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Motivations (2):  as an efficient modelling spaceℤd

• Shape optimization / fabrication


• As a proxy or an intermediate 
representation


light transport simulation, booleans, 
medial axis, distance fields, multiple 
interfaces/objects tracking in a simulation 
loop…

[Martinez et al 17]

[Liu et al 18]

 grid [Villanueva et al 17](256k)3

 Focus: characteristic functions / labelled images / level sets / …



Example

[Delanoy et al 19]



Digital Geometry

Topology and geometry processing on regular data: 

•  fast algorithms thanks to the regularity of the data 
•  simple topological structure 
•  integer based computations  
•  advanced surface based geometry processing 
… in ℤd



dgtal.org

http://dgtal.org


https://dgtal.org

https://dgtal.org


ℤ
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Further elements
Let  a lattice polytope with non-empty interior, 
then:   

Convex on the lattice grid has  edges

P ⊂ ℤd

fk ≪ cd(Vol P)d − 1
d + 1

[1,n]2 O(n2/3)

Let  (with ) and , the 
expected time for Voronoi diagram / Delaunay triangulation 
is: 

P ⊂ [1,U]2 U ≤ 2m n := |P |

O (min{n log n, n U})



Further elements
Let  a lattice polytope with non-empty interior, 
then:   

Convex on the lattice grid has  edges

P ⊂ ℤd

fk ≪ cd(Vol P)d − 1
d + 1

[1,n]2 O(n2/3)

Let  (with ) and , the 
expected time for Voronoi diagram / Delaunay triangulation 
is: 

P ⊂ [1,U]2 U ≤ 2m n := |P |

O (min{n log n, n U})



hands on…







ℤd



Given  and a domain , compute:X ⊂ ℤd [0,n]d

Volumetric analysis



Given  and a domain , compute:X ⊂ ℤd [0,n]d

Volumetric analysis



Given  and a domain , compute:X ⊂ ℤd [0,n]d

        (aka distance map)DT(x) = miny∈D∖X d(x, y)

Volumetric analysis

DT



Given  and a domain , compute:X ⊂ ℤd [0,n]d

        (aka distance map)DT(x) = miny∈D∖X d(x, y)

    (aka Voronoi map )σ(x) = argminy∈D∖X d(x, y) 𝒱(X) ∩ ℤd

Volumetric analysis

DT Voronoi map



Given  and a domain , compute:X ⊂ ℤd [0,n]d

        (aka distance map)DT(x) = miny∈D∖X d(x, y)

    (aka Voronoi map )σ(x) = argminy∈D∖X d(x, y) 𝒱(X) ∩ ℤd

 (aka discrete medial axis)M = {(x, r) ∈ ℤd+1 | ℬ(x, r) ∩ ℤd ⊂ X, there is no (x′ , r′ ) s.t. ℬ(x, r) ⊂ ℬ(x′ , r′ )}

Volumetric analysis

Scale axisMedial axisDT Voronoi map



Given  and a domain , compute:X ⊂ ℤd [0,n]d

        (aka distance map)DT(x) = miny∈D∖X d(x, y)

    (aka Voronoi map )σ(x) = argminy∈D∖X d(x, y) 𝒱(X) ∩ ℤd

 (aka discrete medial axis)M = {(x, r) ∈ ℤd+1 | ℬ(x, r) ∩ ℤd ⊂ X, there is no (x′ , r′ ) s.t. ℬ(x, r) ⊂ ℬ(x′ , r′ )}
    (aka  Power map )π(x) = argmin(y,r)∈M ∥x − y∥2

2 − r2 l2 𝒫(M) ∩ ℤd

Volumetric analysis

Scale axisMedial axisDT Voronoi map



Given  and a domain , compute:X ⊂ ℤd [0,n]d

        (aka distance map)DT(x) = miny∈D∖X d(x, y)

    (aka Voronoi map )σ(x) = argminy∈D∖X d(x, y) 𝒱(X) ∩ ℤd

 (aka discrete medial axis)M = {(x, r) ∈ ℤd+1 | ℬ(x, r) ∩ ℤd ⊂ X, there is no (x′ , r′ ) s.t. ℬ(x, r) ⊂ ℬ(x′ , r′ )}
    (aka  Power map )π(x) = argmin(y,r)∈M ∥x − y∥2

2 − r2 l2 𝒫(M) ∩ ℤd

Volumetric analysis

Scale axisMedial axisDT Voronoi map



Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)



Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)



Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)



Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)

per line double-scan = O(n)



Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)

per line double-scan = O(n)
1D lower enveloppe computation of a set of parabolas = O(n)
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Separable Voronoi map: step 2

Stack based algorithm using a  3-ary hiddenBy predicate, à la sweep line   per column⇒ O(n)

⇒ O(n2) in total

hiddenBy(u,v,w,S)
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Separable approaches
Alternatives: Jump flooding, Fast Marching Methods or distance propagation… but only 
approximation and/or non-linear complexity (e.g.   in 2D for FMM)


Limitations: full ambient space computation (i.e. no geodesic, use FMM or PDE based 
approaches instead)


But


•  range based / dexel based approach for faster computations [Chen et al 2020]

•  narrow band approaches

•  some extensions to hierarchical / adaptive grids

•  can use sub-pixel information (coverage, QEM, …)

•  … 

O(n2 log n)



topology on ℤd



Before geometry : topological models for ℤd

How to represent volumes, 
boundaries, curves, surfaces, 
partitions ?

1. lattice points

2. cubical complexes



Digital topology

Good adjacencies for object/background 

•  Jordan separation theorem 
• consistence borders and interior components 
•  definition of surfaces in ℤd

(8,4)-topology (4,8)-topology(8,8)-topology



Topology invariance: simple points

locally keep connected components

Simple points: points whose removal preserves topology 

•  digital topology invariance of object and background 
•  very fast: look-up tables in 2D and 3D 
•  useful for skeleton extraction / coupled with medial axis
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Create object with (26,6) 

topology from binary image

Queue simple points

Remove simple points



Homotopic collapses

x and y are simple

but cannot be removed in parallel

Elementary collapse : removing cell pairs (f,g) where g is free

 preserves homotopy

Needs cubical complex representation



Homotopic collapses and critical kernels

cubical complex X Z := critical kernel of X

Both complexes  are thinning, since Y1, Y2 Z ⊆ Yi ⊆ X

critical cells : cells that do not collapse 

onto their neighborhood

All complexes Y, such that  
are homotopic to X  !

Z ⊆ Y ⊆ X

Allows parallel algorithms for 
extracting skeletons



Skeletons with critical kernels

« curved » skeleton « surface » skeleton



Digital surfaces
• digital surface  set of faces of voxels


• in « ideal cases » 4-regular graph (3D)


• vertices = surfels/faces


• generally not a manifold 


• pinched on edges and/or vertices


• not a sampling, only approximation


• only 6 different normals in 3D


• even fine digital surface have poor 
normals

≈

Primal surface

(here, digitization of some ellipsoid)



Digital surfaces + topology (primal  dual)↔

Primal surface Dual surface

(26,6) topology

Dual surface

(6,26) topology

Adding object/background topology allows manifoldness in arbitrary dimensions 
- exactly d-1 paths crossing at each point



digital surface 
geometry



Linking continuous and digital geometry : 
Gauss digitization with gridstep h

« digitization » « voxelization » « digitized surface »
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Hausdorff closeness of digitized shapes

For any compact domain              such that       has positive reach, and its digitization 
 on a grid with grid-step h, then  for small enough Xh := [Gh(X)]h dH(∂X, ∂Xh) ≤ d /2h h

[LT16]

∂XX ∈ ℝd

h = 1 h = 0.5 h = 0.25



Homotopy equivalence

For a compact shape  with positive reach , for 

, the  set X and its voxelization 

 are homotopy equivalent. 
Its voxel  core is also homotopy equivalent.

X ρ

h <
2 3

3
ρ

[Gh(X)]h

[YLJ2018]



Bijectivity of projection and manifoldness

If   has positive reach,  
the size of the non-injective part of projection 

 tends to zero as . 
(light gray + dark gray zones )

X

πX : ∂Xh → ∂X h → 0
≈ O(h)

h = 0.1 h = 0.05 h = 0.025

If   has positive reach,  
the size of the non-manifoldness part of  
tends quickly to zero as . 
(dark gray zones )

X
∂Xh

h → 0
≈ O(h2)

[LT16] [LT16]



Multigrid convergence



tends toward  as 


Convergence speed is  and 
even  for smooth enough M

̂Area (Gh(X), h) := h2#(Gh(X))
Area(M) h → 0

O(h)
O(h22

15)

For digitization process , the discrete geometric estimator  is multigrid convergent to the geometric quantity  for 
the family of shapes , iff, for any , there exists a grid step , such that : 

 is defined for any , 
  

where the speed of convergence  has null limit when . 

(Typically area, perimeter, integrals) 

G ̂E E
𝕏 X ∈ 𝕏 hX > 0

̂E(Gh(X), h) 0 < h < hX
| ̂E(Gh(X), h) − E(X) | < τX(h)

τX(h) h → 0



Multigrid convergence (local version)
For digitization process , the local discrete geometric estimator  is multigrid convergent to the geometric quantity 

 for the family of shapes , iff, for any , there exists a grid step , such that : 

 is defined for any  with , 
for any , for any  with ,      

where the speed of convergence  has null limit when . 

(Typically normal direction, curvatures, …) 

G ̂E
E 𝕏 X ∈ 𝕏 hX > 0

̂E(Gh(X), ̂x, h) ̂x ∈ ∂[Gh(X)]h 0 < h < hX
x ∈ ∂X ̂x ∈ ∂[Gh(X)]h ∥x − ̂x∥∞ ≤ h | ̂E(Gh(X), ̂x, h) − E(X, x) | < τX(h)

τX(h) h → 0



Normal vector and curvatures estimation
• Integral Invariants : analyzing set  gives normal vector, 

principal directions and curvatures  [Pottmann et al. 2007]
BR(x) ∩ X



Normal vector and curvatures estimation
• Integral Invariants : analyzing set  gives normal vector, 

principal directions and curvatures  [Pottmann et al. 2007]
BR(x) ∩ X

With optimal radius , then : 

- normals  

- mean curvature  

- … [CLL2014], [LCL2017]

R = O(h 1
3)

n̂(Gh(M), ξ(x), h)) − n(M, x) ≤ C ⋅ h
2
3

̂κ(Mh, ξ(x))) − κ(M, x)
2

≤ C ⋅ h
1
3



Normal vector field estimation

Incremental computation : estimate at  nearby  only requires preceding 
result + looking at points within 

y x
BR(y) ⊖ BR(x)
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hands on…







advanced digital 
surface geometry 
processing



Laplace-Beltrami on digital surfaces

Many discretization scheme for triangular/polygonal meshes
Δu = ∇ ⋅ ∇u



Laplace-Beltrami on digital surfaces

Many discretization scheme for triangular/polygonal meshes

Question: can we design a Laplace-Beltrami on digital surface with strong consistency?

Δu = ∇ ⋅ ∇u



Convolution based Laplace-Beltrami operator on Digital Surfaces

(Lh ũ)(s) :=
1

th(4πth)
d
2 ∑

r∈S

e− | |r − s | |2
4th [ũ(r) − ũ(s)]μ(r)

à-la [Belkin et al 08]
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μ(r) := ⃗n elem ⋅ ⃗n estim

à-la [Belkin et al 08]



Convolution based Laplace-Beltrami operator on Digital Surfaces
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μ(r) := ⃗n elem ⋅ ⃗n estim

à-la [Belkin et al 08]



Convolution based Laplace-Beltrami operator on Digital Surfaces

(Lh ũ)(s) :=
1

th(4πth)
d
2 ∑

r∈S

e− | |r − s | |2
4th [ũ(r) − ũ(s)]μ(r)

μ(r) := ⃗n elem ⋅ ⃗n estim

[Caissard et al 19] 
•   is strongly consistent when  
•  but not local…

(Lhũ) h → 0

à-la [Belkin et al 08]
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corrected digital 
calculus



Discrete Calculus à la DEC

d ∧ ⋆ ♯ ♭ div F = ⋆ d(⋆F♭) curl F = ( ⋆ (dF♭))♯

Δϕ = (⋆d ⋆ d)ϕ

But: 
•  subtle combinatorial/topological construction 

•  non-trivial correction of the embedding ( ) TpM



Discrete Differential Operators on Polygonal Meshes
[de Goes et al 20]

per face Levi-Civita…∇, ∇ ⋅ , ∇ × , ♯, ♭ , Δ . . .

But still flat embedding hypothesis…
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We can correct the face embedding using asymptotic convergence normal vector 
field 

Challenges: advance corrections (e.g. on the Grassmanian, higher order 
schemes…) for asymptotic properties  
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Piecewise smooth reconstruction
Step1: normal vector field reconstruction 

Ambrosio-Tortorelli functional: solve u,v s.t. 

 ATϵ(u, v) = α∫M
|u − g |2 dx + ∫M

|v∇u |2 + λϵ |∇v |2 +
1
4ϵ

|1 − v |2 dx

Reconstructed normals are 
close to the input ones

Normal field must be smooth 
except at singularities v

Penalizes the length of 
singularities

digital DEC: 

+ energy is convex for fixed  or   alternate minimization
u v ⇒

ATϵ(u, v) = α
3

∑
i=1

⟨ui − gi, ui − gi⟩0 +
3

∑
i=1

⟨v ∧ d0ui, v ∧ d0ui1⟩1 + λϵ⟨d0v, d0v⟩1 +
λ
4ϵ

⟨1 − v,1 − v⟩0

[C. et al 16]
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Piecewise smooth reconstruction
Step 2: surface reconstruction 

ℰ( ̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

( ̂ej ⋅ nf)2 + γ
n

∑
i=1

∥p̂i − b̂i∥2
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Piecewise smooth reconstruction
Step 2: surface reconstruction 

ℰ( ̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

( ̂ej ⋅ nf)2 + γ
n

∑
i=1

∥p̂i − b̂i∥2

optimized vertices are not too 
far from original ones

Edges must be as orthogonal 
as possible to the given normal 

vectors
Fairness term

Using multigrid convergent normal vector field or its 
piecewise smooth regularization:  

1
n

n

∑
i=1

∥p*i − pi∥ ≤ C ⋅ h 1
n

n

∑
i=1

d(p*i , ∂M) ≤ C′ ⋅ h

+topological guarantee  
+multi-label case 
+fast GPU based minimization 
+… 
[C. et al 21]
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conclusion



Conclusion

dgtal.org


https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry


(slides + code)


Topology and geometry processing on regular data: 

•  fast algorithms thanks to the regularity of the data 
•  simple topological structure 
•  integer based computations  
•  advanced surface based geometry processing 
… in ℤd

http://dgtal.org
https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry


Challenges

• Corrected digital calculus, what kind of guarantee can we get?


• DEC operators targeting the limit surface (à-la Subdivision Exterior Calculus)


• Localized geometry processing operators on DAG Sparse Voxel Octrees

dgtal.org


https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry


(slides + code)


http://dgtal.org
https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry
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