
Digital Geometry
David Coeurjolly, CNRS, Lyon, France

3

Outline
• context

• dgtal.org

• -- geometry with integers

• -- geometry processing on grids

• digital surface processing

• conclusion

ℤ
ℤd

http://dgtal.org

• Micro-tomographic images

• material sciences

• medical images

• Process geometry/topology of images partitions

Motivations (1): devices

• Micro-tomographic images

• material sciences

• medical images

• Process geometry/topology of images partitions

Motivations (1): devices

⇒ X ⊂ ℤ3

Motivations (2): as an efficient modelling spaceℤd

• Shape optimization / fabrication

• As a proxy or an intermediate
representation

light transport simulation, booleans,
medial axis, distance fields, multiple
interfaces/objects tracking in a simulation
loop…

[Martinez et al 17]

[Liu et al 18]

 grid [Villanueva et al 17](256k)3

 Focus: characteristic functions / labelled images / level sets / …

https://www.youtube.com/watch?v=T-t3M4_nxNw

https://www.youtube.com/watch?v=T-t3M4_nxNw

Example

[Delanoy et al 19]

Digital Geometry

Topology and geometry processing on regular data:

• fast algorithms thanks to the regularity of the data
• simple topological structure
• integer based computations
• advanced surface based geometry processing
… in ℤd

dgtal.org

http://dgtal.org

https://dgtal.org

https://dgtal.org

ℤ

Quick example

• Rational slope

 finite set of remainders

 periodic structure

 canonical pattern from continued fraction

• arithmetization to speed-up tracing (e.g. fast ray marching on SVO)

α =
p
q

⇒
⇒ q/gcd(p, q)
⇒

Quick example

• Rational slope

 finite set of remainders

 periodic structure

 canonical pattern from continued fraction

• arithmetization to speed-up tracing (e.g. fast ray marching on SVO)

α =
p
q

⇒
⇒ q/gcd(p, q)
⇒

Quick example

• Rational slope

 finite set of remainders

 periodic structure

 canonical pattern from continued fraction

• arithmetization to speed-up tracing (e.g. fast ray marching on SVO)

α =
p
q

⇒
⇒ q/gcd(p, q)
⇒

0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0

Quick example

• Rational slope

 finite set of remainders

 periodic structure

 canonical pattern from continued fraction

• arithmetization to speed-up tracing (e.g. fast ray marching on SVO)

α =
p
q

⇒
⇒ q/gcd(p, q)
⇒

0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0

Convex hull in 2d

Largest convex polygon in as at most

vertices/edges

[1..N]2

12
(4π2)1/3

N2/3 + O(N1/3 log(N))

For points in , #CVXVertices is in n ℝd O(n)

Total size of the CVX Θ (n⌊d/2⌋)

Further elements
Let a lattice polytope with non-empty interior,
then:

Convex on the lattice grid has edges

P ⊂ ℤd

fk ≪ cd(Vol P)d − 1
d + 1

[1,n]2 O(n2/3)

Let (with) and , the
expected time for Voronoi diagram / Delaunay triangulation
is:

P ⊂ [1,U]2 U ≤ 2m n := |P |

O (min{n log n, n U})

Further elements
Let a lattice polytope with non-empty interior,
then:

Convex on the lattice grid has edges

P ⊂ ℤd

fk ≪ cd(Vol P)d − 1
d + 1

[1,n]2 O(n2/3)

Let (with) and , the
expected time for Voronoi diagram / Delaunay triangulation
is:

P ⊂ [1,U]2 U ≤ 2m n := |P |

O (min{n log n, n U})

hands on…

ℤd

Given and a domain , compute:X ⊂ ℤd [0,n]d

Volumetric analysis

Given and a domain , compute:X ⊂ ℤd [0,n]d

Volumetric analysis

Given and a domain , compute:X ⊂ ℤd [0,n]d

 (aka distance map)DT(x) = miny∈D∖X d(x, y)

Volumetric analysis

DT

Given and a domain , compute:X ⊂ ℤd [0,n]d

 (aka distance map)DT(x) = miny∈D∖X d(x, y)

 (aka Voronoi map)σ(x) = argminy∈D∖X d(x, y) 𝒱(X) ∩ ℤd

Volumetric analysis

DT Voronoi map

Given and a domain , compute:X ⊂ ℤd [0,n]d

 (aka distance map)DT(x) = miny∈D∖X d(x, y)

 (aka Voronoi map)σ(x) = argminy∈D∖X d(x, y) 𝒱(X) ∩ ℤd

 (aka discrete medial axis)M = {(x, r) ∈ ℤd+1 | ℬ(x, r) ∩ ℤd ⊂ X, there is no (x′ , r′) s.t. ℬ(x, r) ⊂ ℬ(x′ , r′)}

Volumetric analysis

Scale axisMedial axisDT Voronoi map

Given and a domain , compute:X ⊂ ℤd [0,n]d

 (aka distance map)DT(x) = miny∈D∖X d(x, y)

 (aka Voronoi map)σ(x) = argminy∈D∖X d(x, y) 𝒱(X) ∩ ℤd

 (aka discrete medial axis)M = {(x, r) ∈ ℤd+1 | ℬ(x, r) ∩ ℤd ⊂ X, there is no (x′ , r′) s.t. ℬ(x, r) ⊂ ℬ(x′ , r′)}
 (aka Power map)π(x) = argmin(y,r)∈M ∥x − y∥2

2 − r2 l2 𝒫(M) ∩ ℤd

Volumetric analysis

Scale axisMedial axisDT Voronoi map

Given and a domain , compute:X ⊂ ℤd [0,n]d

 (aka distance map)DT(x) = miny∈D∖X d(x, y)

 (aka Voronoi map)σ(x) = argminy∈D∖X d(x, y) 𝒱(X) ∩ ℤd

 (aka discrete medial axis)M = {(x, r) ∈ ℤd+1 | ℬ(x, r) ∩ ℤd ⊂ X, there is no (x′ , r′) s.t. ℬ(x, r) ⊂ ℬ(x′ , r′)}
 (aka Power map)π(x) = argmin(y,r)∈M ∥x − y∥2

2 − r2 l2 𝒫(M) ∩ ℤd

Volumetric analysis

Scale axisMedial axisDT Voronoi map

Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + (j − v)2

= min
v ((min

u
(i − u)2) + (j − v)2)

Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + (j − v)2

= min
v ((min

u
(i − u)2) + (j − v)2)

Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + (j − v)2

= min
v ((min

u
(i − u)2) + (j − v)2)

Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + (j − v)2

= min
v ((min

u
(i − u)2) + (j − v)2)

per line double-scan = O(n)

Separable distance field

DT(x) = min
y∈D∖X

| |x − y | |2

= min
(u,v)⊄X

(i − u)2 + (j − v)2

= min
v ((min

u
(i − u)2) + (j − v)2)

per line double-scan = O(n)
1D lower enveloppe computation of a set of parabolas = O(n)

Separable Voronoi map: step 1

Separable Voronoi map: step 1

Separable Voronoi map: step 1

Separable Voronoi map: step 1

 per row⇒ O(n)

Separable Voronoi map: step 1

 per row⇒ O(n)

Separable Voronoi map: step 1

Separable Voronoi map: step 1

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line per column⇒ O(n)
hiddenBy(u,v,w,S)

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line per column⇒ O(n)
hiddenBy(u,v,w,S)

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line per column⇒ O(n)
hiddenBy(u,v,w,S)

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line per column⇒ O(n)
hiddenBy(u,v,w,S)

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line per column⇒ O(n)
hiddenBy(u,v,w,S)

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line per column⇒ O(n)
hiddenBy(u,v,w,S)

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line per column⇒ O(n)
hiddenBy(u,v,w,S)

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line per column⇒ O(n)

⇒ O(n2) in total in 2D

hiddenBy(u,v,w,S)

Separable approaches

Separable approaches
The algorithm is correct:

Separable approaches
The algorithm is correct:

• for any dimension

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]
• Power diagram / power maps construction

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]
• Power diagram / power maps construction
• Discrete Medial Axis extraction (aka non-empty inner power cells)

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]
• Power diagram / power maps construction
• Discrete Medial Axis extraction (aka non-empty inner power cells)

• Reverse reconstruction (balls shape) →

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]
• Power diagram / power maps construction
• Discrete Medial Axis extraction (aka non-empty inner power cells)

• Reverse reconstruction (balls shape) →

Separable approaches
The algorithm is correct:

• for any dimension
• for any metric with axis symmetric unit ball (e.g. any)lp
• on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points for O(d ⋅ nd) l2

 for exact (), approx.O(d2 ⋅ log(p) ⋅ log(n) ⋅ nd) lp p ∈ ℤ+ O(d ⋅ nd)

Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]
• Power diagram / power maps construction
• Discrete Medial Axis extraction (aka non-empty inner power cells)

• Reverse reconstruction (balls shape) →

topology in ℤd

Before geometry : topological models for ℤd

How to represent volumes,
boundaries, curves, surfaces,
partitions ?

1. lattice points

2. cubical complexes

Digital topology

Good adjacencies for object/background

• Jordan separation theorem
• consistence borders and interior components
• definition of surfaces in ℤd

(8,4)-topology (4,8)-topology(8,8)-topology

Homotopy equivalence

Homotopy equivalence

Topology invariance: simple points

locally keep connected components

Simple points: points whose removal preserves topology

• digital topology invariance of object and background
• very fast: look-up tables in 2D and 3D
• useful for skeleton extraction / coupled with medial axis

(8,4)-topology

Topology invariance: simple points

locally keep connected components

Simple points: points whose removal preserves topology

• digital topology invariance of object and background
• very fast: look-up tables in 2D and 3D
• useful for skeleton extraction / coupled with medial axis

(8,4)-topology

hands on…

Create object with (26,6)

topology from binary image

Queue simple points

Remove simple points

Create object with (26,6)

topology from binary image

Queue simple points

Remove simple points

digital surface
geometry

Linking continuous and digital geometry :
Gauss digitization with gridstep h

« digitization » « voxelization » « digitized surface »

40

40

40

40

Volume estimation

hd ⋅ |Xh |
h→0

Vol(X)

 convergence speedO(h)

If is strictly -convex: X C3 O (h
15
11 +ϵ)

Multigrid convergence

For digitization process , the discrete geometric estimator is multigrid convergent to the geometric quantity for
the family of shapes , iff, for any , there exists a grid step , such that :

 is defined for any ,

where the speed of convergence has null limit when .

(Typically area, perimeter, integrals)

G ̂E E
𝕏 X ∈ 𝕏 hX > 0

̂E(Gh(X), h) 0 < h < hX
| ̂E(Gh(X), h) − E(X) | < τX(h)

τX(h) h → 0

Multigrid convergence (local version)

For digitization process , the local discrete geometric estimator is multigrid convergent to the geometric quantity
 for the family of shapes , iff, for any , there exists a grid step , such that :

 is defined for any with ,
for any , for any with ,

where the speed of convergence has null limit when .

(Typically normal direction, curvatures, …)

G ̂E
E 𝕏 X ∈ 𝕏 hX > 0

̂E(Gh(X), ̂x, h) ̂x ∈ ∂[Gh(X)]h 0 < h < hX
x ∈ ∂X ̂x ∈ ∂[Gh(X)]h ∥x − ̂x∥∞ ≤ h | ̂E(Gh(X), ̂x, h) − E(X, x) | < τX(h)

τX(h) h → 0

Hausdorff closeness of digitized shapes

For any compact domain such that has positive reach, and its digitization
 on a grid with grid-step h, then for small enough Xh := [Gh(X)]h dH(∂X, ∂Xh) ≤ d /2h h

[LT16]

∂XX ∈ ℝd

h = 1 h = 0.5 h = 0.25

Homotopy equivalence

For a compact shape with positive reach , for

, the set X and its voxelization
are homotopy equivalent.
Its voxel core is also homotopy equivalent.

X ρ
h <

2 3
3

ρ [Gh(X)]h

[YLJ2018]

Bijectivity of projection and manifoldness

If has positive reach,
the size of the non-injective part of projection

 tends to zero as .
(light gray + dark gray zones)

X

πX : ∂Xh → ∂X h → 0
≈ O(h)

h = 0.1 h = 0.05 h = 0.025

If has positive reach,
the size of the non-manifoldness part of
tends quickly to zero as .
(dark gray zones)

X
∂Xh

h → 0
≈ O(h2)

[LT16] [LT16]

Normal vector and curvatures estimation
• Integral Invariants : analyzing set gives normal vector,

principal directions and curvatures [Pottmann et al. 2007]
BR(x) ∩ X

Normal vector and curvatures estimation
• Integral Invariants : analyzing set gives normal vector,

principal directions and curvatures [Pottmann et al. 2007]
BR(x) ∩ X

[Gauss]

Normal vector and curvatures estimation
• Integral Invariants : analyzing set gives normal vector,

principal directions and curvatures [Pottmann et al. 2007]
BR(x) ∩ X

Normal vector and curvatures estimation
• Integral Invariants : analyzing set gives normal vector,

principal directions and curvatures [Pottmann et al. 2007]
BR(x) ∩ X

Normal vector and curvatures estimation
• Integral Invariants : analyzing set gives normal vector,

principal directions and curvatures [Pottmann et al. 2007]
BR(x) ∩ X

Normal vector and curvatures estimation
• Integral Invariants : analyzing set gives normal vector,

principal directions and curvatures [Pottmann et al. 2007]
BR(x) ∩ X

With optimal radius , then :

- normals

- mean curvature

- … [CLL2014], [LCL2017]

R = O(h 1
3)

n̂(Gh(M), ξ(x), h)) − n(M, x) ≤ C ⋅ h
2
3

̂κ(Mh, ξ(x))) − κ(M, x)
2

≤ C ⋅ h
1
3

Normal vector and curvatures estimation
• Integral Invariants : analyzing set gives normal vector,

principal directions and curvatures [Pottmann et al. 2007]
BR(x) ∩ X

Normal vector and curvatures estimation
• Integral Invariants : analyzing set gives normal vector,

principal directions and curvatures [Pottmann et al. 2007]
BR(x) ∩ X

Curvature tensor: covariance matrix instead of the volume of
 + eigenvalues / eigenvectorsBR(x) ∩ X

Normal vector field estimation

Incremental computation : estimate at nearby only requires preceding
result + looking at points within

y x
BR(y) ⊖ BR(x)

David Coeurjolly - Digital surface regularization with guarantees

David Coeurjolly - Digital surface regularization with guarantees

hands on…

advanced digital
surface geometry
processing

·u = Δu u(0) = u0

59

u

·u = Δu u(0) = u0

59

∇u
u

·u = Δu u(0) = u0

59

∇u
div ⃗F

u

·u = Δu u(0) = u0

59

∇u
div ⃗F

u

curl ⃗F

·u = Δu u(0) = u0

59

∇u
div ⃗F

u

curl ⃗F

·u = Δu u(0) = u0

59

Δu := div∇u

Δu = g

∇u
div ⃗F

u

curl ⃗F

·u = Δu u(0) = u0

59

Δu := div∇u

Calculus on a continuous setting

f : ℝ2 → ℝ
(x, y) ↦ f(x, y)

60

Calculus on a continuous setting

f : ℝ2 → ℝ
(x, y) ↦ f(x, y)

∇f = (∂f
∂x

,
∂f
∂y)

t

61

Calculus on a continuous setting

∇f = (∂f
∂x

,
∂f
∂y)

t

div F =
∂Fx

∂x
+

∂Fy

∂y

f : ℝ2 → ℝ
(x, y) ↦ f(x, y)

62

Calculus on a continuous setting

∇f = (∂f
∂x

,
∂f
∂y)

t

div F =
∂Fx

∂x
+

∂Fy

∂y

curl F = −
∂Fy

∂x
+

∂Fx

∂y
= − div JF

f : ℝ2 → ℝ
(x, y) ↦ f(x, y)

63

Calculus on a continuous setting

∇f = (∂f
∂x

,
∂f
∂y)

t

div F =
∂Fx

∂x
+

∂Fy

∂y

curl F = −
∂Fy

∂x
+

∂Fx

∂y
= − div JF

Δf = div∇f =
∂2f
∂x2

+
∂2f
∂y2 ∫∂Ω

F ⋅ ds = ∬Ω
curl F ⋅ dω …curl∇f = 0

f : ℝ2 → ℝ
(x, y) ↦ f(x, y)

63

𝒳 = Image(grad) ⊕ Image(J grad) ⊕ ℋ
64

Discrete setting: regular grid

∇hf := (f(x + h) − f(x)
h

,
f(y + h) − f(y)

h)
t

65

Discrete setting: regular grid

∇hf := (f(x + h) − f(x)
h

,
f(y + h) − f(y)

h)
t

Δhf :=
f(x + h) − 2f(x) + f(x − h)

h2

+
f(y + h) − 2f(y) + f(y − h)

h2

65

Discrete setting: triangular surfaces

f(p) = fiϕi + fjϕj + fkϕk

66

Discrete setting: triangular surfaces

f(p) = fiϕi + fjϕj + fkϕk

∇f(p) = fi ∇ϕi + fj ∇ϕj + fk ∇ϕk

∇ϕi :=
1

2atijk
(⃗n ijk × ⃗e jk)

66

Discrete setting: triangular surfaces

f(p) = fiϕi + fjϕj + fkϕk

∇f(p) = fi ∇ϕi + fj ∇ϕj + fk ∇ϕk

∇ϕi :=
1

2atijk
(⃗n ijk × ⃗e jk)

div(U)i = − ∑
tijk∈vi

⃗u ijk ⋅ (⃗n ijk × ⃗e jk)

66

Discrete setting: triangular surfaces

f(p) = fiϕi + fjϕj + fkϕk

∇f(p) = fi ∇ϕi + fj ∇ϕj + fk ∇ϕk

∇ϕi :=
1

2atijk
(⃗n ijk × ⃗e jk)

div(U)i = − ∑
tijk∈vi

⃗u ijk ⋅ (⃗n ijk × ⃗e jk)

curl(U)i = ∑
tijk∈vi

⃗u ijk ⋅ ⃗e jk

66

Discrete setting: triangular surfaces

67

f(p) = fiϕi + fjϕj + fkϕk

∇f(p) = fi ∇ϕi + fj ∇ϕj + fk ∇ϕk

∇ϕi :=
1

2atijk
(⃗n ijk × ⃗e jk)

div(U)i = − ∑
tijk∈vi

⃗u ijk ⋅ (⃗n ijk × ⃗e jk)

curl(U)i = ∑
tijk∈vi

⃗u ijk ⋅ ⃗e jk

Discrete setting: triangular surfaces

67

f(p) = fiϕi + fjϕj + fkϕk

∇f(p) = fi ∇ϕi + fj ∇ϕj + fk ∇ϕk

∇ϕi :=
1

2atijk
(⃗n ijk × ⃗e jk)

div(U)i = − ∑
tijk∈vi

⃗u ijk ⋅ (⃗n ijk × ⃗e jk)

curl(U)i = ∑
tijk∈vi

⃗u ijk ⋅ ⃗e jkDiscrete exterior Calculus, FEM, VEM, FVM…

68

68

non-triangular faces
non-manifold edges
« bad » embedding

69

non-triangular faces
non-manifold edges
« bad » embedding

Calculus on polygonal meshes

70

Step 1 Gradient

∇⊥ϕ(x) = (n(x) × ∇ϕ(x)) = [n(x)]× ∇ϕ(x)

71

Step 1 Gradient

∇⊥ϕ(x) = (n(x) × ∇ϕ(x)) = [n(x)]× ∇ϕ(x)

∫f
∇ϕ(x)dx = ∮∂f

ϕ(x)(t(x) × n(x))dx (Stokes’ theorem)

71

Step 1 Gradient

∇⊥ϕ(x) = (n(x) × ∇ϕ(x)) = [n(x)]× ∇ϕ(x)

∫f
∇⊥ϕ(x)dx = ∮∂f

ϕ(x)t(x)dx

∫f
∇ϕ(x)dx = ∮∂f

ϕ(x)(t(x) × n(x))dx (Stokes’ theorem)

71

Step 1 Gradient

∇⊥ϕ(x) = (n(x) × ∇ϕ(x)) = [n(x)]× ∇ϕ(x)

∫f
∇⊥ϕ(x)dx = ∮∂f

ϕ(x)t(x)dx

∫f
∇ϕ(x)dx = ∮∂f

ϕ(x)(t(x) × n(x))dx (Stokes’ theorem)

71

Step 1 Gradient

∇⊥ϕ(x) = (n(x) × ∇ϕ(x)) = [n(x)]× ∇ϕ(x)

∫f
∇⊥ϕ(x)dx = ∮∂f

ϕ(x)t(x)dx

∫f
∇ϕ(x)dx = ∮∂f

ϕ(x)(t(x) × n(x))dx (Stokes’ theorem)

∑
edges

71

Step 1 Gradient

∇⊥ϕ(x) = (n(x) × ∇ϕ(x)) = [n(x)]× ∇ϕ(x)

∫f
∇⊥ϕ(x)dx = ∮∂f

ϕ(x)t(x)dx

∫f
∇ϕ(x)dx = ∮∂f

ϕ(x)(t(x) × n(x))dx (Stokes’ theorem)

∑
edges

(xi+1 − xi)

71

Step 1 Gradient

∇⊥ϕ(x) = (n(x) × ∇ϕ(x)) = [n(x)]× ∇ϕ(x)

∫f
∇⊥ϕ(x)dx = ∮∂f

ϕ(x)t(x)dx

∫f
∇ϕ(x)dx = ∮∂f

ϕ(x)(t(x) × n(x))dx (Stokes’ theorem)

∑
edges

ϕ (xi+1 + xi

2) (xi+1 − xi)

For , we want ϕf = sXf + 1sr Gfϕs = s 71

Matrix form of per face operators

72

Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

72

Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

72

G⊥
f := Et

f Af

Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

72

G⊥
f := Et

f Af

Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

 matrix3 × n

Gf := −
1
af

[nf]Et
f Af

72

G⊥
f := Et

f Af

Matrix form of per face operators

ϕf = [ϕ(v1)…ϕ(vnf
)]t

Gfϕf : 3 × 1

 matrix3 × n

Gf := −
1
af

[nf]Et
f Af

72

G⊥
f := Et

f Af

Wrap up for polygonal non-convex / non-planar faces

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient flat

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient flat sharp

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient

projection

flat sharp

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient

projection

flat sharp

Inner prod. 1-form

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient

projection

flat sharp

Inner prod. 1-form Laplace-Beltrami

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient

projection

flat sharp

Inner prod. 1-form Laplace-Beltrami

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient

projection

flat sharp

Inner prod. 1-form Laplace-Beltrami

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient

projection

flat sharp

Inner prod. 1-form Laplace-Beltrami

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

gradient

projection

flat sharp

Inner prod. 1-form Laplace-Beltrami

73

Wrap up for polygonal non-convex / non-planar faces

• Per face, globally consistent, linear operators

• …But… flat metric space from the mesh embedding

gradient

projection

flat sharp

Inner prod. 1-form Laplace-Beltrami

73

74

75

non-triangular faces
non-manifold edges
« bad » embedding

Normal Vector estimation from Integral Invariants

Fast computation, multigrid convergence properties [Lachaud et al 17]

76

normal vectors from eigenvectors of the covariance matrix of Br(p) ∩ X

Implicit Projected Embedding

77

Πf := (I3×3 − uf ut
f) X*f := XfΠfprojection operator « implicit » positions

78

79

80

80

⇒ Per face operators « à la » [de Goes et al] with correctionΠf

Experimental validation: Gradient accuracy

81

Experimental validation: Laplace-Beltrami operator

• Setting:
• scalar function on a sphere with

closed form
• multigrid spheres and discrete

operators

• Compared to [Caissard et al.] which is
a strong consistent operator

u
Δu

u Δu [Caissard et al] [de Goes et al] Our

Experimental validation: Laplace-Beltrami operator

• Setting:
• scalar function on a sphere with

closed form
• multigrid spheres and discrete

operators

• Compared to [Caissard et al.] which is
a strong consistent operator

u
Δu

u Δu [Caissard et al] [de Goes et al] Our

[Caissard et al]
construction time, not

O(n2)

Experimental validation: stability of Laplace-Beltrami
eigenvectors

83

[d
eG

oe
s

et
 a

l]
O

ur
s

[Crane et al 13] 84

[Crane et al 13] 84

[Crane et al 13] 84

[Crane et al 13] 84

Experimental validation: Geodesics using the heat method

85

86

Additional operators

• Intrinsic vector fields: transport, connection, covariant derivratives,
connection Laplacian…

• Extrinsic operator: Shape operator

<demo>

quick wrap-up
example

Piecewise smooth reconstruction
Step1: normal vector field reconstruction

Ambrosio-Tortorelli functional: solve u,v s.t.

 ATϵ(u, v) = α∫M
|u − g |2 dx + ∫M

|v∇u |2 + λϵ |∇v |2 +
1
4ϵ

|1 − v |2 dx

[C. et al 16]

Piecewise smooth reconstruction
Step1: normal vector field reconstruction

Ambrosio-Tortorelli functional: solve u,v s.t.

 ATϵ(u, v) = α∫M
|u − g |2 dx + ∫M

|v∇u |2 + λϵ |∇v |2 +
1
4ϵ

|1 − v |2 dx

Reconstructed normals are
close to the input ones

[C. et al 16]

Piecewise smooth reconstruction
Step1: normal vector field reconstruction

Ambrosio-Tortorelli functional: solve u,v s.t.

 ATϵ(u, v) = α∫M
|u − g |2 dx + ∫M

|v∇u |2 + λϵ |∇v |2 +
1
4ϵ

|1 − v |2 dx

Reconstructed normals are
close to the input ones

Normal field must be smooth
except at singularities v

[C. et al 16]

Piecewise smooth reconstruction
Step1: normal vector field reconstruction

Ambrosio-Tortorelli functional: solve u,v s.t.

 ATϵ(u, v) = α∫M
|u − g |2 dx + ∫M

|v∇u |2 + λϵ |∇v |2 +
1
4ϵ

|1 − v |2 dx

Reconstructed normals are
close to the input ones

Normal field must be smooth
except at singularities v

Penalizes the length of
singularities

[C. et al 16]

Piecewise smooth reconstruction
Step1: normal vector field reconstruction

Ambrosio-Tortorelli functional: solve u,v s.t.

 ATϵ(u, v) = α∫M
|u − g |2 dx + ∫M

|v∇u |2 + λϵ |∇v |2 +
1
4ϵ

|1 − v |2 dx

Reconstructed normals are
close to the input ones

Normal field must be smooth
except at singularities v

Penalizes the length of
singularities

digital DEC:

+ energy is convex for fixed or alternate minimization
u v ⇒

ATϵ(u, v) = α
3

∑
i=1

⟨ui − gi, ui − gi⟩0 +
3

∑
i=1

⟨v ∧ d0ui, v ∧ d0ui1⟩1 + λϵ⟨d0v, d0v⟩1 +
λ
4ϵ

⟨1 − v,1 − v⟩0

[C. et al 16]

[Delanoy et al 19]

91

Piecewise smooth reconstruction
Step 2: surface reconstruction

ℰ(̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

(̂ej ⋅ nf)2 + γ
n

∑
i=1

∥p̂i − b̂i∥2

Piecewise smooth reconstruction
Step 2: surface reconstruction

ℰ(̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

(̂ej ⋅ nf)2 + γ
n

∑
i=1

∥p̂i − b̂i∥2

optimized vertices are not too
far from original ones

Piecewise smooth reconstruction
Step 2: surface reconstruction

ℰ(̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

(̂ej ⋅ nf)2 + γ
n

∑
i=1

∥p̂i − b̂i∥2

optimized vertices are not too
far from original ones

Edges must be as orthogonal
as possible to the given normal

vectors

Piecewise smooth reconstruction
Step 2: surface reconstruction

ℰ(̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

(̂ej ⋅ nf)2 + γ
n

∑
i=1

∥p̂i − b̂i∥2

optimized vertices are not too
far from original ones

Edges must be as orthogonal
as possible to the given normal

vectors
Fairness term

Piecewise smooth reconstruction
Step 2: surface reconstruction

ℰ(̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

(̂ej ⋅ nf)2 + γ
n

∑
i=1

∥p̂i − b̂i∥2

optimized vertices are not too
far from original ones

Edges must be as orthogonal
as possible to the given normal

vectors
Fairness term

Using multigrid convergent normal vector field or its
piecewise smooth regularization:

1
n

n

∑
i=1

∥p*i − pi∥ ≤ C ⋅ h 1
n

n

∑
i=1

d(p*i , ∂M) ≤ C′ ⋅ h

+topological guarantee
+multi-label case
+fast GPU based minimization
+…
[C. et al 21]

94

conclusion

Conclusion

dgtal.org

https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry

(slides + code)

Topology and geometry processing on regular data:

• fast algorithms thanks to the regularity of the data
• simple topological structure
• integer based computations
• advanced surface based geometry processing
… in ℤd

http://dgtal.org
https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry

Challenges

• Corrected digital calculus, what kind of guarantee can we get?

• DEC operators targeting the limit surface (à-la Subdivision Exterior Calculus)

• Localized geometry processing operators on DAG Sparse Voxel Octrees

dgtal.org

https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry

(slides + code)

http://dgtal.org
https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry

References

[Liu et al 18] Narrow-band topology optimization on a sparsely populated grid. Liu, H., Hu, Y., Zhu, B., Matusik, W., & Sifakis, E. (2018). ACM Transactions on Graphics
(TOG), 37(6), 1-14.

[Martinez et al 20] Orthotropic k-nearest Foams for Additive Manufacturing, Jonàs Martínez, Haichuan Song, Jérémie Dumas, Sylvain Lefebvre, ACM TOG 2017

[Chen et al 2020] Half-Space Power Diagrams and Discrete Surface Offsets, Zhen Chen, Daniele Panozzo, Jérémie Dumas. In TVCG, 2019.

[C. et al 07] Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension, David Coeurjolly,
Annick Montanvert, IEEE Transactions on Pattern Analysis and Machine Intelligence, March 2007

[Villanueva et al 17] Alberto Jaspe Villanueva, Fabio Marton, and Enrico Gobbetti, Symmetry-aware Sparse Voxel DAGs (SSVDAGs) for compression-domain tracing of
high-resolution geometric scenes, Journal of Computer Graphics Techniques (JCGT), vol. 6, no. 2, 1-30, 2017

[de Goes et al 20] Discrete Differential Operators on Polygonal Meshes, de Goes, Butts, Desbrun SIGGRAPH / ACM Transactions on Graphics (2020)

[Delanoy et al 19] Combining voxel and normal predictions for multi-view 3D sketching, Johanna Delanoy, David Coeurjolly, Jacques-Olivier Lachaud, Adrien Bousseau,
Computers and Graphics, June 2019

[C. et al 21] Digital surface regularization with guarantees, David Coeurjolly, Jacques-Olivier Lachaud, Pierre Gueth, IEEE Transactions on Visualization and Computer
Graphics, January 2021

[C. et al 16] Piecewise smooth reconstruction of normal vector field on digital data, David Coeurjolly, Marion Foare, Pierre Gueth, Computer Graphics Forum (Proceedings of
Pacific Graphics), September 2016

[Caissard et al 19] Laplace–Beltrami Operator on Digital Surfaces, Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon, Journal of Mathematical
Imaging and Vision, January 2019

[Belkin et al 08] Belkin, M., Sun, J., Wang, Y.: Discrete laplace operator on meshed surfaces. In: M. Teillaud (ed.) Proceedings of the 24th ACM Symposium on
Computational Geometry, College Park, MD, USA, June 9-11, 2008, pp. 278–287. ACM (2008)

References
[Bertrand94] Bertrand, Gilles. "Simple points, topological numbers and geodesic neighborhoods in cubic grids." Pattern recognition letters 15.10 (1994): 1003-1011.

[BC94] Bertrand, Gilles, and Michel Couprie. "On parallel thinning algorithms: minimal non-simple sets, P-simple points and critical kernels." Journal of Mathematical
Imaging and Vision 35.1 (2009): 23-35.

[YLJ18] Yan, Yajie, David Letscher, and Tao Ju. "Voxel cores: Efficient, robust, and provably good approximation of 3d medial axes." ACM Transactions on Graphics (TOG)
37.4 (2018): 1-13.

[LT16] Lachaud, Jacques-Olivier, and Boris Thibert. "Properties of gauss digitized shapes and digital surface integration." Journal of Mathematical Imaging and Vision 54.2
(2016): 162-180.

[LTC17] Lachaud, Jacques-Olivier, David Coeurjolly, and Jérémy Levallois. "Robust and convergent curvature and normal estimators with digital integral invariants." Modern
Approaches to Discrete Curvature. Springer, Cham, 2017. 293-348.

[LRTC20] Lachaud, Jacques-Olivier, Pascal Romon, Boris Thibert, and David Coeurjolly. "Interpolated corrected curvature measures for polygonal surfaces." Computer
Graphics Forum. Vol. 39. No. 5. 2020.

