
Joint optimization of distortion and cut location for mesh parameterization

using an Ambrosio-Tortorelli functional

Colin Weill–Duflosa, David Coeurjollyb, Fernando de Goesc, Jacques-Olivier Lachauda

aUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry, France
bUniv Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, Villeurbanne, France

cPixar Animation Studios USA

Abstract

UV mapping is a classical problem in computer graphics aiming at computing a planar parameterization
of the input mesh with the lowest possible distortion while minimizing the seams length. Recent works
propose optimization methods for solving these two joint problems at the same time with variational models,
but they tend to be slower than other cutting methods. We present a new variational approach for this
problem inspired by the Ambrosio-Tortorelli functional, which is easier to optimize than already existing
methods. This functional has widely been used in image and geometry processing for anisotropic denoising
and segmentation applications. The key feature of this functional is to model both regions where smoothing
is applied, and the loci of discontinuities corresponding to the cuts. Our approach relies on this principle
to model both the low distortion objective of the UV map, and the minimization of the seams length
(sequences of mesh edges). Our method significantly reduces the distortion in a faster way than state-of-the
art methods, with comparable seam quality. We also demonstrate the versatility of the approach when
external constraints on the parameterization is provided (packing constraints, seam visibility).

Keywords: Mesh parameterization, UV mapping, Variational model, Ambrosio-Tortorelli functional, Joint
distortion and cut

1. Introduction1

Computing a UV map for a mesh is a classical problem in computer graphics. UV maps have many2

applications, the most direct being texture atlas creation for a 3D model. Given an input three-dimensional3

discrete surface, the task addressed in this paper is to define a low distortion mapping of the mesh geometry4

to the plane while minimizing the cut length. Such cuts, or seams, may be required for topological consider-5

ations (for shapes that are not homeomorphic to a disk), or may help to better minimize the UV distortion6

(different cuts may lead to different local minima of the distortion energy). The problem of finding cuts and7

the problem of computing the parameterization are often addressed separately: cutting can be considered8

as a topological discrete problem, while optimizing the distortion is a geometrical problem usually solved9

with variational approaches.10

Our method aims at simultaneously optimizing those two problems using a variational model, so that11

instead of predicting the distortion, the cut can adapt itself to the distortion during the process. There12

already exist works exploring this direction: Poranne et al. (2017) have proposed a variational method13

based on a per edge cut energy, Li et al. (2018) have presented several edge merging/cutting operations and14

have used them during the optimization process to reduce a given functional.15

Our contribution consists of employing a dedicated variant of Ambrosio-Tortorelli functional to achieve16

this joint optimization. This functional measures the smoothness of a function while allowing discontinuities:17
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in our context, the function will be the parameterization itself (with a parallel between smoothness and18

distortion) and the discontinuities will correspond to the locations of cuts. Minimizing this functional gives19

us a simple framework to simultaneously optimize the distortion and find the cuts faster than previous20

simultaneous optimization methods.21

2. Related Works22

Distortion minimization. Given a mesh homeomorphic to a disk (to avoid any topological issues), there are23

several ways of defining a "good" parameterization depending on the distortion metric that is considered.24

The survey by Sheffer et al. (2006) has described a few of these methods. Some works focus on finding25

conformal parameterization (Lévy et al., 2002), while other focus on finding a parameterization as isometric26

as possible, using energies measuring per triangle distortion such as ARAP, as-rigid-as possible, (Chao27

et al., 2010), Symmetric Dirichlet (Smith and Schaefer, 2015), or MIPS, most isometric parameterization,28

(Hormann and Greiner, 2012). In the following, we focus on the Symmetric Dirichlet energy as introduced29

by Smith and Schaefer (2015). Once the distortion metric has been specified, minimizing this energy is a30

problem in itself. Most optimization processes consist of two steps: (i) initialize the parameterization (with31

methods like Tutte (1963), which guarantees a injective parameterization) and (ii) minimize the distortion32

energy. To minimize these energies, we rely on quasi-Newton methods, and we need ways to approximate33

the Hessian with a positive symmetric definite matrix (PSD). Note that Smith et al. (2019) have provided34

a way to efficiently compute a PSD matrix approximating the Hessian for distortion energies.35

Cutting methods. There are several works focusing on computing cuts for a parameterization. The method36

Sheffer and Hart (2002) searches for some high curvature point (likely to cause distortion) and then ap-37

proximates a minimal path between these points. Recently, Zhu et al. (2020) have introduced a method38

that detects some feature points and connect them by approximating a Steiner tree problem. While these39

methods are efficient, our work aims at developing a method based on simultaneous optimization, in which40

little work has been done compared to these methods based on connecting high distortion points. Sharp41

and Crane (2018) have also provided a variational approach to compute cuts minimizing the distortion.42

However, their work remains limited to conformal parameterizations, while we aim at reducing an isometric43

distortion.44

Simultaneous cuts and distortion optimization. Recent works aim at simultaneously finding the cut and the45

parameterization. Notable works are AutoCuts (Poranne et al., 2017), a variational model using an energy46

which is the sum of a distortion energy (such as Symmetric Dirichlet) and a per-edge energy approaching the47

cut length measure. The parameterization is treated as a triangle soup with the per-edge energy deciding48

whether neighbor triangles are attached to each other or not. The process can be automated, but user input49

is necessary in order to guarantee the bijectivity of the resulting parameterization. The weight between each50

term has to be defined by the user, and there is no guarantee that the result can reach a distortion or a51

cut length below a chosen threshold. The OptCuts method (Li et al., 2018) is based on a set of operations52

on the mesh topology such as cutting or merging, and uses a dual formulation of the energy problem to53

find the most appropriate operation to solve the problem. This method generally outperforms AutoCuts54

in terms of balance between distortion and cut length, with lower timings as well. This method can be55

adapted to guarantee bijectivity, and a distortion threshold to be reached can be set. Our method aims56

at providing a variational model, in a way similar to AutoCuts, but inspired by the Ambrosio-Tortorelli57

functional instead of using a handmade per-edge energy. We can then take inspiration from other Ambrosio-58

Tortorelli optimization related works to obtain an efficient and fast strategy to find our cuts.59

Bijectivity. One of the problems of surface parameterization is to guarantee the bijectivity of the result. If60

the embedding proposed in Tutte (1963) is guaranteed to be valid, optimizing an energy such as Symmetric61

Dirichlet has no reason to maintain it. One needs to enforce the bijectivity during the distortion optimization.62

Smith and Schaefer (2015) have decomposed the problem into two subproblems. First, we need to make63

sure that triangles are not flipped during the optimization, which is solved by adding a constraint on the64
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distortion energy and a specific line search in the Quasi-Newton solver. Then we need to prevent overlaps65

of non-adjacent regions which can be detected for instance by preventing boundary edge crossings. Smith66

and Schaefer (2015) have solved this problem using a barrier energy term. Su et al. (2020) have optimized67

this approach by building a shell around the initial parameterization to reduce the number of border edges68

and vertices. Alternatively, Jiang et al. (2017) have proposed to triangulate the remaining space around the69

parameterization, which in turns guarantees local injectivity on the resulting triangulation. In our proposal,70

we mainly focus on speeding up the distortion/cut joint optimization. Our approach is fully compatible71

with existing strategies (either using Smith and Schaefer (2015) or Jiang et al. (2017)), if global bijectivity72

is required.73

Mumford-Shah related optimization. The Mumford-Shah functional was first introduced for image processing74

(Mumford and Shah, 1989), as a tool for image restoration and segmentation. It gives a way to represent an75

image as a piecewise-smooth function with a set of discontinuities. Since this functional is difficult to optimize76

(see next section), a lot of approximations of this functional have been proposed in the literature. We focus77

here on one relaxation of this functional, called Ambrosio-Tortorelli functional (Ambrosio and Tortorelli,78

1990). It has seen many applications in image processing since then, some direct such as segmentation,79

denoising, and some variants designed for inpainting, magnification, deblurring, or image registration. While80

this functional has remained largely ignored in geometry processing, it has been used recently for mesh81

processing applications (Coeurjolly et al., 2016; Bonneel et al., 2018; Liu et al., 2020).82

The article is organized as follows. First, we briefly recall the Ambrosio-Tortorelli functional in the83

continuous setting (Section 3). Then, we relate the functional to the mesh parametrization problem and84

we propose a new discretization scheme. This discretization induces a fast joint distortion/cut optimization85

algorithm (Section 4). Finally, Section 5 details an experimental validation of the proposed approach.86

3. The Ambrosio-Tortorelli functional87

Our joint distortion/cut variational model takes inspiration from the Ambrosio-Tortorelli functional.88

As detailed below, it can represent in the same framework the parameterization itself and the cut loci as89

functions.90

In order to describe the Ambrosio-Tortorelli functional, it is necessary to introduce the Mumford-Shah
functional (Mumford and Shah, 1989). The Mumford-Shah functional allows us, given an arbitrary function
g, to find a new function u that will try to be as close as possible to g while also trying to be as smooth
as possible everywhere except along a set K of discontinuities. This functional is commonly used in image
processing, with a direct use in denoising: we want a smooth output close to the original input image, but
we do not want to oversmooth meaningful image contours, so the function should have discontinuities along
these contours. Ideally, the set K delineates these features. The functional is defined as:

MS(K,u) := α

∫

Ω\K

|u− g|2 +

∫

Ω\K

|∇u|2 + λH1(K ∩ Ω) , (1)

where Ω is the domain, g is the input data defined on Ω, u is the regularized data, K is the set of disconti-91

nuities, H1 is the Hausdorff measure, and (α, λ) are two real numbers corresponding to the weights given to92

the fitting and cut length terms respectively. Increasing coefficient α forces the output to be closer to the93

input, while increasing coefficient λ induces fewer discontinuities.94

the first term of this functional describes the fitting of u to the input data g, the second term expresses95

the regularity of u while the third term measures the length of the discontinuities. Minimizing these three96

terms simultaneously lets us find a compromise between input fitting, smoothness of the result and how97

much discontinuity is allowed. Coefficients α and λ let us control this compromise.98

However, this functional is hard to optimize since it is difficult to manipulate a set of discontinuities. Am-
brosio and Tortorelli (1990) have provided a relaxation of the Mumford-Shah functional, as it approximates
its minimizer with two smooth functions, instead of one smooth function and one set of discontinuities. It
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can be defined as:

AT ϵ(u, v) := α

∫

Ω

|u− g|2 +

∫

Ω

|v∇u|2 + λ

∫

Ω

(

ϵ|∇v|
2
+

1

4ϵ
(1− v)

2

)

,

where function v is from domain Ω to [0, 1], and ϵ is a real positive number.99

Ambrosio and Tortorelli (1990) have proven that this functional Γ-converges toward the Mumford-Shah100

functional as ϵ tends to 0. Function v converges to an indicator function of the space where discontinuities101

are not allowed: it is set to 1 where u is smooth, and to 0 where u can have discontinuities. A large value102

for ϵ will give a diffuse result, and as we decrease ϵ the function will be less and less diffuse and takes103

values closer to 0 and 1. The main interest of this formulation is that AT ϵ minimizers are the same as104

MS ones when ϵ tends to zero. Furthermore, for a given ϵ, an efficient alternating minimization scheme105

can be designed (see Alg. 1): by fixing v (respectively u) the resulting expression is convex quadratic in u106

(respectively v). We can thus find the minimizing u or v with a single step of a Newton method. We clarify107

the gradients and Hessian operators for the discretization of this functional in the next section.108

Algorithm 1: Optimization method for the Ambrosio-Tortorelli functional

Data: ϵ1 the starting epsilon, ϵ2 the ending epsilon, n a fixed number of optimization steps
Result: v and u approximation of the functional minimizer
ϵ← ϵ1
while ϵ > ϵ2 do

for i← 0 to n do
v ← minv(AT ϵ(u, v))
u← minu(AT ϵ(u, v))

end
ϵ← ϵ/2

end

4. Our discrete AT inspired model for joint parameterization/cuts109

4.1. Discretization110

We work on a three-dimensional surface, specifically a triangle mesh, defined by a set V of vertices and111

a set F of triangular faces. We denote as nf the number of triangles of the mesh, and nv the number of112

vertices.113

Functions u and v must be discretized. Standard discretizations make u and v defined per vertex, but114

this approach tends to smooth the functions. This is not desirable, especially for v. We thus prefer u and v115

be discretized not at the same place on the mesh. Since u represents our parameterization, it is natural to116

sample it at either vertices or triangle corners: u is then linearly interpolated on each triangle as expected.117

Our approach consists in sampling v at faces instead, and u at vertices. This means we let some faces free118

to have as much distortion as needed in order to let other faces place themselves freely, acting as if there119

was a cut along these faces: on these faces, v is close to zero. We then have to cut alongside the distorted120

faces. These faces can be seen as being pulled on, the cuts then releasing the tension (see figure 1).121

We can also notice that the gradient term in the Ambrosio-Tortorelli formula serves as a measure of122

distortion, acting as a weighted Dirichlet energy formulation ( |v∇u|2). It then makes sense to see Ambrosio-123

Tortorelli as a process trying to reduce as much as possible this energy while allowing some exceptions: all124

we need then is a way to transform those exceptions into cuts. We also use Symmetric Dirichlet instead125

of Dirichlet, for local injectivity reasons, rescaled to be 0 when minimal. Since the gradient term already126

takes into account the distortion, and we do not have any data to be close to, we drop the first term of the127

functional, the fitting term.128
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(a) (b) (c)

(d) (e) (f)

Figure 1: Parameterization at different stages of the method on the bunny head and face mesh: the initial parameterization
(a, d), we then allow some faces (in magenta) to have distortion (b, e) so the other have more freedom of movement. We then
compute cuts along these faces, giving us the result (c, f).

The formulation below expresses the energy per triangle f :

Ef (u, v) := Af (v
2 + γ)

(
|∇uf |

2 + |∇uf |
−2

2
− 1

)

︸ ︷︷ ︸

Ψf (u)

+Afλ

(

ϵ|∇vf |
2 +

1

4ϵ
(1− vf )

2

)

= Af

(

(v2 + γ)Ψf (u)− λϵvf (Lvf ) +
λ

4ϵ
(1− vf )

2

)

, (2)

where Af denotes the area of face f , ∇uf is the usual constant gradient over a triangle of the linearly129

interpolated u function sampled at triangle vertices. Furthermore, vf denotes simply the sampled value of130

function f on face f , |∇vf |
2 is the squared norm of the gradient of v within f , whose integral over the face131

f is approximated as −Afv(f)Lvf , with Lvf the DEC Laplacian of v on the dual mesh (see Desbrun et al.132

(2005)), γ is a fixed constant, necessary to avoid a null coefficient in front of the distortion term: it would133

lead to instability during the optimization. Results presented here use γ = 10−7. Finally, Ψf (u) is the134

distortion measure of the face f .135

4.2. Optimization136

Optimizing this functional is done by alternating two steps, as seen previously: one step has u fixed and137

one step has v fixed:138

• At v fixed, the only non-constant term is the distortion term. We optimize this term using the quasi-139

Newton method from Smith et al. (2019): we compute a modified Hessian (guaranteed to be SPD) of140

the distortion energy as well as its gradient. We can then compute how we want to modify the current141

parameterization, and we use a line search to avoid triangle flip (following Smith and Schaefer (2015),142
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Model bunnyhead camelhead bimba hand cat armadillo duck1 planck1 venus tooth circular box

OptCut’s time 2.5s 89s 13s 0.60s 0.65s 29s 2.08s 1.19s 0.61s 25.4s 22s
Our time 1.6s 38s 6s 0.13s 0.11s 6.1s 0.77s 1.32s 0.36s 2.1s 3.8s

Initial distortion 9.10 7.45 7.64 10.04 6.67 10.3 5.59 9.03 8.78 4.26 5.28
OptCut’s distortion 4.36 4.26 4.50 5.2 4.38 5.22 4.49 4.54 4.37 4.24 4.53
Our distortion 4.39 4.26 4.50 5.3 4.50 5.22 4.49 4.56 4.39 4.25 4.54

OptCut’s cut length 2.88 2.93 2.01 4.5 1.28 2.07 1.09 1.61 1.70 0.24 1.13
Our cut length 3.82 2.56 1.90 5.6 1.76 4.25 1.31 2.33 2.94 0.10 1.50

Table 1: Quantitative comparison between OptCuts method and our method, in terms of computation time, distortion and cut
length. The bimba, hand, cat, armadillo, duck, planck, venus, tooth and circular box meshes come from the available input
mesh in OptCuts Li et al. (2018) repository.

using the implementation provided by Jacobson et al. (2018)). We repeat until the gradient norm falls143

under a threshold.144

• At u fixed, the expression is convex quadratic as seen for AT previously in Eq.(2). We can put the
energy to optimize at this step under the form

E := vTMΨ(u)v + λ

(
1

4ϵ
(vTMv − 2Mv)− ϵvTLv

)

+ c , (3)

which is of the form E = vTHv+2bT v+ c (with c a constant term that can be ignored). Its minimum
can be found at −H−1b. We need the expression of H and b:

H =
λ

4ϵ
In − ϵλL+MΨ(u), b = −

λ

4ϵ
M 1n , (4)

where L is a face Laplacian matrix (we used the DEC Laplacian on the dual mesh as in Desbrun145

et al. (2005)), Ψ(u) is a diagonal matrix containing the distortion of each face (the i-th diagonal term146

corresponds to the i-th face), M is a face mass matrix, for example containing the area of each face on147

the diagonal, and finally In is the identity nf × nf matrix and 1n is a nf -row vector filled with ones.148

While on the second step finding the minimum only requires one iteration, the quasi-Newton of the first149

step has to be iterated multiple times before convergence (sometimes hundreds of times), making it much150

more time consuming than the second step.151

4.3. Cutting152

The scalar function v is used as a support for the cut extraction. Indeed, for triangles with values close to153

1, the distortion term of the energy fully applies and is minimized during the optimization. On the contrary,154

triangles with values close to zero correspond to discontinuities in the energy minimization and thus will be155

used to delineate the precise location of cuts (see Figure 3).156

We thus need a way to convert this scalar information into sequences of edges corresponding to cuts.157

To do so, we employ a simple strategy: we first define patches of triangles as simply connected components158

of traingles with values v lower than 0.5. Thanks to the Ambrosio-Tortorelli formulation with ϵ tending to159

zero, this simple process allows us to define thin strips of triangles. For each patch, we take the two farthest160

points belonging to this patch and find the shortest path between them: this defines the cut for this patch161

as a path of edges. The distance used is the distance on the underlying graph, with a weight of 0 for edges162

already belonging to the border. This trick forces the cut to go through the border if it is possible, to avoid163

having a cut parallel to an already existing border. Finally, we only keep cuts with lengths that are above164

20% the length of the longest cuts, in order to avoid too small cuts.165

This method was chosen for its simplicity and its effectiveness at capturing most of the areas to cut166

through without inducing too lengthy cuts, as seen on Figure 3. Depending on the application, one could be167

interested in iterating over this process: solve the AT functional to retrieve u and v, extract some long cuts,168

and iterate. However, in the following experiments, we only consider a single step for best performances.169
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Figure 2: Visualization of the parameterizations evaluated in table 1 for the armadillo, the camelhead, the duck and planck

meshes. Bottom row are our parameterizations, top are optcuts’.

4.4. Overall algorithm170

Algorithm 2 gives an overall description of our method. This method can be run multiple times, for171

example if the cutting methods missed some places to cut. We can also use more complex energy when172

solving for u, for example, if we need to incorporate some border energy for border injectivity. This only173

changes the Projected_Newton_Solver part, which needs to incorporate the Hessian and gradient of the174

additional energies.175

5. Results176

This section gathers several experiments that show the potential of our method for mesh texture mapping.177

We first compare our approach to the state-of-the-art OptCuts method Li et al. (2018), both quantitatively178

and qualitatively. Then we examine the influence of the 4 parameters of our method. We finally show how179

our method can easily integrate user constraints in its formulation, like cutting in less visible zones or create180

a tighter UV map that fits a bounding box.181

Note that the results presented here are of disk-like topology, as our method has a strong dependence on182

the initial cut. Indeed the method does not allow us to contest the edges included in the initial cut (we have183

not found a satisfying way to merge already cut edges). Furthermore the initial cut puts a strong constraint184

on the parameterization and consecutively on the evolution of v.185

5.1. Influence of parameters186

There are four parameters to tune: λ, ϵ1, ϵ2 and n the number of iterations between each change of ϵ187

(see the algorithm 1). We ended up using the following parameters by default: ϵ1 = 0.1,ϵ2 = 0.01 and n = 3.188
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Algorithm 2: Pseudocode of our method for optimizing our model, which outputs the resulting
parameterization

Data: (V, F ) a triangular mesh, ϵ1 the starting epsilon, ϵ2 the ending epsilon, n a fixed number of
optimization steps

Result: U parameterization
Function Compute_AT_Parameterization(F, u)

u ← Tutte(V, F);
v ← vec(1) ;
ϵ← ϵ1 ;
while ϵ > ϵ2 do

for i← 0 to n do
u ← Projected_Newton_Solver( u, v) ; // Compute parameterization using

symmetric Dirichlet weighted by V

v ← H−1b ;

end
ϵ← ϵ/2

end
cuts ← Compute_Cuts( F, V, v) ;
F, V ← Cut(F, V, cuts) ;
u ← Projected_Newton_Solver( u) ; // Compute final parameterization using non

weighted symmetric Dirichlet

return u;

end
Function Compute_Cuts( F, V, v)

S ← {};
for f in F do

if v (f) < 0.5 then
S ← S ∪ {f};

end

end
cuts ← {};
foreach CC connected component in S do

P1, P2← Get_Farthest_Points( CC);
cuts ← cuts ∪ Get_Shortest_Path( CC, P1, P2);

end
return cuts;

end
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(a) (b) (c) (d)

Figure 3: Our cutting method chooses the longest path among each patch of "deformable faces" (in magenta on (a) and (c) ).
While it may not capture all of the area suggested (such as on the camelhead (d) ), it is quite effective at capturing most of it
and may filter some artifacts such as the loop at the base of the neck of the camel.

(a) ϵ = 0.1 (b) ϵ = 0.05 (c) ϵ = 0.025 (d) ϵ = 0.0125

Figure 4: Evolution of v during the iterations of the function Compute_AT_Parameterization of Algorithm 2 as the ϵ decreases.
Starting from a smooth discontinuity map (a), v becomes sharper as ϵ tends to zero.

This results in 12 iterations of alternate optimization. We also use λ = 1.189

Parameter λ can be considered as a cost for cuts and influence the final balance between distortion190

energy and the length of cuts. We choose λ = 1, but it may have to be changed depending on the number of191

cuts needed. Figure 6 illustrates the difference resulting from different λ. The three other parameters serve192

as convergence parameters: the wider the difference between ϵ1 and ϵ2, the more the problem starts from193

a diffuse and global point of view and ends at a local one. Parameter n governs how many iterations are194

necessary before convergence at a certain ϵ. Parameters ϵ1 and ϵ2 were chosen so that the starting problem195

is global and ends at a point where v seems reduced to one triangle wide lines along distorted faces, as seen196

on 4.197

We choose n = 3, as it was the smallest value at which function v clearly distinguishes between rigid198

(v close to 1) and non-rigid faces (v close to 0). Higher values could be chosen in order to let v converge199

to a better solution. However, no significant difference was observed in tests with higher n. This could be200

due to the fact that, after ϵ changes its value for the first time, the number of steps for convergence is quite201

small (see figure 5): it seems that its impact happens at higher ϵ values and but ends up being erased with202

smaller ϵ values. This could also be due to the cutting method which is not refined enough to capture the203

difference a more precise v would make. It would make more sense to improve the cut before increasing the204

computation time significantly with a higher n.205

We can also run the method several time to extend the cuts. Subsequent runs are usually faster than206

the initial ones, but the cuts added are also smaller. As seen on figure 7, they tend to prolong the initial207
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Figure 5: Evolution of our energy (defined in 2) when using n = 10 on various meshes (meaning ϵ changes every 10 iterations).
After the first change of ϵ, it only takes a few iterations for the energy to converge.

choices instead of adding new isolated cuts.208

5.2. Comparison to state-of-the-art methods209

We choose to compare our method to the current implementation of OptCuts method (Li et al., 2018).
Note that it performs better than when described in the original paper due to some recent optimizations.
We were unable to compare our method to AutoCuts (Poranne et al., 2017), since we failed to reproduce
their results: the convergence speed was much too slow and was not producing results close to the ones
displayed in their paper. After discussions with the author, we learned that their results were obtained
using a proprietary solver, whose current version is not compatible with their code. However, it seems that
the current implementation of OptCuts performs better than AutoCuts in most cases, so the comparison
with OptCuts is a good test for our approach. Table 1 sums up parameterization results obtained by
OptCuts and our approach, in terms of computation speed, final distortion and final cut length. We use
OptCuts distortion measures and cut length, respectively:

Ed :=
1

√∑

t∈F |At|

∑

t∈F

|At|Ψ(t) , Es :=
1

√∑

t∈F |At|

∑

i∈S

|ei| . (5)

Our method almost always outperforms OptCuts in terms of speeds. However OptCuts is often better in210

terms of cut length for distortion reduction (better means less cut length for the lowest distortion). Since our211

method does not allow targeting for a fixed distortion (while OptCuts does), we used our method first and212

then set OptCuts targeting the same distortion value we obtained. Bear in mind that the lowest distortion213

that a mesh can attain is 4 as it is the minimum of Symmetric Dirichlet energy, so a change from 4.2 to 4.1214

is actually quite significant.215

5.3. Assisted cutting216

We wish to take into account some user input when choosing cuts. For example, some edges may be217

favored over others based on their visibility (less visible edges are preferred). To take this constraint into218

account, we can define λ as a scalar over the surface instead of a constant, and with a value depending on219

the user input. We tested this approach using visibility computed with libigl ambient occlusion (Jacobson220

et al. (2018)). Figure 8 illustrates how it affects the resulting distribution of v: areas to cut are more prone221

to be placed in low visibility areas such as cracks.222
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Figure 6: Results on the bunnyhead and hand meshes for λ = {3, 1, 0.1} (reps. from left to right). Lower λ parameter implies
longer cuts.

5.4. Packing constraints for the atlas223

It may be desirable for a UV map to be as tight as possible in order to take less memory space. We224

follow Autocuts method Poranne et al. (2017) for fitting a parameterization within a predefined bounding225

rectangle. Figure 9 shows how UV map are then much more compact. However we observe a significant226

increase in the convergence time, depending on how tight the bounding box is: thee harder it is to fit the227

parameterization in the box, the longer it takes (sometimes taking 10 times as long as without).228

6. Discussion and perspectives229

We have presented a new variational model to compute a UV parameterization of a triangle mesh with a230

joint optimization of distortion and cuts. It is a discrete variant of the Ambrosio-Tortorelli functional, which231

offers theoretical guarantees for solving problems involving a penalization in the length of discontinuities. We232

have shown that this approach is effective in practice, faster than other simultaneous optimization methods,233

with quality often close to the state-of-the-art Optcuts method, and incorporates easily other constraints in234

its formulation like border injectivity, assisted cutting or compact texture maps. We can also note that the235

loci of deformable faces may have an arbitrary topology, so cuts can take various shapes. Finally, the code236

is available at https://github.com/Lieunoir/UV-AT.237

In order to measure the distortion, we only tested the Symmetric Dirichlet energy, which was the closest238

to the original gradient term in the Ambrosio Tortorelli functional. As future works, other energies could239

be evaluated (such as ARAP), as they may not behave in the same way as Symmetric Dirichlet.240

A limitation of the current cutting method is that it does not preserve the topology defined by v: if any241

cycle is present, we ignore it. It also does not capture all of the region defined by the underlying patch242

(if the region is a tree it will only choose the longest branch), meaning we have to run the method again243

to capture it all. Our current cutting method is well adapted to a semi-supervised setting where the user244

can decide to refine further, but cuts following the topology induced by v could indeed be interesting in an245

unsupervised model.246
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Figure 7: Results after multiple runs of our algorithm. This enables us to capture some natural cuts that our algorithm may
have missed. After a few runs cuts our method converges, and the cuts stop expanding.

v AO map v guided by AO

Figure 8: Optimized function v without (left) and with (right) the ambient occlusion (AO) taken into account (middle). When
ambient occlusion is enabled, the faces identified as cut loci are guided to regions with lower visibility.

12

Lowres version



(a) (b) (c) (d) (e)

Figure 9: Resulting parameterizations without bounding box constraints (a, d) and with bounding box (b, c, e) on the bunnyhead
and david mesh. The first example with bunnyhead (b) does not have border injectivity restrictions, enabling the many overlaps
which are not present on the second example (c) (which has border injectivity restrictions). On the david mesh, an overlap free
parameterization was obtained (e) without using our border injectivity restrictions, giving the same result with our without
them.

In some cases, our method is not able to run properly because the energy diverges in the initialization.247

This problem comes from numerical issues of floating-point arithmetic. It is addressed by Shen et al.248

(2019), giving a alternative to Tutte’s embedding for initialization. We have not run our method with this249

initialization, but we can safely assume that it does not affect significantly the results.250

One way to improve the convergence speed would be to include some speedup optimization techniques.251

In particular, we could use the methods proposed by Liu et al. (2018) or Liu et al. (2021). We could also252

look for other ways to optimize the Mumford-Shah functional that would yield better results or give them253

faster: our alternate Ambrosio-Tortorelli optimization method is among the costliest ones. For instance, the254

recent competitive gradient and mirror descent algorithms (Schäfer and Anandkumar, 2019; Schäfer et al.,255

2020) seem to be particularly efficient in optimizing this type of functional, which are block-convex but not256

globally convex.257
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