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Abstract

UV mapping is a classical problem in computer graphics aiming at computing a planar parameterization
of the input mesh with the lowest possible distortion while minimizing the seams length. Recent works
propose optimization methods for solving these two joint problems at the same time with variational models,
but they tend to be slower than other cutting methods. We present a new variational approach for this
problem inspired by the Ambrosio-Tortorelli functional, which is easier to optimize than already existing
methods. This functional has widely been used in image and geometry processing for anisotropic denoising
and segmentation applications. The key feature of this functional is to model both regions where smoothing
is applied, and the loci of discontinuities corresponding to the cuts. Our approach relies on this principle
to model both the low distortion objective of the UV map, and the minimization of the seams length
(sequences of mesh edges). Our method significantly reduces the distortion in a faster way than state-of-the
art methods, with comparable seam quality. We also demonstrate the versatility of the approach when
external constraints on the parameterization is provided (packing constraints, seam visibility).

Keywords: Mesh parameterization, UV mapping, Variational model, Ambrosio-Tortorelli functional, Joint
distortion and cut

1. Introduction1

Computing a UV map for a mesh is a classical problem in computer graphics. UV maps have many2

applications, the most direct being texture atlas creation for a 3D model. Given an input three-dimensional3

discrete surface, the task addressed in this paper is to define a low distortion mapping of the mesh geometry4

to the plane while minimizing the cut length. Such cuts, or seams, may be required for topological consider-5

ations (for shapes that are not homeomorphic to a disk), or may help to better minimize the UV distortion6

(different cuts may lead to different local minima of the distortion energy). The problem of finding cuts and7

the problem of computing the parameterization are often addressed separately: cutting can be considered8

as a topological discrete problem, while optimizing the distortion is a geometrical problem usually solved9

with variational approaches.10

Our method aims at simultaneously optimizing those two problems using a variational model, so that11

instead of predicting the distortion, the cut can adapt itself to the distortion during the process. There12

already exist works exploring this direction: Poranne et al. (2017) have proposed a variational method13

based on a per edge cut energy, Li et al. (2018) have presented several edge merging/cutting operations and14

have used them during the optimization process to reduce a given functional.15

Our contribution consists of employing a dedicated variant of Ambrosio-Tortorelli functional to achieve16

this joint optimization. This functional measures the smoothness of a function while allowing discontinuities:17
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in our context, the function will be the parameterization itself (with a parallel between smoothness and18

distortion) and the discontinuities will correspond to the locations of cuts. Minimizing this functional gives19

us a simple framework to simultaneously optimize the distortion and find the cuts faster than previous20

simultaneous optimization methods.21

2. Related Works22

Distortion minimization. Given a mesh homeomorphic to a disk (to avoid any topological issues), there are23

several ways of defining a "good" parameterization depending on the distortion metric that is considered.24

The survey by Sheffer et al. (2006) has described a few of these methods. Some works focus on finding25

conformal parameterization (Lévy et al., 2002), while other focus on finding a parameterization as isometric26

as possible, using energies measuring per triangle distortion such as ARAP, as-rigid-as possible, (Chao27

et al., 2010), Symmetric Dirichlet (Smith and Schaefer, 2015), or MIPS, most isometric parameterization,28

(Hormann and Greiner, 2012). In the following, we focus on the Symmetric Dirichlet energy as introduced29

by Smith and Schaefer (2015). Once the distortion metric has been specified, minimizing this energy is a30

problem in itself. Most optimization processes consist of two steps: (i) initialize the parameterization (with31

methods like Tutte (1963), which guarantees a injective parameterization) and (ii) minimize the distortion32

energy. To minimize these energies, we rely on quasi-Newton methods, and we need ways to approximate33

the Hessian with a positive symmetric definite matrix (PSD). Note that Smith et al. (2019) have provided34

a way to efficiently compute a PSD matrix approximating the Hessian for distortion energies.35

Cutting methods. There are several works focusing on computing cuts for a parameterization. The method36

Sheffer and Hart (2002) searches for some high curvature point (likely to cause distortion) and then ap-37

proximates a minimal path between these points. Recently, Zhu et al. (2020) have introduced a method38

that detects some feature points and connect them by approximating a Steiner tree problem. While these39

methods are efficient, our work aims at developing a method based on simultaneous optimization, in which40

little work has been done compared to these methods based on connecting high distortion points. Sharp41

and Crane (2018) have also provided a variational approach to compute cuts minimizing the distortion.42

However, their work remains limited to conformal parameterizations, while we aim at reducing an isometric43

distortion.44

Simultaneous cuts and distortion optimization. Recent works aim at simultaneously finding the cut and the45

parameterization. Notable works are AutoCuts (Poranne et al., 2017), a variational model using an energy46

which is the sum of a distortion energy (such as Symmetric Dirichlet) and a per-edge energy approaching the47

cut length measure. The parameterization is treated as a triangle soup with the per-edge energy deciding48

whether neighbor triangles are attached to each other or not. The process can be automated, but user input49

is necessary in order to guarantee the bijectivity of the resulting parameterization. The weight between each50

term has to be defined by the user, and there is no guarantee that the result can reach a distortion or a51

cut length below a chosen threshold. The OptCuts method (Li et al., 2018) is based on a set of operations52

on the mesh topology such as cutting or merging, and uses a dual formulation of the energy problem to53

find the most appropriate operation to solve the problem. This method generally outperforms AutoCuts54

in terms of balance between distortion and cut length, with lower timings as well. This method can be55

adapted to guarantee bijectivity, and a distortion threshold to be reached can be set. Our method aims56

at providing a variational model, in a way similar to AutoCuts, but inspired by the Ambrosio-Tortorelli57

functional instead of using a handmade per-edge energy. We can then take inspiration from other Ambrosio-58

Tortorelli optimization related works to obtain an efficient and fast strategy to find our cuts.59

Bijectivity. One of the problems of surface parameterization is to guarantee the bijectivity of the result. If60

the embedding proposed in Tutte (1963) is guaranteed to be valid, optimizing an energy such as Symmetric61

Dirichlet has no reason to maintain it. One needs to enforce the bijectivity during the distortion optimization.62

Smith and Schaefer (2015) have decomposed the problem into two subproblems. First, we need to make63

sure that triangles are not flipped during the optimization, which is solved by adding a constraint on the64

2



distortion energy and a speci�c line search in the Quasi-Newton solver. Then we need to prevent overlaps65

of non-adjacent regions which can be detected for instance by preventing boundary edge crossings. Smith66

and Schaefer (2015) have solved this problem using a barrier energy term. Su et al. (2020) have optimized67

this approach by building a shell around the initial parameterization to reduce the number of border edges68

and vertices. Alternatively, Jiang et al. (2017) have proposed to triangulate the remaining space around the69

parameterization, which in turns guarantees local injectivity on the resulting triangulation. In our proposal,70

we mainly focus on speeding up the distortion/cut joint optimization. Our approach is fully compatible71

with existing strategies (either using Smith and Schaefer (2015) or Jiang et al. (2017)), if global bijectivity72

is required.73

Mumford-Shah related optimization. The Mumford-Shah functional was �rst introduced for image processing74

(Mumford and Shah, 1989), as a tool for image restoration and segmentation. It gives a way to represent an75

image as a piecewise-smooth function with a set of discontinuities. Since this functional is di�cult to optimize76

(see next section), a lot of approximations of this functional have been proposed in the literature. We focus77

here on one relaxation of this functional, called Ambrosio-Tortorelli functional (Ambrosio and Tortorelli,78

1990). It has seen many applications in image processing since then, some direct such as segmentation,79

denoising, and some variants designed for inpainting, magni�cation, deblurring, or image registration. While80

this functional has remained largely ignored in geometry processing, it has been used recently for mesh81

processing applications (Coeurjolly et al., 2016; Bonneel et al., 2018; Liu et al., 2020).82

The article is organized as follows. First, we brie�y recall the Ambrosio-Tortorelli functional in the83

continuous setting (Section 3). Then, we relate the functional to the mesh parametrization problem and84

we propose a new discretization scheme. This discretization induces a fast joint distortion/cut optimization85

algorithm (Section 4). Finally, Section 5 details an experimental validation of the proposed approach.86

3. The Ambrosio-Tortorelli functional87

Our joint distortion/cut variational model takes inspiration from the Ambrosio-Tortorelli functional.88

As detailed below, it can represent in the same framework the parameterization itself and the cut loci as89

functions.90

In order to describe the Ambrosio-Tortorelli functional, it is necessary to introduce the Mumford-Shah
functional (Mumford and Shah, 1989). The Mumford-Shah functional allows us, given an arbitrary function
g, to �nd a new function u that will try to be as close as possible tog while also trying to be as smooth
as possible everywhere except along a setK of discontinuities. This functional is commonly used in image
processing, with a direct use in denoising: we want a smooth output close to the original input image, but
we do not want to oversmooth meaningful image contours, so the function should have discontinuities along
these contours. Ideally, the setK delineates these features. The functional is de�ned as:

MS (K; u ) := �
Z


 nK
ju � gj2 +

Z


 nK
jr uj2 + � H 1(K \ 
) ; (1)

where 
 is the domain, g is the input data de�ned on 
 , u is the regularized data,K is the set of disconti-91

nuities, H 1 is the Hausdor� measure, and(�; � ) are two real numbers corresponding to the weights given to92

the �tting and cut length terms respectively. Increasing coe�cient � forces the output to be closer to the93

input, while increasing coe�cient � induces fewer discontinuities.94

the �rst term of this functional describes the �tting of u to the input data g, the second term expresses95

the regularity of u while the third term measures the length of the discontinuities. Minimizing these three96

terms simultaneously lets us �nd a compromise between input �tting, smoothness of the result and how97

much discontinuity is allowed. Coe�cients � and � let us control this compromise.98

However, this functional is hard to optimize since it is di�cult to manipulate a set of discontinuities. Am-
brosio and Tortorelli (1990) have provided a relaxation of the Mumford-Shah functional, as it approximates
its minimizer with two smooth functions, instead of one smooth function and one set of discontinuities. It
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can be de�ned as:

AT � (u; v) := �
Z



ju � gj2 +

Z



jvr uj2 + �

Z




�
� jr vj2 +

1
4�

(1 � v)2
�

;

where function v is from domain 
 to [0; 1], and � is a real positive number.99

Ambrosio and Tortorelli (1990) have proven that this functional � -converges toward the Mumford-Shah100

functional as � tends to 0. Function v converges to an indicator function of the space where discontinuities101

are not allowed: it is set to 1 where u is smooth, and to 0 where u can have discontinuities. A large value102

for � will give a di�use result, and as we decrease� the function will be less and less di�use and takes103

values closer to 0 and 1. The main interest of this formulation is that AT � minimizers are the same as104

MS ones when� tends to zero. Furthermore, for a given� , an e�cient alternating minimization scheme105

can be designed (see Alg. 1): by �xingv (respectively u) the resulting expression is convex quadratic inu106

(respectively v). We can thus �nd the minimizing u or v with a single step of a Newton method. We clarify107

the gradients and Hessian operators for the discretization of this functional in the next section.108

Algorithm 1: Optimization method for the Ambrosio-Tortorelli functional
Data: � 1 the starting epsilon, � 2 the ending epsilon,n a �xed number of optimization steps
Result: v and u approximation of the functional minimizer
�  � 1

while � > � 2 do
for i  0 to n do

v  minv (AT � (u; v))
u  minu (AT � (u; v))

end
�  �=2

end

4. Our discrete AT inspired model for joint parameterization/cuts109

4.1. Discretization110

We work on a three-dimensional surface, speci�cally a triangle mesh, de�ned by a setV of vertices and111

a set F of triangular faces. We denote asnf the number of triangles of the mesh, andnv the number of112

vertices.113

Functions u and v must be discretized. Standard discretizations makeu and v de�ned per vertex, but114

this approach tends to smooth the functions. This is not desirable, especially forv. We thus prefer u and v115

be discretized not at the same place on the mesh. Sinceu represents our parameterization, it is natural to116

sample it at either vertices or triangle corners: u is then linearly interpolated on each triangle as expected.117

Our approach consists in samplingv at faces instead, andu at vertices. This means we let some faces free118

to have as much distortion as needed in order to let other faces place themselves freely, acting as if there119

was a cut along these faces: on these faces,v is close to zero. We then have to cut alongside the distorted120

faces. These faces can be seen as being pulled on, the cuts then releasing the tension (see �gure 1).121

We can also notice that the gradient term in the Ambrosio-Tortorelli formula serves as a measure of122

distortion, acting as a weighted Dirichlet energy formulation ( jvr uj2). It then makes sense to see Ambrosio-123

Tortorelli as a process trying to reduce as much as possible this energy while allowing some exceptions: all124

we need then is a way to transform those exceptions into cuts. We also use Symmetric Dirichlet instead125

of Dirichlet, for local injectivity reasons, rescaled to be 0 when minimal. Since the gradient term already126

takes into account the distortion, and we do not have any data to be close to, we drop the �rst term of the127

functional, the �tting term.128
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