DGtal tutorial

DGMM 2022

D. Coeurjolly
Outline and objectives

• DGtal overview and features

• *Coffee break* ☕

• Getting started
 • Installation
 • Basic examples

• 5 practical works (Jacques-Olivier Lachaud, Tristan Roussillon, Bertrand Kerautret, D.C.)

• Open discussions
Set up your tutorial material

- **Requirements:**
 - Git client
 - C++ compiler (at least C++11 enabled)
 - Cmake (cmake.org)
 - Boost headers (boost.org)
 - Zlib (should be included by defaults in your OS)

- for **polyscope** visualization, you may need some X/openGL headers. E.g. on ubuntu

  ```
  sudo apt-get install xorg-dev libglu1-mesa-dev freeglut3-dev mesa-common-dev
  ```
Discord server: https://discord.gg/PFBwRHMN

To get help during the practicals, post-tutorial discussions, to share your results / failures cases ...

Code + practicals
Context
Use-cases (1): geometry processing

- Micro-tomographic images
 - material sciences
 - medical images

- Process geometry/topology of images partitions

⇒ $X \subset \mathbb{Z}^3$
Example 1
David Coeurjolly - Digital surface regularization with guarantees
Example 2

(a) Input (b) CNN predictions (c) Candidate normals (d) Aggregated normals (e) Piecewise-smooth normals (f) Final surface

[Delanoy et al 19]
Examples 3: image processing
Principles

- **Objectives:** share state-of-the-art and cutting-edge algorithms from digital geometry community.
 - easy comparisons with the state-of-the-art
 - allows new-comers in the field to get started
 - fast prototyping of specific softwares (material sciences, medical imaging)
 - provides nice illustrations/outputs of data structures and algorithms
The project

- C++ open-source library (DGtal)
- Preliminary python binding
- Collection of command-line tools (DGtalTools, DGtalTools-contrib) for the processing of images (2d, 3d), meshes or implicit shape
- Features
 - highly documented library
 - generic programming (data structure algorithms, nD kernel)
 - high performance tools (efficient containers, multithreading…)
 - quick visual feedback for interactive visual debugging
- Support from:
Community
History / Stats

- First git commit: Feb 28, 2010
- 12,425 commits
- ~30 github contributors
- 316 github stars
- 99 documentations HTML pages
- 3,392 doxygen generated technical documentation pages
- many students involved (master, PhD...)
- countless number of related research papers
Current release: 1.3

• New features
 ▸ Digital convexity and full convexity [DGMM2021] and [DGMM2022]
 ▸ Differential calculus on polygonal surfaces and digital surfaces [DGMM2022]
 ▸ Geodesics / vector field processing [DGMM2022]
 ▸ Complete Voronoi map computation

• Many bug fixes, improvements, documentation updates…
Package overview
<table>
<thead>
<tr>
<th>Kernel</th>
<th>Arithmetic</th>
<th>Geometry</th>
<th>Shapes</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_0 + \frac{1}{u_1 + \frac{1}{\ldots + \frac{1}{u_k}}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z^d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$Ax = b$
Kernel
Kernel package

- Representation of Integers (with possible arbitrary precision arithmetic)
- Digital space, domains
- Digital sets
- Helper namespaces

```c
typedef int32_t Integer;
typedef DGtal::SpaceND<3, Integer> Space;
typedef DGtal::HyperRectDomain<Space> Domain;
typedef Space::Point Point;
typedef DGtal::DigitalSetBySTLSet<Domain> Set;

Point a(1,2,3);
Point b(2,3,4);
Domain domain(a,b);
set set(domain);
set.insert( Point(3,3,3) );
//....
```
Arithmetic
Arithmetic package

- Integers
- Fractions
- Patterns, DSS
- Lattice polytopes
Topology
Topology package

• À la Rosenfeld topology
 ▷ Adjacency relationships, Jordan pairs, object boundary, simplicity tests

• Cellular Khalimsky spaces
 ▷ digital surfaces, tracking, dual surfaces

• Cubical Complexes
 ▷ Iterators, circulators, closure / star / link / collapse operators

• Voxel complexes
 ▷ Isthmus, critical sets, advanced thinning algorithms
Geometry
Geometry package

• Elementary objects reconstruction
 ‣ recognition of arithmetical structures (straight lines/segments, circular arcs, digital planes,...)

• Volumetric analysis
 ‣ metric spaces, distance transformation, voronoi maps, medial axis...
 ‣ convexity, full convexity
 ‣ convex hulls

• Codimensional geometry processing (curves in 2d, surfaces in 3d)
 ‣ differential estimators (length, area, tangent/normals, curvature tensor...)
 ‣ digital surface regularization
 ‣ meshes geometry processing
void oneStepUsing(double h) {
 auto params = SHG3::defaultParameters() | SHG3::parametersGeometryEstimation();
 params("polynomial", "gouraud") ("gridstep", h);
 auto implicit_shape = SHG3::makeImplicitShape3D(params);
 auto digitized_shape = SHG3::makeDigitizedImplicitShape3D(implicit_shape, params);
 auto K = SHG3::getKSpace(params);
 auto binary_image = SHG3::makeBinaryImage(digitized_shape, params);
 auto surface = SHG3::makeDigitizedSurface(binary_image, K, params);
 auto embedder = SHG3::getCellEmbedder(K);
 SHG3::CellIndex c21;
 auto surfels = SHG3::getSurfelRange(surface, params);
 auto primalSurface = SHG3::makePrimalPolygonSurface(c21, surface);

 // Need to convert the faces
 std::vector<
 std::vector<>
 > faces;
 for (auto sf: primalSurface->allSurfaces())
 faces.push_back(primalSurface->verticesAroundFace(face));
 auto digsurf = polyscope::registerSurfaceMesh("Primal surface", primalSurface->positions(), faces);
 digsurf->rescaleUnits();
 digsurf->setdwidth(hh);
 digsurf->setEdgeColor(1.1, 1.1, 1.1);

 // Computing some differential quantities
 params("r-ravus", gstd::pow(h, 2.0/3.0));
 auto Mcurv = SHG3::getMeanCurvatures(binary_image, surfels, params);
 auto normalsII = SHG3::getNormalVectors(binary_image, surfels, params);
 auto KTensor = SHG3::getIIPrincipalCurvaturesAndDirections(binary_image, surfels, params); // Recomputing...

 std::vector<double> Gcurv(surfels.size()), k1(surfels.size()), k2(surfels.size());
 std::vector<RealVector> d1(surfels.size()), d2(surfels.size());
 auto i = 0;
 for (auto &t: KTensor) // ADS->SGA
 {
 k1[i] = std::get<0>(t);
 k2[i] = std::get<1>(t);
 d1[i] = std::get<2>(t);
 d2[i] = std::get<3>(t);
 Gcurv[i] = k1[i] + k2[i];
 ++i;
 }

 // Attaching quantities
 digsurf->addFaceVectorQuantity("II normal vectors", normalsII, polyscope::VectorType::AMBIENT);
 digsurf->addFaceScalarQuantity("II mean curvature", Mcurv);
 digsurf->addFaceScalarQuantity("II Gaussian curvature", Gcurv);
 digsurf->addFaceScalarQuantity("II k1 curvature", k1);
 digsurf->addFaceScalarQuantity("II k2 curvature", k2);
 digsurf->addFaceVectorQuantity("II first principal direction", d1, polyscope::VectorType::AMBIENT);
 digsurf->addFaceVectorQuantity("II second principal direction", d2, polyscope::VectorType::AMBIENT);
}
Calculus on digital surfaces

- Discrete Exterior Calculus
 - k-vectors, k-forms, operators
 - examples to solve PDE

- Simple calculus on digital and polygonal surfaces (Wednesday!)
Shapes
Shapes package

- Implicit shapes with *exact* quantities (length, area, curvatures…)
- Digitizer (Gauss digitization)

- half-edge / surface mesh data structures
Graph
Graph package

- Basic graphs and concepts
- Basic algorithm (traversal,...)
- Interface with boost::graph
Image package

• Image containers
 ‣ Generic containers (dimension, value type, accessors)
 ‣ random access flat containers (eg. std::vector), associative container point↔ value
 ‣ Tile based container
 ‣ experimental Hashtree based container
 ‣ ITK containers

• Many tools to convert, remap, or construct facades on images
IO package

• Images/volume IO
 ‣ Image file formats (png, jpg...)
 ‣ Volumetric formats (vol, itk...)

• Boards
 ‣ Export 2d and 3d structures to svg/eps figures

• Viewers
 ‣ Interactive 3d viewers with libQGLviewers
```cpp
#include <iostream>
#include <DGtal/base/Common.h>
#include <DGtal/helpers/StdDefs.h>
#include <DGtal/io/boards/Board2D.h>
#include <DGtal/geometry/curves/ArithmeticalDSS.h>

using namespace DGtal;

int main()
{
    Z2i::Point a(0,0);
    Z2i::Point b(33,43);

    Z2i::Domain domain(a,b);

    NaiveDSS8<Z2i::Integer> dss(a,b);

    Board2D board;
    board << domain;
    board << dss;
    board.saveSVG("simple-domain.svg");
    return 0;
}
```
Math
Math package

• Linear algebra (facade to Eigen)
• Multivariate polynomials
• Lagrange polynomials / Lagrange interpolation
DGtalTools

Separate GitHub project: https://github.com/DGtal-team/DGtalTools

Light tools based on DGtal algorithms:

- Useful to share and apply results on various application domains.
- Make easier online demonstration (like IPOL).
- Provides simple independent tools for various domains:
 - **Convertors**: converts various file format (vol2raw, dicom2vol, mesh2heightfield ...)
 - **Estimators**: apply different geometric estimator (tangent, curvature 2D/3D).
 - **Generators**: utilities to generate various contours/shape.
 - **Visualization**: visualize digital data (set of voxels, vol file, height map, mesh).
 - **Volumetric**: to manipulate volumetric files (marching-cubes, sub sampling, thinning)
 - **Image processing**: tools to process images (image restoration, image inpainting)
DGtalTools-contrib

Separate GitHub project:

https://github.com/DGtal-team/DGtalTools-contrib

• Tools considered as development or prototype.
• Used to share tools useful in recent research in progress.
Website, documentation, GitHub...
Focus: IO/Interactions
Integrate DGtal in your projects
CMake integration

• 3 options:
 ‣ Download DGtal, build the library and install it system-wide (make install)
 ‣ Use cmake to fetch DGtal and to get a local build within your project
 ‣ Just clone a DGtal template project

https://github.com/DGtal-team/DGtal-template

PROJECT(HelloWorld)

Required in DGtal
CMAKE_MINIMUM_REQUIRED(VERSION 3.11)
FIND_PACKAGE(DGtal REQUIRED)
INCLUDE_DIRECTORIES(${DGtal_INCLUDE_DIRS})
LINK_DIRECTORIES(${DGtal_LIBRARY_DIRS})

ADD_EXECUTABLE(helloworld helloworld)
TARGET_LINK_LIBRARIES(helloworld ${DGtal_LIBRARIES})

project(DGtal-DGMM2022-tutorials)
cmake_minimum_required (VERSION 3.11)
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
include(dgital)
include_directories(${DGtal_INCLUDE_DIRS})
include_directories(${PROJECT_SOURCE_DIR})
add_executable(helloworld helloworld.cpp)
target_link_libraries(helloworld ${DGtal_LIBRARIES})
First steps...
What is the dimension of the space for your problem?

- 2 or 3, with classical Integer types → \(\mathbb{Z}^2 \) and \(\mathbb{Z}^3 \) namespaces

- Else creates the elementary types you need

Check the shortcuts, the examples (and the related doc!)

Interact with the authors (Github issues or discussion...)

typedef int64_t Integer;
typedef DGtal::SpaceND<3, Integer> Space;
typedef DGtal::HyperRectDomain<Space> Domain;
typedef Space::Point Point;
typedef DGtal::DigitalSetBySTLSet<Domain> Set;
Live demo

Your PC ran into a problem and needs to restart. We're collecting some error info, and then we'll restart for you.

9% complete

For more information about this issue and possible fixes, visit http://www.example.com.

If you call a support person, give them this info:
Stop code: DRIVER_IRQL_NOT_LESS_OR_EQUAL
Was Gauss right?
Practicals