained by
removing, step by step, at most one integer point. In the digital sense, we can
see that this deformation is investigated by removing one pixel at each step.
In [11], the authors introduced the split operator, that determines the unique
accepted position, for each line segment, to add a digital point and conserving
the convexity. In this paper, we work on removing digital points under the same
condition. Since the vertexes, as mentioned before, are digitally represented by
the factor 10, in the WN path, then removing a point means switching the factors
10, 03, 32 and 21 to 01, 30, 23 and 12 respectively.

3.1 Removable points and contraction

The points that we are allowed to remove on the boundary, are exactly the
vertices of the convex hull. In fact, we might face several possibilities depending
on the position of the point and the convex shape. In this section, we will mention
all the possible situations that we can encounter and the different algorithms that
we can use in order to remove a single point from the digital convex set at each
step. Given a digitally convex set C, on the boundary word Bd(C), we can have
the vertices of the convex hull of C, called corners. These vertices can be grouped
in two categories. The first ones, called the internal vertices, that belong to one
of the boundary sub-words. The second ones are external or critical vertices that
are at the intersection between two consecutive sub-words. In other words, they

Lowres version



8 L. Tarsissi et al.

are formed by the last letter of wi and the first letter of wi+1, mod 4, for all
i ∈ {1, 2, 3, 4}.

We define such contraction operator on Christoffel words. Note that Christof-
fel words on WN, NE, ES and SW sides are binary words over the binary
alphabets {0, 1}, {0, 3}, {2, 3} and {1, 2} respectively. Christoffel words on each
side are defined as follows: x = 0h1, y = 3k0, z = 2l3 and t = 1m2 where h, k, l
and m are palindroms.

3.2 Switch operator

In this section, we consider the four boundary binary sub-words w1, w2, w3 and
w4 that belong to A∗ = {0, 1, 2, 3}∗. On these sub-words, we set an operation at
a certain position k, from A∗ into A∗ such that it switches the two consecutive
letters of this word at position k.

Definition 5. Let w = l1l2 . . . lklk+1 . . . ln be a word in {0, 1, 2, 3}∗,

switchk(w) = l1l2 . . . lk+1lk . . . ln,

where 02 = 20 = 13 = 31 = ε.

Given a boundary word Bd(C), thanks to Property 6, we can apply this
switch operator to Bd(C) at the last letter of each Christoffel word obtained by
the Lyndon factorization of Bd(C). In this way, we remove a corner of the form
10, 03, 32 or 21. We have two cases, depending on the position of a corner. The
first case, is when the corner belongs to one of the four paths WN, NE, ES or
SW . In this case the operation is directly applied at position k of the Christoffel
word w, where k = |w|, as seen in Fig. 5. In the second case, we deal with
the corners that are at the intersection position between w1, w2, w3 and w4.
In fact, only at these positions, it might occurs some particular situations. We
might obtain after a switch operation, one of the factors 02, 20, 13, and 31 that
will be replaced by ε by definition. But in this case, an re-arrangement for the
four boundary words has to be considered, see an example in Fig. 6.

Fig. 5. The fourth boundary word of C is: w4 = (2)(12222)(1222)(122)2(12)2. The
switch operator is applied on the fourth factor, at position 2. We obtain the new
boundary word w′

4 = (2)(12222)(1222)(122)(12122)(12).
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Convexity Preserving Contraction of Digital Sets 9

Fig. 6. Re-arrangement of the boundary words, w4 and w3 after removing the factor
31 from the boundary word Bd(C) of the digital convex set C.

To keep the set 4-connected, we must avoid the existence of the factor
1k0l3k2l and its conjugates on the boundary word. Therefore, if after a certain
operation, one of these four factors appear in the boundary word, the switch
operation must be canceled.

By applying the switch operator locally all around the boundary word and
sub-words, the possible words that can be obtained are of the following form:

Theorem 1. Let u and v be two consecutive Christoffel words such that |u| =
k, and ρ(u) > ρ(v). By applying the switch operator one of these cases appears:

1. switchk(uv) = (w)`, where ρ(w) < ρ(u) and ` ≥ 1.
2. switchk(uv) = m′

1 . . .m
′
i, where ρ(m′

1) < ρ(u) and ρ(m′
1) > . . . ρ(m′

i).

In order to give the proof, we must recall Pick’s theorem [19] that gives the area
of a triangle using its interior and boundary integer points:

Theorem 2. The area of a given polygon in Euclidean plane, whose vertices

have integer coordinates, is equal to: A = i + b
2 − 1, where i is the number of

interior integer points and b is the number of boundary integer points on the

triangle.

After this theorem, we can pass to a sketch of the proof of Theorem 1.

Proof. By Property 2 and 3, we write m1 = u.v, m2 = x.y; with ρ(u) < ρ(m1) <
ρ(v) and ρ(x) < ρ(m2) < ρ(y). Recall that the area of a triangle ABC is equal

1
2 det(

−−→
AB,

−→
AC) = 1

2 det

(
x−−→
AB

x−→
AC

y−−→
AB

y−→
AC

)
= i + b

2 − 1. Hence, we can conclude

that: i = det(
−−→
AB,

−→
AC)−b+2
2 . With a simple vectorial calculation we can conclude

that if det(ρ(m1), ρ(m2)) = 1, we get i = 0 and hence we get the first case for
` = 1, since in this case we get b = 3, that are exactly the points A, B and C.
We can note that this result is the inverse of the split operator defined in [11].
Similarly, and by noticing that each Christoffel word is obtained by applying
several morphisms of φ0 and φ1 defined in Property 4, we can prove the other
cases.

Lowres version



10 L. Tarsissi et al.

switch6(C( 2
5
).C( 1

3
)) = C( 3

8
). switch9(C( 2

7
).C( 1

3
)) = (C( 2

5
))2.

switch33(C( 14
19
).C( 4

17
)) = C( 11

15
)C( 2

3
)C( 1

2
)(C( 1

4
))4.

Fig. 7. Examples of three different cases of switch operator.

Some examples are illustrated in Fig. 7.
The number of possible new segments is related to the solutions of the a

variant of the Knapsack problem in integer linear programming: Given a triangle
T with rational vertices in a [0, N ] × [0, N ] domain (N ∈ Z2), the number of
vertices in the convex hull of T ∩ Z2 is in O(log(N)) [14]. This result has been
used to efficiently compute the convex hull of interior grid points of rational
convex polygon [6]. In other words, the number of w′

is and the value of k is
bounded by O(log(N)).

4 Choosing the removal order

As mentioned above, we can find all points that can be removed in order to
deflate a digital convex set C while preserving its convexity. These points are
exactly the vertexes of the convex hull of C. Here arises the natural question: is
there any specific order for choosing which digital point to remove at each step?
If so, is there a preferred order? In fact, we investigate and test three ordering
techniques to deflate C.

Let V be a removable point, and Vp and Vn be its previous and next vertices
of the convex hull of C. After removing V from C, let us assume that the set of
new vertices W is obtained, instead of V .

4.1 Ordering by determinant obtained from two consecutive line

segments

For each removable point V , we calculate

4(V ) =
1

2
det(

−−→
VpV ,

−−→
V Vn),
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Convexity Preserving Contraction of Digital Sets 11

which is the (signed) area of triangle VpV Vn. Then, all removable points are listed
in increasing order with respect to this area measure, and the point with min-
imum value is chosen for each elementary contraction step. The list is updated
locally whenever a point is removed.

4.2 Ordering by area change

For each removable point V , we calculate

4c(V ) = 4(V )−
1

2

∑

W∈W

det(
−−−→
VpW,

−−−→
WWn)

which is the area difference between the convex hulls of C and C \{V }. Similarly
to the previous case, all removable points are listed in increasing order with
respect to this area change, and the point with minimum value is chosen for
each elementary contraction step. Once a point is removed, the list is updated
locally.

4.3 Ordering by angle-sum change

For each removable point V , we calculate the difference between the line-segment
angle at V and the sum of such angles at all W ∈ W, such that

θc(V ) = θ(V )−
∑

W∈W

θ(W )

where

θ(V ) = cos−1

( −−→
VpV ·

−−→
V Vn

‖
−−→
VpV ‖‖

−−→
V Vn‖

)
.

Similarly to the previous cases, all removable points are listed in increasing order
with respect to this angle measure, and the point with minimum value is chosen
from the list for each elementary contraction step. Once a point is removed, the
list is updated locally.

5 Experimental results

Deforming digitally convex sets with digital convexity preservation is crucial, and
has different applications in digital image processing. One of them is rotating
digitally convex sets without loss of their convexity, which is not trivial at all.

Figure 8 shows the experimental results of applying our methods to a rotated
digitized ellipse, which was originally digitally convex before the rotation but is
not anymore (see Fig. 8 (b)). In order to repair the digital convexity, we made
the convex hull and digitized it (see Fig. 8 (c)). As the difference between the
rotated digitized ellipse and the digitized convex hull are 45 pixels, which are
colored in gray in Fig. 8 (b), we decided to remove 45 pixels while preserving
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12 L. Tarsissi et al.

(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) A digitized ellipse, which is digitally convex; (b) its rotated image with
angle π

4
(in blue), which is not anymore digitally convex; (c) the convex hull of the

rotated shape of (b) where the difference from the rotated image is visualized with 45
gray pixels in (b); the contraction results for the digitized convex hull of the rotated
digitized ellipse of (b) after removing 45 points with the three ordering strategies: by
(d) determinant, (e) area change, and (f) angle-sum change.

the digital convexity by using our method with the three different strategies.
Note that, in Section 4, the point to be removed at each iteration has to be with
a minimal value for the three strategies. We might encounter the case where
several points can give us the same minimal value. Our algorithm chooses in a
random way a removal point among all the points having the minimal value at
each iteration. Using this algorithm, the results after 45 iterations can be seen
in Fig. 8 (d,e,f), respectively. Table 1 also shows the results of the three different
strategies after 22, 150 and 200 iterations.

While all of them preserve digital convexity, the deformation tendencies are
slightly different. The first removal-point ordering strategy based on area tends
to extend vertical and horizontal line segments while it keeps curved parts as
well. On the other hand, it is seen that the second (resp. third) strategy based
on area (resp. angle) change tend to straighten curved parts.

6 Conclusion

We presented the method for contraction of digitally convex sets by removing
digital points one by one while preserving their digital convexity, with a help
of combinatorics on words. Such tools enable us to detect a set of removable
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Convexity Preserving Contraction of Digital Sets 13

Table 1. The contraction results for the digitized convex shape illustrated in Fig. 8 (c)
after removing 22, 150 and 200 points with the three ordering strategies: determinant,
area change, and angle-sum change.

Iter. 22 150 200

Det.

Area

Angle

points and to define such convexity-preserving contraction of a digital set as an
operation of re-writing its boundary word. In order to choose one of removable
points for each contraction step, we present three geometrical strategies, which
are related to vertex angle and area changes of the convex hull of a digitally
convex set. We showed experimental results of applying the methods to repair
some non-convex digital sets, which are obtained by a rotation of convex digital
sets. Our further work will consist of deforming non-convex sets while preserving
their convex and concave parts. One more idea can be, to write the algorithm
needed to add a point at each step instead of removing.
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