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Motivations (2):  as an efficient modelling spaceℤd

• Shape optimization / fabrication


• As a proxy or an intermediate 
representation


light transport simulation, booleans, 
medial axis, distance fields, multiple 
interfaces/objects tracking in a simulation 
loop…

[Martinez et al 17]

[Liu et al 18]

 grid [Villanueva et al 17](256k)3

 Focus: characteristic functions / labelled images / level sets / …









https://www.youtube.com/watch?v=T-t3M4_nxNw


https://www.youtube.com/watch?v=T-t3M4_nxNw


Example

[Delanoy et al 19]



Digital Geometry

Topology and geometry processing on regular data: 

•  fast algorithms thanks to the regularity of the data 
•  simple topological structure 
•  integer based computations  
•  advanced surface based geometry processing 
… in ℤd



dgtal.org

http://dgtal.org
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Quick example 

• Rational slope  


 finite set of remainders 

 periodic structure  

 canonical pattern from continued fraction


• arithmetization to speed-up tracing (e.g. fast ray marching on SVO) 

α =
p
q

⇒
⇒ q/gcd(p, q)
⇒
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Convex hull in 2d 

Largest convex polygon in  as at most 
  

 

vertices/edges

[1..N]2

12
(4π2)1/3

N2/3 + O(N1/3 log(N))

For  points in  ,  #CVXVertices is in n ℝd O(n)

Total size of the CVX Θ (n⌊d/2⌋)



Further elements
Let  a lattice polytope with non-empty interior, 
then:   

Convex on the lattice grid has  edges

P ⊂ ℤd

fk ≪ cd(Vol P)d − 1
d + 1

[1,n]2 O(n2/3)

Let  (with ) and , the 
expected time for Voronoi diagram / Delaunay triangulation 
is: 

P ⊂ [1,U]2 U ≤ 2m n := |P |

O (min{n log n, n U})
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Separable distance field
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| |x − y | |2
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(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)



Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)



Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)



Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)

per line double-scan = O(n)



Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + ( j − v)2

= min
v ((min

u
(i − u)2) + ( j − v)2)

per line double-scan = O(n)
1D lower enveloppe computation of a set of parabolas = O(n)
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Separable Voronoi map: step 2

Stack based algorithm using a  3-ary hiddenBy predicate, à la sweep line   per column⇒ O(n)

⇒ O(n2) in total in 2D 

hiddenBy(u,v,w,S)
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topology in ℤd



Before geometry : topological models for ℤd

How to represent volumes, 
boundaries, curves, surfaces, 
partitions ?

1. lattice points

2. cubical complexes



Digital topology

Good adjacencies for object/background 

•  Jordan separation theorem 
• consistence borders and interior components 
•  definition of surfaces in ℤd

(8,4)-topology (4,8)-topology(8,8)-topology
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Topology invariance: simple points

locally keep connected components

Simple points: points whose removal preserves topology 

•  digital topology invariance of object and background 
•  very fast: look-up tables in 2D and 3D 
•  useful for skeleton extraction / coupled with medial axis
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Create object with (26,6) 

topology from binary image

Queue simple points

Remove simple points



Create object with (26,6) 

topology from binary image

Queue simple points

Remove simple points



digital surface 
geometry



Linking continuous and digital geometry : 
Gauss digitization with gridstep h

« digitization » « voxelization » « digitized surface »
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Volume estimation

hd ⋅ |Xh |
h→0

Vol(X)

 convergence speedO(h)

If  is strictly -convex:  X C3 O (h
15
11 +ϵ)



Multigrid convergence

For digitization process , the discrete geometric estimator  is multigrid convergent to the geometric quantity  for 
the family of shapes , iff, for any , there exists a grid step , such that : 

 is defined for any , 
  

where the speed of convergence  has null limit when . 

(Typically area, perimeter, integrals) 

G ̂E E
𝕏 X ∈ 𝕏 hX > 0

̂E(Gh(X), h) 0 < h < hX
| ̂E(Gh(X), h) − E(X) | < τX(h)

τX(h) h → 0



Multigrid convergence (local version)

For digitization process , the local discrete geometric estimator  is multigrid convergent to the geometric quantity 
 for the family of shapes , iff, for any , there exists a grid step , such that : 

 is defined for any  with , 
for any , for any  with ,      

where the speed of convergence  has null limit when . 

(Typically normal direction, curvatures, …) 

G ̂E
E 𝕏 X ∈ 𝕏 hX > 0

̂E(Gh(X), ̂x, h) ̂x ∈ ∂[Gh(X)]h 0 < h < hX
x ∈ ∂X ̂x ∈ ∂[Gh(X)]h ∥x − ̂x∥∞ ≤ h | ̂E(Gh(X), ̂x, h) − E(X, x) | < τX(h)

τX(h) h → 0



Hausdorff closeness of digitized shapes

For any compact domain              such that       has positive reach, and its digitization 
 on a grid with grid-step h, then  for small enough Xh := [Gh(X)]h dH(∂X, ∂Xh) ≤ d /2h h

[LT16]

∂XX ∈ ℝd

h = 1 h = 0.5 h = 0.25



Homotopy equivalence

For a compact shape  with positive reach , for 

, the  set X and its voxelization  
are homotopy equivalent. 
Its voxel  core is also homotopy equivalent.

X ρ
h <

2 3
3

ρ [Gh(X)]h

[YLJ2018]



Bijectivity of projection and manifoldness

If   has positive reach,  
the size of the non-injective part of projection 

 tends to zero as . 
(light gray + dark gray zones )

X

πX : ∂Xh → ∂X h → 0
≈ O(h)

h = 0.1 h = 0.05 h = 0.025

If   has positive reach,  
the size of the non-manifoldness part of  
tends quickly to zero as . 
(dark gray zones )

X
∂Xh

h → 0
≈ O(h2)

[LT16] [LT16]



Normal vector and curvatures estimation
• Integral Invariants : analyzing set  gives normal vector, 
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BR(x) ∩ X

[Gauss]
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Normal vector and curvatures estimation
• Integral Invariants : analyzing set  gives normal vector, 

principal directions and curvatures  [Pottmann et al. 2007]
BR(x) ∩ X

With optimal radius , then : 

- normals  

- mean curvature  

- … [CLL2014], [LCL2017]

R = O(h 1
3)

n̂(Gh(M), ξ(x), h)) − n(M, x) ≤ C ⋅ h
2
3

̂κ(Mh, ξ(x))) − κ(M, x)
2

≤ C ⋅ h
1
3
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Normal vector and curvatures estimation
• Integral Invariants : analyzing set  gives normal vector, 

principal directions and curvatures  [Pottmann et al. 2007]
BR(x) ∩ X

Curvature tensor: covariance matrix instead of the volume of  
 + eigenvalues / eigenvectorsBR(x) ∩ X



Normal vector field estimation

Incremental computation : estimate at  nearby  only requires preceding 
result + looking at points within 

y x
BR(y) ⊖ BR(x)



David Coeurjolly - Digital surface regularization with guarantees



David Coeurjolly - Digital surface regularization with guarantees
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advanced digital 
surface geometry 
processing
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Δu = g

∇u
div ⃗F

u

curl ⃗F

·u = Δu u(0) = u0
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Δu := div∇u



Calculus on a continuous setting

f : ℝ2 → ℝ
(x, y) ↦ f(x, y)
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∇f = ( ∂f
∂x

,
∂f
∂y )

t
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Calculus on a continuous setting

∇f = ( ∂f
∂x

,
∂f
∂y )

t

div F =
∂Fx

∂x
+

∂Fy

∂y

f : ℝ2 → ℝ
(x, y) ↦ f(x, y)
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Calculus on a continuous setting

∇f = ( ∂f
∂x

,
∂f
∂y )

t

div F =
∂Fx

∂x
+

∂Fy

∂y

curl F = −
∂Fy

∂x
+

∂Fx

∂y
= − div JF

f : ℝ2 → ℝ
(x, y) ↦ f(x, y)
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Calculus on a continuous setting

∇f = ( ∂f
∂x

,
∂f
∂y )

t

div F =
∂Fx

∂x
+

∂Fy

∂y

curl F = −
∂Fy

∂x
+

∂Fx

∂y
= − div JF

Δf = div∇f =
∂2f
∂x2

+
∂2f
∂y2 ∫∂Ω

F ⋅ ds = ∬Ω
curl F ⋅ dω …curl∇f = 0

f : ℝ2 → ℝ
(x, y) ↦ f(x, y)

63



𝒳 = Image(grad) ⊕ Image(J grad) ⊕ ℋ
64



Discrete setting: regular grid

∇hf := ( f(x + h) − f(x)
h

,
f(y + h) − f(y)

h )
t
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Discrete setting: regular grid

∇hf := ( f(x + h) − f(x)
h

,
f(y + h) − f(y)

h )
t

Δhf :=
f(x + h) − 2f(x) + f(x − h)

h2

+
f(y + h) − 2f(y) + f(y − h)

h2

65



Discrete setting: triangular surfaces

f(p) = fiϕi + fjϕj + fkϕk
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Discrete setting: triangular surfaces
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Discrete setting: triangular surfaces

67

f(p) = fiϕi + fjϕj + fkϕk

∇f(p) = fi ∇ϕi + fj ∇ϕj + fk ∇ϕk

∇ϕi :=
1

2atijk
( ⃗n ijk × ⃗e jk)

div(U)i = − ∑
tijk∈vi

⃗u ijk ⋅ ( ⃗n ijk × ⃗e jk)

curl(U)i = ∑
tijk∈vi

⃗u ijk ⋅ ⃗e jkDiscrete exterior Calculus, FEM, VEM, FVM…
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Calculus on polygonal meshes
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Step 1 Gradient

∇⊥ϕ(x) = (n(x) × ∇ϕ(x)) = [n(x)]× ∇ϕ(x)
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Step 1 Gradient

∇⊥ϕ(x) = (n(x) × ∇ϕ(x)) = [n(x)]× ∇ϕ(x)

∫f
∇⊥ϕ(x)dx = ∮∂f

ϕ(x)t(x)dx

∫f
∇ϕ(x)dx = ∮∂f

ϕ(x)(t(x) × n(x))dx (Stokes’ theorem)

∑
edges

ϕ ( xi+1 + xi

2 ) (xi+1 − xi)

For , we want ϕf = sXf + 1sr Gfϕs = s 71



Matrix form of per face operators

72



Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

72



Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

72

G⊥
f := Et

f Af



Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

72

G⊥
f := Et

f Af



Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

 matrix3 × n

Gf := −
1
af

[nf]Et
f Af
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Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

Gfϕf : 3 × 1

 matrix3 × n

Gf := −
1
af

[nf]Et
f Af

72

G⊥
f := Et

f Af



Wrap up for polygonal non-convex / non-planar faces
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Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

• …But… flat metric space from the mesh embedding

gradient

projection

flat sharp

Inner prod. 1-form Laplace-Beltrami

73
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Normal Vector estimation from Integral Invariants

Fast computation, multigrid convergence properties [Lachaud et al 17]

76

normal vectors from eigenvectors of the covariance matrix of  Br(p) ∩ X



Implicit Projected Embedding

77

Πf := (I3×3 − uf ut
f) X*f := XfΠfprojection operator « implicit » positions



78



79



80



80

⇒ Per face operators « à la » [de Goes et al] with  correctionΠf



Experimental validation: Gradient accuracy
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Experimental validation: Laplace-Beltrami operator

• Setting:  
• scalar function  on a sphere with 

closed form  
• multigrid spheres and discrete 

operators 

• Compared to [Caissard et al.] which is 
a strong consistent operator

u
Δu

u Δu [Caissard et al]  [de Goes et al]  Our 



Experimental validation: Laplace-Beltrami operator

• Setting:  
• scalar function  on a sphere with 

closed form  
• multigrid spheres and discrete 

operators 

• Compared to [Caissard et al.] which is 
a strong consistent operator

u
Δu

u Δu [Caissard et al]  [de Goes et al]  Our 

[Caissard et al]  
construction time, not 

O(n2)



Experimental validation: stability of Laplace-Beltrami 
eigenvectors
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Experimental validation: Geodesics using the heat method
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Additional operators

• Intrinsic vector fields:  transport, connection, covariant derivratives, 
connection Laplacian… 

• Extrinsic operator: Shape operator

<demo>



quick wrap-up 
example



Piecewise smooth reconstruction
Step1: normal vector field reconstruction 

Ambrosio-Tortorelli functional: solve u,v s.t. 

 ATϵ(u, v) = α∫M
|u − g |2 dx + ∫M

|v∇u |2 + λϵ |∇v |2 +
1
4ϵ

|1 − v |2 dx

[C. et al 16]
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Piecewise smooth reconstruction
Step1: normal vector field reconstruction 

Ambrosio-Tortorelli functional: solve u,v s.t. 

 ATϵ(u, v) = α∫M
|u − g |2 dx + ∫M

|v∇u |2 + λϵ |∇v |2 +
1
4ϵ

|1 − v |2 dx

Reconstructed normals are 
close to the input ones

Normal field must be smooth 
except at singularities v

Penalizes the length of 
singularities

digital DEC: 

+ energy is convex for fixed  or   alternate minimization
u v ⇒

ATϵ(u, v) = α
3

∑
i=1

⟨ui − gi, ui − gi⟩0 +
3

∑
i=1

⟨v ∧ d0ui, v ∧ d0ui1⟩1 + λϵ⟨d0v, d0v⟩1 +
λ
4ϵ

⟨1 − v,1 − v⟩0

[C. et al 16]



[Delanoy et al 19]
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Piecewise smooth reconstruction
Step 2: surface reconstruction 

ℰ( ̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

( ̂ej ⋅ nf)2 + γ
n

∑
i=1

∥p̂i − b̂i∥2
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Step 2: surface reconstruction 

ℰ( ̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

( ̂ej ⋅ nf)2 + γ
n

∑
i=1

∥p̂i − b̂i∥2

optimized vertices are not too 
far from original ones

Edges must be as orthogonal 
as possible to the given normal 

vectors
Fairness term

Using multigrid convergent normal vector field or its 
piecewise smooth regularization:  

1
n

n

∑
i=1

∥p*i − pi∥ ≤ C ⋅ h 1
n

n

∑
i=1

d(p*i , ∂M) ≤ C′ ⋅ h

+topological guarantee  
+multi-label case 
+fast GPU based minimization 
+… 
[C. et al 21]





94





conclusion



Conclusion

dgtal.org


https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry


(slides + code)


Topology and geometry processing on regular data: 

•  fast algorithms thanks to the regularity of the data 
•  simple topological structure 
•  integer based computations  
•  advanced surface based geometry processing 
… in ℤd

http://dgtal.org
https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry


Challenges

• Corrected digital calculus, what kind of guarantee can we get?


• DEC operators targeting the limit surface (à-la Subdivision Exterior Calculus)


• Localized geometry processing operators on DAG Sparse Voxel Octrees

dgtal.org


https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry


(slides + code)


http://dgtal.org
https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry
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