Digital Geometry

David Coeurjolly, CNRS, Lyon, France

LİRİS

cnrs

Outline

- context
- dgtal.org
- \mathbb{Z}-- geometry with integers
- \mathbb{Z}^{d}-- geometry processing on grids
- digital surface processing
- conclusion

Motivations (1): devices

- Micro-tomographic images
- material sciences
- medical images
- Process geometry/topology of images partitions

Motivations (1): devices

- Micro-tomographic images
- material sciences
- medical images
- Process geometry/topology of images partitions

$$
\Rightarrow X \subset \mathbb{Z}^{3}
$$

Motivations (2): \mathbb{Z}^{d} as an efficient modelling space

- Shape optimization / fabrication
- As a proxy or an intermediate representation

light transport simulation, booleans, medial axis, distance fields, multiple interfaces/objects tracking in a simulation loop...

Focus: characteristic functions / labelled images / level sets / ...

Example

Digital Geometry

Topology and geometry processing on regular data:

- fast algorithms thanks to the regularity of the data
- simple topological structure
- integer based computations
- advanced surface based geometry processing
\ldots in \mathbb{Z}^{d}
dgtal.org

News

https://dgtal.org

We are really excited to share with you the release 1.2 of DGtal and its tools. As usual, all edits and bugfixes are listed in the Changelog, and we would like to thank all devs involved in this release. In this short review, we would like to focus on only... [Read More]

T

Quick example

- Rational slope $\alpha=\frac{p}{q}$
\Rightarrow finite set of remainders
$a_{0}+\frac{b_{1}}{a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{a_{3}+.}}}$
\Rightarrow periodic structure $q / \operatorname{gcd}(p, q)$
\Rightarrow canonical pattern from continued fraction
- arithmetization to speed-up tracing (e.g. fast ray marching on SVO)

Quick example

- Rational slope $\alpha=\frac{p}{q}$
\Rightarrow finite set of remainders
$a_{0}+\frac{b_{1}}{a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{a_{3}+.}}}$
\Rightarrow periodic structure $q / \operatorname{gcd}(p, q)$
\Rightarrow canonical pattern from continued fraction
- arithmetization to speed-up tracing (e.g. fast ray marching on SVO)

Quick example

- Rational slope $\alpha=\frac{p}{q}$
\Rightarrow finite set of remainders
$a_{0}+\frac{b_{1}}{a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{a_{3}+. .}}}$
\Rightarrow periodic structure $q / \operatorname{gcd}(p, q)$
\Rightarrow canonical pattern from continued fraction
- arithmetization to speed-up tracing (e.g. fast ray marching on SVO)

Quick example

- Rational slope $\alpha=\frac{p}{q}$
\Rightarrow finite set of remainders
$a_{0}+\frac{b_{1}}{a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{a_{3}+.}}}$
\Rightarrow periodic structure $q / \operatorname{gcd}(p, q)$
\Rightarrow canonical pattern from continued fraction
- arithmetization to speed-up tracing (e.g. fast ray marching on SVO)

Convex hull in 2d

For n points in \mathbb{R}^{d}, \#CVXVertices is in $O(n)$

$$
\text { Total size of the } \operatorname{CVX} \Theta\left(n^{\lfloor d / 2\rfloor}\right)
$$

Largest convex polygon in $[1 . . N]^{2}$ as at most

$$
\frac{12}{\left(4 \pi^{2}\right)^{1 / 3}} N^{2 / 3}+O\left(N^{1 / 3} \log (N)\right)
$$

vertices/edges

Further elements

Let $P \subset \mathbb{Z}^{d}$ a lattice polytope with non-empty interior, then: $f_{k} \ll c_{d}(\text { Vol P })^{\frac{d-1}{d+1}}$

Convex on the lattice $[1, n]^{2}$ grid has $O\left(n^{2 / 3}\right)$ edges

Let $P \subset[1, U]^{2}$ (with $U \leq 2^{m}$) and $n:=|P|$, the expected time for Voronoi diagram / Delaunay triangulation is:

$$
O(\min \{n \log n, n \sqrt{U}\})
$$

Further elements

Let $P \subset \mathbb{Z}^{d}$ a lattice polytope with non-empty interior, then: $f_{k} \ll c_{d}(\text { Vol P })^{\frac{d-1}{d+1}}$

Convex on the lattice $[1, n]^{2}$ grid has $O\left(n^{2 / 3}\right)$ edges

Let $P \subset[1, U]^{2}$ (with $U \leq 2^{m}$) and $n:=|P|$, the expected time for Voronoi diagram / Delaunay triangulation is:

$$
O(\min \{n \log n, n \sqrt{U}\})
$$

hands on...
auto params $=$ SH3 :: defaultParameters();
params("polynomial", "sphere1")("gridstep", myh)
("minAABB", -1.25)("maxAABB", 1.25);
auto implicit_shape = SH3::makeImplicitShape3D (params);
auto digitized_shape = SH3::makeDigitizedImplicitShape3D(implicit_shape, params);
std:: vector<Point> points;
std:: cout << "Digitzing shape" << std:: endl;
auto domain = digitized_shape \rightarrow getDomain(); for(auto \&p: domain)
if (digitized_shape \rightarrow operator()(p))
points.push_back(p);
std:: cout << "Computing convex hull" << std:: endl;
QuickHull3d hull;
hull.setInput(points);
hull.computeConvexHull();
std:: cout << "\#points="
<< hull.nbPoints()
<< " \#vertices=" << hull.nbVertices()
<< " \#facets=" << hull.nbFacets() << std:: endl;
std:: vector< RealPoint > vertices
hull.getVertexPositions(vertices);
std:: vector< std:: vector< std:: size_t \gg facets;
hull.getFacetVertices(facets);
polyscope:: registerSurfaceMesh("Convex hull", vertices, facets) \rightarrow rescaleToUnit();
auto params $=$ SH3 :: defaultParameters();
params("polynomial", "sphere1")("gridstep", myh)
("minAABB", -1.25)("maxAABB", 1.25);
auto implicit_shape = SH3::makeImplicitShape3D (params);
auto digitized_shape = SH3::makeDigitizedImplicitShape3D(implicit_shape, params);
std:: vector<Point> points;
std:: cout << "Digitzing shape" << std:: endl;
auto domain = digitized_shape \rightarrow getDomain(); for(auto \&p: domain)
if (digitized_shape \rightarrow operator()(p))
points.push_back(p);
std:: cout << "Computing convex hull" << std:: endl;
QuickHull3d hull;
hull.setInput(points);
hull.computeConvexHull();
std:: cout << "\#points="
<< hull.nbPoints()
<< " \#vertices=" << hull.nbVertices()
<< " \#facets=" << hull.nbFacets() << std:: endl;
std:: vector< RealPoint > vertices
hull.getVertexPositions(vertices);
std:: vector< std:: vector< std:: size_t \gg facets;
hull.getFacetVertices(facets);
polyscope:: registerSurfaceMesh("Convex hull", vertices, facets) \rightarrow rescaleToUnit();

\mathbb{Z}^{d}

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

$$
D T(x)=\min _{y \in D \backslash X} d(x, y) \quad \text { (aka distance map) }
$$

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

$$
\begin{array}{ll}
D T(x)=\min _{y \in D \backslash X} d(x, y) & \text { (aka distance map) } \\
\sigma(x)=\operatorname{argmin}_{y \in D \backslash X} d(x, y) & \text { (aka Voronoi map } \left.\mathscr{V}(X) \cap \mathbb{Z}^{d}\right)
\end{array}
$$

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

$$
\begin{array}{ll}
D T(x)=\min _{y \in D \backslash X} d(x, y) & \text { (aka distance map) } \\
\sigma(x)=\operatorname{argmin}_{y \in D \backslash X} d(x, y) & \text { (aka Voronoi map } \mathscr{V}(X) \cap \mathbb{Z}^{d} \text {) } \\
M=\left\{(x, r) \in \mathbb{Z}^{d+1} \mid \mathscr{B}(x, r) \cap \mathbb{Z}^{d} \subset X, \text { there is no }\left(x^{\prime}, r^{\prime}\right) \text { s.t. } \mathscr{B}(x, r) \subset \mathscr{B}\left(x^{\prime}, r^{\prime}\right)\right\} \text { (aka discrete medial axis) }
\end{array}
$$

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

$$
\left.\begin{array}{l}
D T(x)=\min _{y \in D \backslash X} d(x, y) \quad \text { (aka distance map) } \\
\sigma(x)=\operatorname{argmin}_{y \in D \backslash X} d(x, y) \quad \text { (aka Voronoi map } \mathscr{V}(X) \cap \mathbb{Z}^{d} \text {) } \\
M=\left\{(x, r) \in \mathbb{Z}^{d+1} \mid \mathscr{B}(x, r) \cap \mathbb{Z}^{d} \subset X, \text { there is no }\left(x^{\prime}, r^{\prime}\right) \text { s.t. } \mathscr{B}(x, r) \subset \mathscr{B}\left(x^{\prime}, r^{\prime}\right)\right\} \text { (aka discrete medial axis) } \\
\pi(x)=\operatorname{argmin} \\
(y, r) \in M
\end{array}\|x-y\|_{2}^{2}-r^{2} \quad \text { (aka } l_{2} \text { Power map } \mathscr{P}(M) \cap \mathbb{Z}^{d} \text {) }\right) ~ \$
$$

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:
$\rightarrow D T(x)=\min _{y \in D \backslash X} d(x, y) \quad$ (aka distance map)
$\longrightarrow \sigma(x)=\operatorname{argmin}_{y \in D \backslash X} d(x, y) \quad$ (aka Voronoi map $\mathscr{V}(X) \cap \mathbb{Z}^{d}$)
$M=\left\{(x, r) \in \mathbb{Z}^{d+1} \mid \mathscr{B}(x, r) \cap \mathbb{Z}^{d} \subset X\right.$, there is no $\left(x^{\prime}, r^{\prime}\right)$ s.t. $\left.\mathscr{B}(x, r) \subset \mathscr{B}\left(x^{\prime}, r^{\prime}\right)\right\}$ (aka discrete medial axis) $\pi(x)=\operatorname{argmin}_{(y, r) \in M}\|x-y\|_{2}^{2}-r^{2} \quad$ (aka l_{2} Power map $\mathscr{P}(M) \cap \mathbb{Z}^{d}$)

Separable distance field

$$
D T(x)=\min _{y \in D \backslash X}\|x-y\|_{2}
$$

Separable distance field

$$
\begin{aligned}
D T(x) & =\min _{y \in D \backslash X}\|x-y\|_{2} \\
& =\min _{(u, v) \notin X}(i-u)^{2}+(j-v)^{2}
\end{aligned}
$$

Separable distance field

$$
\begin{aligned}
D T(x) & =\min _{y \in D \backslash X}\|x-y\|_{2} \\
& =\min _{(u, v) \nless X}(i-u)^{2}+(j-v)^{2} \\
& \left.=\min _{v}\left(\min _{u}(i-u)^{2}\right)+(j-v)^{2}\right)
\end{aligned}
$$

Separable distance field

$$
\begin{aligned}
D T(x) & =\min _{y \in D \backslash X}| | x-y| |_{2} \\
& =\min _{(u, v) \not \subset X}(i-u)^{2}+(j-v)^{2} \\
& =\min _{v} \underbrace{\left(\min _{u}(i-u)^{2}\right)}_{\text {per line double-scan }=O(n)}+(j-v)^{2})
\end{aligned}
$$

Separable distance field

$$
\begin{aligned}
D T(x) & =\min _{y \in D \backslash X}| | x-y| |_{2} \\
& =\min _{(u, v) \not \subset X}(i-u)^{2}+(j-v)^{2} \\
& =\underbrace{\min _{v}(\underbrace{\left(\min _{u}(i-u)^{2}\right)}_{\text {1D lower enveloppe computation of a set of parabolas }=O(n)}+(j-v)^{2})}_{\text {per line double-scan }=O(n)}
\end{aligned}
$$

Separable Voronoi map: step 1

Separable Voronoi map: step 1

$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

Separable Voronoi map: step 1

$\underset{ \pm}{ \pm}$

Separable Voronoi map: step 1

$\underset{ \pm}{ \pm}$

$\Rightarrow O(n)$ per row

Separable Voronoi map: step 1

$\Rightarrow O(n)$ per row

Separable Voronoi map: step 1

Separable Voronoi map: step 1

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line $\Rightarrow O(n)$ per column

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line $\Rightarrow O(n)$ per column

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line $\Rightarrow O(n)$ per column

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line $\Rightarrow O(n)$ per column

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line $\Rightarrow O(n)$ per column

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line $\Rightarrow O(n)$ per column

hiddenBy(u,v,w,S)

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line $\Rightarrow O(n)$ per column
hiddenBy($u, v, w, S)$

Separable Voronoi map: step 2

Stack based algorithm using a 3-ary hiddenBy predicate, à la sweep line $\Rightarrow O(n)$ per column

hidden $B y(u, v, w, S)$

$\Rightarrow O\left(n^{2}\right)$ in total in 2D

Separable approaches

Separable approaches

The algorithm is correct:

Separable approaches

The algorithm is correct:

- for any dimension

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2} $O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.

Trivial multithread / GPU / out-of-core implementations

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction
- Discrete Medial Axis extraction (aka non-empty inner power cells)

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction
- Discrete Medial Axis extraction (aka non-empty inner power cells)
- Reverse reconstruction (balls \rightarrow shape)

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction
- Discrete Medial Axis extraction (aka non-empty inner power cells)
- Reverse reconstruction (balls \rightarrow shape)

Separable approaches

The algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p})
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction
- Discrete Medial Axis extraction (aka non-empty inner power cells)
- Reverse reconstruction (balls \rightarrow shape)
topology in \mathbb{Z}^{d}

Before geometry : topological models for \mathbb{Z}^{d}

How to represent volumes, boundaries, curves, surfaces, partitions?

2. cubical complexes

Digital topology

(8,4)-topology

(8,8)-topology

(4,8)-topology

Good adjacencies for object/background

- Jordan separation theorem
- consistence borders and interior components
- definition of surfaces in \mathbb{Z}^{d}

Homotopy equivalence

Homotopy equivalence

Topology invariance: simple points

(8,4)-topology
locally keep connected components

Simple points: points whose removal preserves topology

- digital topology invariance of object and background
- very fast: look-up tables in 2D and 3D
- useful for skeleton extraction / coupled with medial axis

Topology invariance: simple points

(8,4)-topology
locally keep connected components

Simple points: points whose removal preserves topology

- digital topology invariance of object and background
- very fast: look-up tables in 2D and 3D
- useful for skeleton extraction / coupled with medial axis
hands on...
// Build object with digital topology
const auto $\mathrm{K}=$ SH3:: getKSpace(binary_image); Create object with $(26,6)$ Domain domain(K.lowerBound(), K.upperBound() topology from binary image z3i:: DigitalSet voxel_set(domain); for (auto p : domain)
if ((*binary_image)(p)) voxel_set.insertNew(p); the_object = CountedPtr< Z3i:: Object26_6 >(new Z3i:: Object26_6(dt26_6, voxel_set)); the_object \rightarrow setTable(functions :: loadTable<3>(simplicity:: tableSimple26_6));
// Removes a peel of simple points onto voxel object.
bool oneStep(CountedPtr< Z3i::Object26_6 > object) \{
DigitalSet \& S = object \rightarrow pointSet ();

<< " points." << std:: endl;
registerDigitalSurface(binary_image, "Thinned object");
return nb_simple $=0$;

// Build object with digital topology
const auto $\mathrm{K}=$ SH3:: getKSpace(binary_image); Create object with $(26,6)$ Domain domain(K.lowerBound(), K.upperBound() topology from binary image z3i:: DigitalSet voxel_set(domain); for (auto p : domain)
if ((*binary_image)(p)) voxel_set.insertNew(p); the_object = CountedPtr< Z3i:: Object26_6 >(new Z3i:: Object26_6(dt26_6, voxel_set)); the_object \rightarrow setTable(functions :: loadTable<3>(simplicity:: tableSimple26_6));
// Removes a peel of simple points onto voxel object.
bool oneStep(CountedPtr< Z3i::Object26_6 > object) \{
DigitalSet \& S = object \rightarrow pointSet ();

<< " points." << std:: endl;
registerDigitalSurface(binary_image, "Thinned object");
return nb_simple $=0$;

digital surface geometry

Linking continuous and digital geometry : Gauss digitization with gridstep h

$$
X \quad \partial X-\quad\left(h \cdot \mathrm{G}_{h}(X)\right) \bullet \quad\left[\mathrm{G}_{h}(X)\right]_{h} \amalg \quad \partial\left[\mathrm{G}_{h}(X)\right]_{h}-
$$

«digitization»
«voxelization»
« digitized surface "

Volume estimation

$$
h^{d} \cdot\left|X_{h}\right| \underset{h \rightarrow 0}{\longrightarrow} \operatorname{Vol}(X)
$$

$O(h)$ convergence speed
If X is strictly C^{3}-convex: $O\left(h^{\frac{15}{11}+\epsilon}\right)$

Multigrid convergence

For digitization process G, the discrete geometric estimator \hat{E} is multigrid convergent to the geometric quantity E for the family of shapes \mathbb{X}, iff, for any $X \in \mathbb{X}$, there exists a grid step $h_{X}>0$, such that :

$$
\begin{gathered}
\hat{E}\left(G_{h}(X), h\right) \text { is defined for any } 0<h<h_{X}, \\
\left|\hat{E}\left(G_{h}(X), h\right)-E(X)\right|<\tau_{X}(h)
\end{gathered}
$$

where the speed of convergence $\tau_{X}(h)$ has null limit when $h \rightarrow 0$.

Multigrid convergence (local version)

For digitization process G, the local discrete geometric estimator \hat{E} is multigrid convergent to the geometric quantity E for the family of shapes \mathbb{X}, iff, for any $X \in \mathbb{X}$, there exists a grid step $h_{X}>0$, such that :

$$
\hat{E}\left(G_{h}(X), \hat{x}, h\right) \text { is defined for any } \hat{x} \in \partial\left[G_{h}(X)\right]_{h} \text { with } 0<h<h_{X} \text {, }
$$

$$
\text { for any } x \in \partial X \text {, for any } \hat{x} \in \partial\left[G_{h}(X)\right]_{h} \text { with }\|x-\hat{x}\|_{\infty} \leq h, \quad\left|\hat{E}\left(G_{h}(X), \hat{x}, h\right)-E(X, x)\right|<\tau_{X}(h)
$$

where the speed of convergence $\tau_{X}(h)$ has null limit when $h \rightarrow 0$.
(Typically normal direction, curvatures, ...)

Hausdorff closeness of digitized shapes

For any compact domain $X \in \mathbb{R}^{d}$ such that ∂X has positive reach, and its digitization $X_{h}:=\left[G_{h}(X)\right]_{h}$ on a grid with grid-step h, then $d_{H}\left(\partial X, \partial X_{h}\right) \leq \sqrt{d} / 2 h$ for small enough h

Homotopy equivalence

For a compact shape X with positive reach ρ, for $h<\frac{2 \sqrt{3}}{3} \rho$, the set X and its voxelization $\left[G_{h}(X)\right]_{h}$ are homotopy equivalent.
Its voxel core is also homotopy equivalent.

Bijectivity of projection and manifoldness

$$
h=0.1
$$

$$
\begin{equation*}
\text { If } X \text { has positive reach, } \tag{LI16}
\end{equation*}
$$

[LT16]
If X has positive reach,
[LT16]
the size of the non-injective part of projection $\pi_{X}: \partial X_{h} \rightarrow \partial X$ tends to zero as $h \rightarrow 0$. (light gray + dark gray zones $\approx O(h)$)

$$
h=0.05
$$

$h=0.025$

the size of the non-manifoldness part of ∂X_{h} tends quickly to zero as $h \rightarrow 0$.
(dark gray zones $\approx O\left(h^{2}\right)$)

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

$$
\kappa(M, \mathbf{x}):=\underbrace{\frac{3 \pi}{2 R}-\frac{3 \cdot A_{R}(M, \mathbf{x})}{R^{3}}}_{\kappa^{R}(M, \mathbf{x})}+O(R) \text { [Pottmann et al. 2007] }
$$

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

$$
A_{R}(M, \mathbf{x}) \rightarrow \widehat{\operatorname{Area}}\left(B_{R / h}(\mathbf{x} / h) \cap \mathrm{G}_{h}(M)\right)
$$

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

+ [Pottmann et al. 2007]

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \mathbf{x}, h\right)
$$

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x}}, h\right) \rightarrow \kappa(M, \mathbf{x})
$$

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

$$
\kappa(M, \mathbf{x}):=\underbrace{\frac{3 \pi}{2 R}-\frac{3 \cdot A_{R}(M, \mathbf{x})}{R^{3}}}_{\kappa^{R}(M, \mathbf{x})}+O(R) \text { [Pottmann et al. 2007] }
$$

$A_{R}(M, \mathbf{x}) \rightarrow \widehat{\operatorname{Area}}\left(B_{R / h}(\mathbf{x} / h) \cap G_{h}(M)\right)$
Let \boldsymbol{M} be a convex shape in \mathbb{R}^{2} with a C^{3} bounded positive curvature

$$
\forall \mathbf{x} \in \partial M, \forall \hat{\mathbf{x} \in} \dot{\hat{D}}\left[\mathrm{G}_{h}(M)\right] h,\left\|\hat{x^{-}}-x\right\|_{\infty} \leq h \Rightarrow
$$

$\left|\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x}}, h\right)-\kappa(M, \mathbf{x})\right|=O(R)$

$$
\begin{aligned}
& +o\left(\frac{h^{\beta}}{R^{1+\beta}}\right) \\
& +o\left(\frac{h^{\alpha}}{R^{2}}\right)+o\left(h^{h^{\alpha}}\right)+o\left(\frac{h^{2 \alpha}}{R^{2}}\right)
\end{aligned}
$$

+ [Pottmann et al. 2007]

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \mathbf{x}, h\right)
$$

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x},} h\right) \rightarrow \kappa(M, \mathbf{x})
$$

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

$$
\kappa(M, \mathbf{x}):=\underbrace{\frac{3 \pi}{2 R}-\frac{3 \cdot A_{R}(M, \mathbf{x})}{R^{3}}}_{\kappa^{R}(M, \mathbf{x})}+O(R) \text { [Pottmann et al. 2007] }
$$

$A_{R}(M, \mathbf{x}) \rightarrow \widehat{\operatorname{Area}}\left(B_{R / h}(\mathbf{x} / h) \cap \mathrm{G}_{h}(M)\right)$
Let \boldsymbol{M} be a convex shape in \mathbb{R}^{2} with a C^{3} bounded positive curvature
$\forall \mathbf{x} \in \partial M, \forall \hat{X} \in \partial\left[G_{h}(M)\right]_{h},\|\hat{x}-x\|_{\infty} \leq h \Rightarrow$
$\left|\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x}}, h\right)-\kappa(M, \mathbf{x})\right|=O(R)$
$+o\left(\frac{h^{\beta}}{R^{1+\beta}}\right)$
$+o\left(\frac{h^{\alpha}}{R^{2}}\right)+O\left(h^{\alpha}\right)+O\left(\frac{h^{2 \alpha}}{R^{2}}\right)$

+ [Pottmann et al. 2007]

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \mathbf{x}, h\right)
$$

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x},} h\right) \rightarrow \kappa(M, \mathbf{x})
$$

With optimal radius $R=O\left(h^{\frac{1}{3}}\right)$, then

- normals $\left.\| \hat{\mathbf{n}}\left(G_{h}(M), \xi(x), h\right)\right)-\mathbf{n}(M, x) \| \leq C \cdot h^{\frac{2}{3}}$
- mean curvature $\left.\| \hat{\kappa}\left(M_{h}, \xi(x)\right)\right)-\kappa(M, x) \|_{2} \leq C \cdot h^{\frac{1}{3}}$
- ... [CLL2014], [LCL2017]

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

$$
\kappa(M, \mathbf{x}):=\underbrace{\frac{3 \pi}{2 R}-\frac{3 \cdot A_{R}(M, \mathbf{x})}{R^{3}}}_{\kappa^{R}(M, \mathbf{x})}+O(R) \text { [Pottmann et al. 2007] }
$$

$A_{R}(M, \mathbf{x}) \rightarrow \widehat{\operatorname{Area}}\left(B_{R / h}(\mathbf{x} / h) \cap \mathrm{G}_{h}(M)\right)$

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \mathbf{x}, h\right)
$$

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x},} h\right) \rightarrow \kappa(M, \mathbf{x})
$$

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

$$
\kappa(M, \mathbf{x}):=\underbrace{\frac{3 \pi}{2 R}-\frac{3 \cdot A_{R}(M, \mathbf{x})}{R^{3}}}_{\kappa^{R}(M, \mathbf{x})}+O(R) \text { [Pottmann et al. 2007] }
$$

+ [Pottmann et al. 2007]

$$
A_{R}(M, \mathbf{x}) \rightarrow \widehat{\operatorname{Area}}\left(B_{R / h}(\mathbf{x} / h) \cap \mathrm{G}_{h}(M)\right)
$$

Curvature tensor: covariance matrix instead of the volume of $B_{R}(x) \cap X+$ eigenvalues / eigenvectors

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x}}, h\right) \rightarrow \kappa(M, \mathbf{x})
$$

Normal vector field estimation

Incremental computation : estimate at y nearby x only requires preceding result + looking at points within $B_{R}(y) \ominus B_{R}(x)$

hands on...

void onestenall (a

auto params = SH3::defaultParameters() | SHG3::defaultParameters()| SHG3:: parametersGeometryEstimation(); params("polynomial", "goursat")("gridstep", h);
auto implicit_shape = SH3:: makeImplicitShape3D (params);
auto digitized_shape $=$ SH3::makeDigitizedImplicitShape 3D(implicit_shape, params);
auto K = sH3:: getKSpace(params);
auto binary_image = SH3::makeBinaryImage(digitized_shape, params);
auto surface $=$ SH3::makeDigitalSurface(binary_image, K, params);
auto surface
= SH3:: getCellEmbedder(K);
SH3::Cell2Index c2i
auto surfels
= SH3:: getSurfelRange(surface, params);
auto primalSurface $=$ SH3:: getSurfelRange(surface, params);

//Attaching quantities
digsurf \rightarrow addFaceVectorQuantity("II normal vectors", normalsII, polyscope::VectorType ::AMBIENT); digsurf \rightarrow addFaceScalarQuantity("II mean curvature", Mcurv);
digsurf \rightarrow addFaceScalarQuantity("II Gaussian curvature", Gcurv);
digsurf \rightarrow addFaceScalarQuantity("II k1 curvature", k1);
digsurf \rightarrow addFaceScalarQuantity("II k2 curvature", k2);
digsurf \rightarrow addFaceVectorQuantity("II first principal direction", d1, polyscope::VectorType ::AMBIENT); digsurf \rightarrow addFaceVectorQuantity("II second principal direction", d2, polyscope ::VectorType :: AMBIENT);
\qquad

void onestenall (a

auto params = SH3::defaultParameters() | SHG3::defaultParameters()| SHG3:: parametersGeometryEstimation(); params("polynomial", "goursat")("gridstep", h);
auto implicit_shape = SH3:: makeImplicitShape3D (params);
auto digitized_shape $=$ SH3::makeDigitizedImplicitShape 3D(implicit_shape, params);
auto K = sH3:: getKSpace(params);
auto binary_image = SH3::makeBinaryImage(digitized_shape, params);
auto surface $=$ SH3::makeDigitalSurface(binary_image, K, params);
auto surface
= SH3:: getCellEmbedder(K);
SH3::Cell2Index c2i
auto surfels
= SH3:: getSurfelRange(surface, params);
auto primalSurface $=$ SH3:: getSurfelRange(surface, params);

//Attaching quantities
digsurf \rightarrow addFaceVectorQuantity("II normal vectors", normalsII, polyscope::VectorType ::AMBIENT); digsurf \rightarrow addFaceScalarQuantity("II mean curvature", Mcurv);
digsurf \rightarrow addFaceScalarQuantity("II Gaussian curvature", Gcurv);
digsurf \rightarrow addFaceScalarQuantity("II k1 curvature", k1);
digsurf \rightarrow addFaceScalarQuantity("II k2 curvature", k2);
digsurf \rightarrow addFaceVectorQuantity("II first principal direction", d1, polyscope::VectorType ::AMBIENT); digsurf \rightarrow addFaceVectorQuantity("II second principal direction", d2, polyscope ::VectorType :: AMBIENT);
\qquad

advanced digital surface geometry processing

$\dot{u}=\Delta u$
$u(0)=u_{0}$
u
∇u
$\operatorname{div} \vec{F}$
curl \vec{F}
$\Delta u:=\operatorname{div} \nabla u$

Calculus on a continuous setting

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto f(x, y)
\end{aligned}
$$

Calculus on a continuous setting

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \quad(x, y) \mapsto f(x, y) \\
& \nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^{t}
\end{aligned}
$$

Calculus on a continuous setting

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& (x, y) \mapsto f(x, y) \\
& \nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^{t} \\
& \operatorname{div} F=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}
\end{aligned}
$$

Calculus on a continuous setting

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
&(x, y) \mapsto f(x, y) \\
& \nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^{t} \\
& \operatorname{div} F=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y} \\
& \operatorname{curl} F=-\frac{\partial F_{y}}{\partial x}+\frac{\partial F_{x}}{\partial y} \\
&=-\operatorname{div} J F
\end{aligned}
$$

Calculus on a continuous setting

$X=\operatorname{Image}(\mathrm{grad}) \oplus \operatorname{Image}(\mathrm{J}$ grad $) \oplus \mathscr{H}$

Discrete setting: regular grid

$$
\nabla^{h} f:=\left(\frac{f(x+h)-f(x)}{h}, \frac{f(y+h)-f(y)}{h}\right)^{t}
$$

Discrete setting: regular grid

$$
\begin{aligned}
\nabla^{h} f:= & \left(\frac{f(x+h)-f(x)}{h}, \frac{f(y+h)-f(y)}{h}\right)^{t} \\
\Delta^{h} f:= & \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \\
& +\frac{f(y+h)-2 f(y)+f(y-h)}{h^{2}}
\end{aligned}
$$

Discrete setting: triangular surfaces

$$
f(p)=f_{i} \phi_{i}+f_{j} \phi_{j}+f_{k} \phi_{k}
$$

Discrete setting: triangular surfaces

$f(p)=f_{i} \phi_{i}+f_{j} \phi_{j}+f_{k} \phi_{k}$
$\nabla f(p)=f_{i} \nabla \phi_{i}+f_{j} \nabla \phi_{j}+f_{k} \nabla \phi_{k}$
$\nabla \phi_{i}:=\frac{1}{2 a_{t i k}}\left(\vec{n}_{i j k} \times \vec{e}_{j k}\right)$

Discrete setting: triangular surfaces

$$
f(p)=f_{i} \phi_{i}+f_{j} \phi_{j}+f_{k} \phi_{k}
$$

$$
\nabla f(p)=f_{i} \nabla \phi_{i}+f_{j} \nabla \phi_{j}+f_{k} \nabla \phi_{k}
$$

$$
\nabla \phi_{i}:=\frac{1}{2 a_{t i j k}}\left(\vec{n}_{i j k} \times \vec{e}_{j k}\right)
$$

$$
\operatorname{div}(U)_{i}=-\sum_{t_{i j k} \in v_{i}} \vec{u}_{i j k} \cdot\left(\vec{n}_{i j k} \times \vec{e}_{j k}\right)
$$

Discrete setting: triangular surfaces

$$
f(p)=f_{i} \phi_{i}+f_{j} \phi_{j}+f_{k} \phi_{k}
$$

$$
\nabla f(p)=f_{i} \nabla \phi_{i}+f_{j} \nabla \phi_{j}+f_{k} \nabla \phi_{k}
$$

$$
\nabla \phi_{i}:=\frac{1}{2 a_{t i j k}}\left(\vec{n}_{i j k} \times \vec{e}_{j k}\right)
$$

$$
\operatorname{div}(U)_{i}=-\sum_{t_{i j k} \in v_{i}} \vec{u}_{i j k} \cdot\left(\vec{n}_{i j k} \times \vec{e}_{j k}\right)
$$

$$
\operatorname{curl}(U)_{i}=\sum_{t_{i j k} \in v_{i}} \vec{u}_{i j k} \cdot \vec{e}_{j k}
$$

Discrete setting: triangular surfaces

$$
\begin{aligned}
& f(p)=f_{i} \phi_{i}+f_{j} \phi_{j}+f_{k} \phi_{k} \\
& \nabla f(p)=f_{i} \nabla \phi_{i}+f_{j} \nabla \phi_{j}+f_{k} \nabla \phi_{k} \\
& \nabla \phi_{i}:=\frac{1}{2 a_{i j k}}\left(\vec{n}_{i j k} \times \vec{e}_{j k}\right) \\
& \operatorname{div}(U)_{i}=-\sum_{t_{i j k} \in v_{i}} \vec{u}_{i j k} \cdot\left(\vec{n}_{i j k} \times \vec{e}_{j k}\right) \\
& \operatorname{curl}(U)_{i}=\sum_{t_{i j k} \in v_{i}} \vec{u}_{i j k} \cdot \vec{e}_{j k}
\end{aligned}
$$

Discrete setting: triangular surfaces

Calculus on polygonal meshes

Discrete Laplacians on General Polygonal Meshes

Marc Alexa*
TU Berlin

Max Wardetzky ${ }^{\dagger}$
Universität Göttingen

Abstract

While the theory and applications of discrete Laplacians on trian gulated surfaces are well developed, far less is known about the general polygonal case. We present here a principled approach for constructing geometric discrete Laplacians on surfaces with arbi trary polygonal faces, encompassing non-planar and non-convex polygons. Our construction is guided by closel polygons. Our construction is guided by closel. other features, our construction leads to an exte, employed cotan formula from triangles to polys fully laying out theoretical aspects, we demon ity of our approach for a variety of geometry 1 tions, embarking on situations that would have to achieve based on geometric Laplacians for si purely combinatorial Laplacians for general mes

Discrete Differential Operators on Polygonal Meshes
FERNANDO DE GOES, Pixar Animation Studios
ANDREW BUTTS, Pixar Animation Studios
MATHIEU DESBRUN, ShanghaiTech/Caltech

EUROGRAPHICS 2020/U. Assarsson and D. Panozzo (Guest Editors)

Polygon Laplacian Made Simple

Astrid Bunge ${ }^{1 \dagger} \quad$ Philipp Herholz ${ }^{2 \dagger} \quad$ Misha Kazhdan ${ }^{3} \quad$ Mario Botsch ${ }^{1}$

Bielefeld University, Germany
${ }^{2}$ ETH Zurich, Switzerland

${ }^{1}$ Bielefeld University, Germany $\quad{ }^{2}$ ETH Zurich, Switzerland $\quad{ }^{3}$ Johns Hopkins University, USA
shes is a fundamental building block for many (if not most) geometry pro-
shes is a fundamental building block for many (if not most) geometry pro
es have been researched intensivel, vielding the cotangent discretizatio es have been researched intensively, yielding the cotangent discreetization
meshes has received much less attention. We present a discretization of ression as the composition of divergence and gradient operators, and is hes with non-convex, and even non-planar, faces. By virtually inserting ygon into a triangle fan, but then hide the refinement within the matrix gent Laplacian, inherits its advantages, and is empirically shown to be n of Alexa and Wardetzky [AW11] - while being simpler to compute. . Wardetzy [AWII] - while being simpler to

Step 1 Gradient

$$
\nabla^{\perp} \phi(x)=(n(x) \times \nabla \phi(x))=[n(x)]_{\times} \nabla \phi(x)
$$

Step 1 Gradient

$$
\nabla^{\perp} \phi(x)=(n(x) \times \nabla \phi(x))=[n(x)]_{\times} \nabla \phi(x)
$$

$$
\int_{f} \nabla \phi(x) d x=\oint_{\partial f} \phi(x)(t(x) \times n(x)) d x
$$

(Stokes' theorem)

Step 1 Gradient

$$
\nabla^{\perp} \phi(x)=(n(x) \times \nabla \phi(x))=[n(x)]_{\times} \nabla \phi(x)
$$

$$
\begin{aligned}
& \int_{f} \nabla \phi(x) d x=\oint_{\partial f} \phi(x)(t(x) \times n(x)) d x \\
& \int_{f} \nabla^{\perp} \phi(x) d x=\oint_{\partial f} \phi(x) t(x) d x
\end{aligned}
$$

(Stokes' theorem)

Step 1 Gradient

$$
\nabla^{\perp} \phi(x)=(n(x) \times \nabla \phi(x))=[n(x)]_{\times} \nabla \phi(x)
$$

$$
\begin{aligned}
& \int_{f} \nabla \phi(x) d x=\oint_{\partial f} \phi(x)(t(x) \times n(x)) d x \\
& \int_{f} \nabla^{\perp} \phi(x) d x=\oint_{\partial f} \phi(x) t(x) d x
\end{aligned}
$$

(Stokes' theorem)

Step 1 Gradient

$$
\nabla^{\perp} \phi(x)=(n(x) \times \nabla \phi(x))=[n(x)]_{\times} \nabla \phi(x)
$$

$$
\begin{aligned}
& \int_{f} \nabla \phi(x) d x=\oint_{\partial f} \phi(x)(t(x) \times n(x)) d x \\
& \int_{f} \nabla^{\perp} \phi(x) d x=\oint_{\partial f} \phi(x) t(x) d x
\end{aligned}
$$

(Stokes' theorem)

$\sum_{\text {edges }}$

Step 1 Gradient

$$
\nabla^{\perp} \phi(x)=(n(x) \times \nabla \phi(x))=[n(x)]_{\times} \nabla \phi(x)
$$

$$
\begin{aligned}
& \int_{f} \nabla \phi(x) d x=\oint_{\partial f} \phi(x)(t(x) \times n(x)) d x \\
& \int_{f} \nabla^{\perp} \phi(x) d x=\oint_{\partial f} \phi(x) t(x) d x \\
& \sum_{\text {edges }}
\end{aligned}
$$

(Stokes' theorem)

Step 1 Gradient

$$
\nabla^{\perp} \phi(x)=(n(x) \times \nabla \phi(x))=[n(x)]_{\times} \nabla \phi(x)
$$

$$
\begin{aligned}
& \int_{f} \nabla \phi(x) d x=\oint_{\partial f} \phi(x)(t(x) \times n(x)) d x \\
& \int_{f} \nabla^{\perp} \phi(x) d x=\oint_{\partial f} \phi(x) t(x) d x \\
& \sum_{\text {edges }}
\end{aligned} \phi_{\left(\frac{x_{i+1}+x_{i}}{2}\right)}^{\left(x_{i+1}-x_{i}\right)} \begin{aligned}
& \\
& \int_{i}
\end{aligned}
$$

(Stokes' theorem)

Matrix form of per face operators

Matrix form of per face operators

$$
\phi_{f}=\left[\phi\left(v_{1}\right) \ldots \phi\left(v_{n_{f}}\right)\right]^{t}
$$

Matrix form of per face operators

$$
\begin{aligned}
& \phi_{f}=\left[\phi\left(v_{1}\right) \ldots \phi\left(v_{n_{f}}\right)\right]^{t} \\
& \mathbf{G}_{f}^{\perp}:=\mathbf{E}_{f}^{t} \mathbf{A}_{f}
\end{aligned}
$$

Matrix form of per face operators

$$
\phi_{f}=\left[\phi\left(v_{1}\right) \ldots \phi\left(v_{n_{f}}\right)\right]^{t}
$$

$$
\mathbf{G}_{f}^{\perp}:=\mathbf{E}_{f}^{t} \mathbf{A}_{f}
$$

Symbol	Meaning	Definition
n_{f}	Number of vertices	$v_{1}, \ldots, v_{n_{f}} \in f$
\mathbf{X}_{f}	Vertex positions	$\mathbf{X}_{f}=\left[\mathbf{x}_{v_{1}} \ldots \mathbf{x}_{v_{n}}\right]^{\mathrm{t}} \in \mathbb{R}^{n_{f} \times 3}$
\mathbf{D}_{f}	Difference operator	$\mathbf{D}_{f}^{i, i+1}=1, \mathbf{D}_{f}^{i, i}=-1$
\mathbf{A}_{f}	Average operator	$\mathbf{A}_{f}^{i, i+1}=\mathbf{A}_{f}^{i, i}=1 / 2$
\mathbf{E}_{f}	Edge vectors	$\mathbf{E}_{f}=\mathbf{D}_{f} \mathbf{X}_{f}$
\mathbf{B}_{f}	Edge midpoints	$\mathbf{B}_{f}=\mathbf{A}_{f} \mathbf{X}_{f}$
\mathbf{c}_{f}	Face center	$\mathbf{c}_{f}=\mathbf{X}_{f}^{\mathrm{t}} \mathbf{1}_{f} / n_{f}$
\mathbf{a}_{f}	Polygonal vector area	$\mathbf{a}_{f}=1 / 2 \sum_{v_{i} \in f} \mathbf{x}_{v_{i}} \times \mathbf{x}_{v_{i+1}}$
a_{f}	Area of polygonal face	$a_{f}=\left\|\mathbf{a}_{f}\right\|$
\mathbf{n}_{f}	Normal of polygonal face	$\mathbf{n}_{f}=\mathbf{a}_{f} / a_{f}$
\mathbf{h}_{f}	Vertex heights for polygonal face	$\mathbf{h}_{f}=\left(\mathbf{X}_{f}-\mathbf{1}_{f} \mathbf{c}_{f}^{\mathrm{t}}\right) \mathbf{n}_{f}$

Matrix form of per face operators

$$
\begin{aligned}
& \phi_{f}=\left[\phi\left(v_{1}\right) \ldots \phi\left(v_{n_{f}}\right)\right]^{t} \\
& \mathbf{G}_{f}^{\perp}:=\mathbf{E}_{f}^{t} \mathbf{A}_{f} \\
& \mathbf{G}_{f}:=-\frac{1}{a_{f}}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{t} \mathbf{A}_{f}
\end{aligned}
$$

$3 \times n$ matrix

Symbol	Meaning	Definition
n_{f}	Number of vertices	$v_{1}, \ldots, v_{n_{f}} \in f$
\mathbf{X}_{f}	Vertex positions	$\mathbf{x}_{f}=\left[\mathbf{x}_{v_{1}} \ldots \mathbf{x}_{v_{n}}\right]^{\mathrm{t}} \in \mathbb{R}^{n} f^{\times 3}$
\mathbf{D}_{f}	Difference operator	$\mathbf{D}_{f}^{i, i+1}=1, \mathbf{D}_{f}^{i, i}=-1$
\mathbf{A}_{f}	Average operator	$\mathbf{A}_{f}^{i, i+1}=\mathbf{A}_{f}^{i, i}=1 / 2$
\mathbf{E}_{f}	Edge vectors	$\mathbf{E}_{f}=\mathbf{D}_{f} \mathbf{X}_{f}$
\mathbf{B}_{f}	Edge midpoints	$\mathbf{B}_{f}=\mathbf{A}_{f} \mathbf{X}_{f}$
\mathbf{c}_{f}	Face center	$\mathbf{c}_{f}=\mathbf{X}_{f}^{\mathrm{t}} \mathbf{1}_{f} / n_{f}$
\mathbf{a}_{f}	Polygonal vector area	$\mathbf{a}_{f}=1_{2} \sum_{v_{i} \in f} \mathbf{x}_{v_{i}} \times \mathbf{x}_{v_{i+1}}$
a_{f}	Area of polygonal face	$a_{f}=\left\|\mathbf{a}_{f}\right\|$
\mathbf{n}_{f}	Normal of polygonal face	$\mathbf{n}_{f}=\mathbf{a}_{f} / a_{f}$
\mathbf{h}_{f}	Vertex heights for polygonal face	$\mathbf{h}_{f}=\left(\mathbf{X}_{f}-\mathbf{1}_{f} \mathbf{c}_{f}^{\mathrm{t}}\right) \mathbf{n}_{f}$

Matrix form of per face operators

$$
\phi_{f}=\left[\phi\left(v_{1}\right) \ldots \phi\left(v_{n_{f}}\right)\right]^{t}
$$

$$
\mathbf{G}_{f}^{\perp}:=\mathbf{E}_{f}^{t} \mathbf{A}_{f}
$$

$$
\mathbf{G}_{f}:=-\frac{1}{a_{f}}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{t} \mathbf{A}_{f}
$$

$3 \times n$ matrix

Symbol	Meaning	Definition
n_{f}	Number of vertices	$v_{1}, \ldots, v_{n_{f}} \in f$
\mathbf{X}_{f}	Vertex positions	$\mathbf{x}_{f}=\left[\mathbf{x}_{v_{1}} \ldots \mathbf{x}_{v_{n}}\right]^{\mathrm{t}} \in \mathbb{R}^{n_{f} \times 3}$
\mathbf{D}_{f}	Difference operator	$\mathbf{D}_{f}^{i, i+1}=1, \mathbf{D}_{f}^{i, i}=-1$
\mathbf{A}_{f}	Average operator	$\mathbf{A}_{f}^{i, i+1}=\mathrm{A}_{f}^{i, i}=1 / 2$
\mathbf{E}_{f}	Edge vectors	$\mathbf{E}_{f}=\mathbf{D}_{f} \mathbf{X}_{f}$
\mathbf{B}_{f}	Edge midpoints	$\mathbf{B}_{f}=\mathbf{A}_{f} \mathbf{X}_{f}$
\mathbf{c}_{f}	Face center	$\mathbf{c}_{f}=\mathbf{X}_{f}^{\mathrm{t}} \mathbf{1}_{f} / n_{f}$
\mathbf{a}_{f}	Polygonal vector area	$\mathbf{a}_{f}=1 / 2 \sum_{v_{i} \in f} \mathbf{x}_{v_{i}} \times \mathbf{x}_{v_{i+1}}$
a_{f}	Area of polygonal face	$a_{f}=\left\|\mathbf{a}_{f}\right\|$
\mathbf{n}_{f}	Normal of polygonal face	$\mathbf{n}_{f}=\mathbf{a}_{f} / a_{f}$
\mathbf{h}_{f}	Vertex heights for polygonal face	$\mathbf{h}_{f}=\left(\mathbf{X}_{f}-\mathbf{1}_{f} \mathbf{c}_{f}^{\mathrm{t}}\right) \mathbf{n}_{f}$

$$
G_{f} \phi_{f}: \quad 3 \times 1
$$

Wrap up for polygonal non-convex / non-planar faces

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f}
$$

gradient

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f} . \quad \begin{array}{|c}
\text { gradient }
\end{array}
$$

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\begin{array}{cc}
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f} . & \mathbf{V}_{f}=\mathbf{E}_{f}\left(\mathbf{I}-\mathbf{n}_{f} \mathbf{n}_{f}^{\mathrm{t}}\right) . \\
\text { flat } & \mathbf{U}_{f}=\frac{1}{a_{f}}\left[\mathbf{n}_{f}\right]\left(\mathbf{B}_{f}^{\mathrm{t}}-\mathbf{c}_{f} \mathbf{1}_{f}^{\mathrm{t}}\right) . \\
\text { sharp }
\end{array}
$$

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\begin{array}{cc}
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f} . & \mathbf{V}_{f}=\mathbf{E}_{f}\left(\mathbf{I}-\mathbf{n}_{f} \mathbf{n}_{f}^{\mathrm{t}}\right) . \\
\text { flat } & \mathbf{U}_{f}=\frac{1}{a_{f}}\left[\mathbf{n}_{f}\right]\left(\mathbf{B}_{f}^{\mathrm{t}}-\mathbf{c}_{f} \mathbf{1}_{f}^{\mathrm{t}}\right) . \\
\text { sharp }
\end{array}
$$

$$
\mathbf{P}_{f}=\mathbf{I}-\mathbf{V}_{f} \mathbf{U}_{f}
$$

projection

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f} .
$$

gradient

$$
\mathbf{P}_{f}=\mathbf{I}-\mathbf{V}_{f} \mathbf{U}_{f}
$$

projection

$$
\mathbf{V}_{f}=\mathbf{E}_{f}\left(\mathbf{I}-\mathbf{n}_{f} \mathbf{n}_{f}^{\mathrm{t}}\right)
$$

flat

$$
\mathbf{M}_{f}=a_{f} \mathbf{U}_{f}^{\mathrm{t}} \mathbf{U}_{f}+\lambda \mathbf{P}_{f}^{\mathrm{t}} \mathbf{P}_{f}
$$

Inner prod. 1-form

$$
\mathbf{U}_{f}=\frac{1}{a}\left[\mathbf{n}_{f}\right]\left(\mathbf{B}_{f}^{\mathrm{t}}-\mathbf{c}_{f} \mathbf{1}_{f}^{\mathrm{t}}\right) .
$$

sharp

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f} .
$$

gradient

$$
\mathbf{P}_{f}=\mathbf{I}-\mathbf{V}_{f} \mathbf{U}_{f}
$$

projection

$$
\mathbf{V}_{f}=\mathbf{E}_{f}\left(\mathbf{I}-\mathbf{n}_{f} \mathbf{n}_{f}^{\mathrm{t}}\right)
$$

flat

$$
\mathbf{U}_{f}=\frac{1}{a_{f}}\left[\mathbf{n}_{f}\right]\left(\mathbf{B}_{f}^{\mathrm{t}}-\mathbf{c}_{f} \mathbf{1}_{f}^{\mathrm{t}}\right) .
$$

sharp

$$
\mathbf{L}_{f}=\mathbf{D}_{f}^{\mathrm{t}} \mathbf{M}_{f} \mathbf{D}_{f}
$$

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f} .
$$

gradient

$$
\mathbf{P}_{f}=\mathbf{I}-\mathbf{V}_{f} \mathbf{U}_{f}
$$

projection

$$
\mathbf{V}_{f}=\mathbf{E}_{f}\left(\mathbf{I}-\mathbf{n}_{f} \mathbf{n}_{f}^{\mathrm{t}}\right)
$$

flat

$$
\mathbf{U}_{f}=\frac{1}{a_{f}}\left[\mathbf{n}_{f}\right]\left(\mathbf{B}_{f}^{\mathrm{t}}-\mathbf{c}_{f} \mathbf{1}_{f}^{\mathrm{t}}\right) .
$$

sharp

$$
\mathbf{L}_{f}=\mathbf{D}_{f}^{\mathrm{t}} \mathbf{M}_{f} \mathbf{D}_{f}
$$

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f} .
$$

gradient

$$
\mathbf{P}_{f}=\mathbf{I}-\mathbf{V}_{f} \mathbf{U}_{f}
$$

projection

$$
\mathbf{V}_{f}=\mathbf{E}_{f}\left(\mathbf{I}-\mathbf{n}_{f} \mathbf{n}_{f}^{\mathrm{t}}\right)
$$

flat

$$
\mathbf{U}_{f}=\frac{1}{a_{f}}\left[\mathbf{n}_{f}\right]\left(\mathbf{B}_{f}^{\mathrm{t}}-\mathbf{c}_{f} \mathbf{1}_{f}^{\mathrm{t}}\right) .
$$

sharp

$$
\mathbf{L}_{f}=\mathbf{D}_{f}^{\mathrm{t}} \mathbf{M}_{f} \mathbf{D}_{f}
$$

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f} .
$$

gradient

$$
\mathbf{P}_{f}=\mathbf{I}-\mathbf{V}_{f} \mathbf{U}_{f}
$$

projection

$$
\mathbf{V}_{f}=\mathbf{E}_{f}\left(\mathbf{I}-\mathbf{n}_{f} \mathbf{n}_{f}^{\mathrm{t}}\right)
$$

flat

$$
\mathbf{U}_{f}=\frac{1}{a_{f}}\left[\mathbf{n}_{f}\right]\left(\mathbf{B}_{f}^{\mathrm{t}}-\mathbf{c}_{f} \mathbf{1}_{f}^{\mathrm{t}}\right) .
$$

sharp

$$
\mathbf{L}_{f}=\mathbf{D}_{f}^{\mathrm{t}} \mathbf{M}_{f} \mathbf{D}_{f}
$$

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f} .
$$

gradient

$$
\mathbf{P}_{f}=\mathbf{I}-\mathbf{V}_{f} \mathbf{U}_{f}
$$

projection

$$
\mathbf{V}_{f}=\mathbf{E}_{f}\left(\mathbf{I}-\mathbf{n}_{f} \mathbf{n}_{f}^{\mathrm{t}}\right)
$$

flat

$$
\mathbf{U}_{f}=\frac{1}{a_{f}}\left[\mathbf{n}_{f}\right]\left(\mathbf{B}_{f}^{\mathrm{t}}-\mathbf{c}_{f} \mathbf{1}_{f}^{\mathrm{t}}\right) .
$$

sharp

$$
\mathbf{L}_{f}=\mathbf{D}_{f}^{\mathrm{t}} \mathbf{M}_{f} \mathbf{D}_{f}
$$

Wrap up for polygonal non-convex / non-planar faces

- Per face, globally consistent, linear operators

$$
\mathbf{G}_{f}=-\frac{1}{a}\left[\mathbf{n}_{f}\right] \mathbf{E}_{f}^{\mathrm{t}} \mathbf{A}_{f}
$$

gradient

$$
\mathbf{P}_{f}=\mathbf{I}-\mathbf{V}_{f} \mathbf{U}_{f}
$$

projection

$$
\mathbf{V}_{f}=\mathbf{E}_{f}\left(\mathbf{I}-\mathbf{n}_{f} \mathbf{n}_{f}^{\mathrm{t}}\right)
$$

flat

$$
\mathbf{M}_{f}=a_{f} \mathbf{U}_{f}^{\mathrm{t}} \mathbf{U}_{f}+\lambda \mathbf{P}_{f}^{\mathrm{t}} \mathbf{P}_{f}
$$

Inner prod. 1-form

$$
\mathbf{U}_{f}=\frac{1}{a}\left[\mathbf{n}_{f}\right]\left(\mathbf{B}_{f}^{\mathrm{t}}-\mathbf{c}_{f} \mathbf{1}_{f}^{\mathrm{t}}\right)
$$

sharp

$$
\mathbf{L}_{f}=\mathbf{D}_{f}^{\mathrm{t}} \mathbf{M}_{f} \mathbf{D}_{f}
$$

Laplace-Beltrami

- ...But... flat metric space from the mesh embedding

Eigen:: MatrixXd V (const Face f)
\{
return $E(f) \star($ Eigen :: MatrixXd:: Identity (3,3) - normalFace(f)*normalFace(f).transpose()); \}
//Edge midPoints
Eigen:: MatrixXd B(const Face f)
\{
return $A(f)$ * $X(f)$;
\}
//Centroids
Eigen:: VectorXd centroid(const Face f)
\{
return 1/(double)f.degree() * X(f).transpose() * Eigen::VectorXd:: Ones(f.degree());
\}
//Sharp
Eigen:: MatrixXd U(const Face f)
\{
return 1/areaFace(f) * bracket(normalFace(f)) *

\}
//Projection
Eigen :: MatrixXd P(const Face f)
\{
return Eigen::MatrixXd::Identity(f.degree(),f.degree()) - V(f)*U(f);
\}
//Mass Matrix
Eigen::MatrixXd M(const Face f, const double lambda=1.0)
\{
return areaFace(f) * $U(f)$. transpose()*U(f) + lambda * $P(f)$.transpose()*P(f);
\}|
//weak Laplacian
Eigen:: MatrixXd L(const Face f, const double lambda=1.0)
\{
return $D(f)$.transpose() * $M(f$, lambda) * $D(f)$;

Normal Vector estimation from Integral Invariants

normal vectors from eigenvectors of the covariance matrix of $B_{r}(p) \cap X$

Implicit Projected Embedding

$$
\text { projection operator } \Pi_{f}:=\left(\mathbf{I}_{3 \times 3}-\mathbf{u}_{f} \mathbf{u}_{f}^{t}\right) \quad \text { «implicit » positions } \mathbf{X}_{f}^{*}:=\mathbf{X}_{f} \Pi_{f}
$$

Experimental validation: Gradient accuracy

Experimental validation: Laplace-Beltrami operator

- Setting:

- scalar function u on a sphere with closed form Δu
- multigrid spheres and discrete operators
- Compared to [Caissard et al.] which is
 a strong consistent operator

Experimental validation: Laplace-Beltrami operator

- Setting:

- scalar function u on a sphere with closed form Δu
- multigrid spheres and discrete operators
- Compared to [Caissard et al.] which is
 a strong consistent operator
[Caissard et al] $O\left(n^{2}\right)$ construction time, not

Experimental validation: stability of Laplace-Beltrami eigenvectors

Algorithm 1 The Heat Method

I. Integrate the heat flow $\dot{u}=\Delta u$ for some fixed time t.
II. Evaluate the vector field $X=-\nabla u_{t} /\left|\nabla u_{t}\right|$.
III. Solve the Poisson equation $\Delta \phi=\nabla \cdot X$.

```
SparseMatrix<double> heatOpe = Mass + dt*lapGlobal;
PositiveDefiniteSolver<double> heatSolver(heatOpe);
PositiveDefiniteSolver<double> poissonSolver(lapGlobal);
SparseMatrix<double> heatOpe \(=\) Mass \(+d t * l a p G l o b a l ;\)
PositiveDefiniteSolver<double> poissonSolver(lapGlobal);
```

```
// === Solve heat
```

// === Solve heat
Vector<double> heatVec = heatSolver.solve(U);
// // === Normalize in each face and evaluate divergence
FaceData<Vector3> gradHeat(*mesh);
Vector<double> divergenceVec = Vector<double>::Zero(mesh->nVertices());
for(auto f: mesh->faces())
{
//Construct div per vertex of the heatVec gradient
Eigen:: VectorXd Heatf(f.degree());
cpt=0;
for(auto v: f.adjacentVertices())
{
Heatf(cpt) = heatVec(v.getIndex());
+cpt;
}
Eigen::Vector3d g = G(f) * Heatf;
g.normalize();
gradHeat[f] = toVector3(g);
Eigen::MatrixXd oneForm = V(f)*g;
Eigen:: VectorXd divergence = D(f).transpose()*M(f)*oneForm;
cpt=0;
for(auto v: f.adjacentVertices())
{
divergenceVec(v.getIndex()) += divergence(cpt);
+cpt;
}
}
// === Integrate divergence to get distance
Vector<double> distVec = Vector<double>::Ones(mesh->nVertices()) +

``` poissonSolver.solve(divergenceVec);

\section*{Algorithm 1 The Heat Method}
I. Integrate the heat flow \(\dot{u}=\Delta u\) for some fixed time \(t\).
II. Evaluate the vector field \(X=-\nabla u_{t} /\left|\nabla u_{t}\right|\).
III. Solve the Poisson equation \(\Delta \phi=\nabla \cdot X\).

SparseMatrix<double> heatOpe \(=\) Mass + dt*lapGlobal PositiveDefiniteSolver<double> heatSolver(heatOpe); PositiveDefiniteSolver<double> poissonSolver(lapGlobal);
// === Solve heat
Vector<double> heatVec = heatSolver.solve(U);
// // === Normalize in each face and evaluate divergence
FaceData<Vector3> gradHeat(*mesh);
Vector<double> divergenceVec \(=\) Vector<double>::Zero(mesh \(\rightarrow\) nVertices()); for(auto \(f:\) mesh \(\rightarrow\) faces())
\{
//Construct div per vertex of the heatVec gradient
Eigen:: VectorXd Heatf( f.degree());
cpt=0;
for(auto v: f.adjacentVertices())
\{
Heatf(cpt) \(=\) heatVec( v.getIndex( ) );
+ cpt;
\}
Eigen::Vector3d \(g=G(f) *\) Heatf;
g.normalize();
gradHeat \([f]=\) toVector3(g);
Eigen::MatrixXd oneForm \(=\mathrm{V}(\mathrm{f}) * g\);
Eigen:: VectorXd divergence \(=D(f)\).transpose ()\(\star M(f)\) *oneForm;
cpt=0;
for(auto v: f.adjacentVertices())
\{
divergenceVec(v.getIndex()) += divergence(cpt); + cpt;
\}
\}
// === Integrate divergence to get distance
Vector<double> distVec \(=\) Vector<double>: Ones(mesh \(\rightarrow\) nVertices ()) + poissonSolver.solve(divergenceVec);

SparseMatrix<double> heatOpe \(=\) Mass \(+d t * l a p G l o b a l ;\) PositiveDefiniteSolver<double> heatSolver(heatOpe); PositiveDefiniteSolver<double> poissonSolver(lapGlobal);
// === Solve heat
Vector<double> heatVec = heatSolver.solve(U);
```

// === Normalize in each face and evaluate divergence
FaceData<Vector3> gradHeat(*mesh);
Vector<double> divergenceVec = Vector<double>::Zero(mesh->nVertices());
for(auto f: mesh }->\mathrm{ faces())
{
//Construct div per vertex of the heatVec gradient
Eigen::VectorXd Heatf(f.degree());
cpt=0;
for(auto v: f.adjacentVertices())
{
Heatf(cpt) = heatVec(v.getIndex());
+cpt;
}
Eigen::Vector3d g = G(f) * Heatf;
g.normalize();
gradHeat[f] = toVector3(g);
Eigen::MatrixXd oneForm = V(f)*g;
Eigen:: VectorXd divergence = D(f).transpose()*M(f)*oneForm;
cpt=0;
for(auto v: f.adjacentVertices())
{
divergenceVec(v.getIndex()) += divergence(cpt);
+cpt;
}
}
// === Integrate divergence to get distance
Vector<double> distVec = Vector<double>::Ones(mesh }->\mathrm{ nVertices()) +

```
I. Integrate the heat flow \(\dot{u}=\Delta u\) for some fixed time \(t\).
II. Evaluate the vector field \(X=-\nabla u_{t} /\left|\nabla u_{t}\right|\).
III. Solve the Poisson equation \(\Delta \phi=\nabla \cdot X\).

\section*{Algorithm 1 The Heat Method}


SparseMatrix<double> heatOpe \(=\) Mass + dt*lapGlobal PositiveDefiniteSolver<double> heatSolver(heatOpe); PositiveDefiniteSolver<double> poissonSolver(lapGlobal);
// === Solve heat
Vector<double> heatVec = heatSolver.solve(U);
```

// === Normalize in each face and evaluate divergence
FaceData<Vector3> gradHeat(*mesh);
Vector<double> divergenceVec = Vector<double>::Zero(mesh->nVertices());
for(auto f: mesh }->\mathrm{ faces())
{
//Construct div per vertex of the heatVec gradient
Eigen::VectorXd Heatf(f.degree());
cpt=0;
for(auto v: f.adjacentVertices())
{
Heatf(cpt) = heatVec(v.getIndex());
+cpt;
}
Eigen::Vector3d g = G(f) * Heatf;
g.normalize();
gradHeat[f] = toVector3(g);
Eigen::MatrixXd oneForm = V(f)*g;
Eigen:: VectorXd divergence = D(f).transpose()*M(f)*oneForm;
cpt=0;
for(auto v: f.adjacentVertices())
{
divergenceVec(v.getIndex()) += divergence(cpt);
+cpt;
}
}
/ === Integrate divergence to get distance
Vector<double> distVec = Vector<double>::Ones(mesh->nVertices()) +

Experimental validation: Geodesics using the heat method

Solely Neumann b. c.	Mixed Neumann and Dirichlet b. c	Solely Neumann b. c.	Mixed Neumann and Dirichlet b. c

Additional operators

- Intrinsic vector fields: transport, connection, covariant derivratives, connection Laplacian...
- Extrinsic operator: Shape operator
<demo>

quick wrap-up example

Piecewise smooth reconstruction

Step1: normal vector field reconstruction

Ambrosio-Tortorelli functional: solve u,v s.t.

$$
A T_{\epsilon}(u, v)=\alpha \int_{M}|u-g|^{2} d x+\int_{M}|v \nabla u|^{2}+\lambda \epsilon|\nabla v|^{2}+\frac{1}{4 \epsilon}|1-v|^{2} d x
$$

Piecewise smooth reconstruction

Step1: normal vector field reconstruction

Ambrosio-Tortorelli functional: solve u,v s.t.

$$
A T_{\epsilon}(u, v)=\alpha \int_{M}|u-g|^{2} d x+\int_{M}|v \nabla u|^{2}+\lambda \epsilon|\nabla v|^{2}+\frac{1}{4 \epsilon}|1-v|^{2} d x
$$

Reconstructed normals are close to the input ones

Piecewise smooth reconstruction

Step1: normal vector field reconstruction

Ambrosio-Tortorelli functional: solve u,v s.t.
$A T_{\epsilon}(u, v)=\alpha \int_{M}|u-g|^{2} d x+\int_{M}|v \nabla u|^{2}+\lambda \epsilon|\nabla v|^{2}+\frac{1}{4 \epsilon}|1-v|^{2} d x$
Reconstructed normals are Normal field must be smooth close to the input ones except at singularities v

Piecewise smooth reconstruction

Step1: normal vector field reconstruction

Ambrosio-Tortorelli functional: solve u,v s.t.

Reconstructed normals are Normal field must be smooth
Penalizes the length of close to the input ones except at singularities v singularities

Piecewise smooth reconstruction

Step1: normal vector field reconstruction
Ambrosio-Tortorelli functional: solve u,v s.t.

digital DEC:

$$
A T_{\epsilon}(u, v)=\alpha \sum_{i=1}^{3}\left\langle u_{i}-g_{i} u_{i}-g_{i}\right\rangle_{\overline{0}}+\sum_{i=1}^{3}\left\langle v \wedge d_{\overline{0}} u_{i} v \wedge d_{\overline{0}} u_{i \bar{\top}}\right\rangle_{\bar{T}}+\lambda \epsilon\left\langle d_{0} v, d_{0} \nu\right\rangle_{1}+\frac{\lambda}{4 \epsilon}\langle 1-v, 1-v\rangle_{0}
$$

+ energy is convex for fixed u or $v \Rightarrow$ alternate minimization

Piecewise smooth reconstruction

Step 2: surface reconstruction

$$
\mathscr{E}(\hat{P}):=\alpha \sum_{i=1}^{n}\left\|\mathbf{p}_{i}-\hat{\mathbf{p}}_{i}\right\|^{2}+\beta \sum_{f \in F} \sum_{\hat{e}, \in \in f}\left(\hat{\mathbf{e}}_{\boldsymbol{j}} \cdot \mathbf{n}_{f}\right)^{2}+\gamma \sum_{i=1}^{n}\left\|\hat{\mathbf{p}}_{i}-\hat{\mathbf{b}}_{\boldsymbol{i}}\right\|^{2}
$$

Piecewise smooth reconstruction

Step 2: surface reconstruction

$$
\mathscr{E}(\hat{P}):=\alpha \sum_{i=1}^{n}\left\|\mathbf{p}_{i}-\hat{\mathbf{p}}_{i}\right\|^{2}+\beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_{j} \in \partial f}\left(\hat{\mathbf{e}}_{j} \cdot \mathbf{n}_{f}\right)^{2}+\gamma \sum_{i=1}^{n}\left\|\hat{\mathbf{p}}_{i}-\hat{\mathbf{b}}_{i}\right\|^{2}
$$

optimized vertices are not too
far from original ones

Piecewise smooth reconstruction

Step 2: surface reconstruction

$$
\mathscr{E}(\hat{P}):=\alpha \sum_{i=1}^{n}\left\|\mathbf{p}_{i}-\hat{\mathbf{p}}_{i}\right\|^{2}+\beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_{j} \in \partial f}\left(\hat{\mathbf{e}}_{j} \cdot \mathbf{n}_{f}\right)^{2}+\gamma \sum_{i=1}^{n}\left\|\hat{\mathbf{p}}_{i}-\hat{\mathbf{b}}_{i}\right\|^{2}
$$

optimized vertices are not too far from original ones

Edges must be as orthogonal as possible to the given normal
vectors

Piecewise smooth reconstruction

Step 2: surface reconstruction

$$
\mathscr{E}(\hat{P}):=\alpha \sum_{i=1}^{n}\left\|\mathbf{p}_{i}-\hat{\mathbf{p}}_{i}\right\|^{2}+\beta \sum_{f \in F} \sum_{\hat{e}_{j} \in \partial f}\left(\hat{\mathbf{e}}_{j} \cdot \mathbf{n}_{f}\right)^{2}+\gamma \sum_{i=1}^{n}\left\|\hat{\mathbf{p}}_{i}-\hat{\mathbf{b}}_{i}\right\|^{2}
$$

optimized vertices are not too far from original ones

Edges must be as orthogonal as possible to the given normal vectors

Piecewise smooth reconstruction

Step 2: surface reconstruction

$$
\mathscr{E}(\hat{P}):=\alpha \sum_{i=1}^{n}\left\|\mathbf{p}_{i}-\hat{\mathbf{p}}_{i}\right\|^{2}+\beta \sum_{f \in F} \sum_{\hat{e}_{j} \in \partial f}\left(\hat{\mathbf{e}}_{j} \cdot \mathbf{n}_{f}\right)^{2}+\gamma \sum_{i=1}^{n}\left\|\hat{\mathbf{p}}_{i}-\hat{\mathbf{b}}_{i}\right\|^{2}
$$

optimized vertices are not too far from original ones

Edges must be as orthogonal as possible to the given normal vectors

Using multigrid convergent normal vector field or its piecewise smooth regularization:

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{p}_{i}^{*}-\mathbf{p}_{i}\right\| \leq C \cdot h
$$

$$
\frac{1}{n} \sum_{i=1}^{n} d\left(\mathbf{p}_{i}^{*}, \partial M\right) \leq C^{\prime} \cdot h
$$

+ topological guarantee

+ multi-label case
+ fast GPU based minimization
$+\ldots$
[C. et al 21]

conclusion

Conclusion

Topology and geometry processing on regular data:

- fast algorithms thanks to the regularity of the data
- simple topological structure
- integer based computations
- advanced surface based geometry processing
... in \mathbb{Z}^{d}
https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry
(slides + code)

Challenges

- Corrected digital calculus, what kind of guarantee can we get?
- DEC operators targeting the limit surface (à-la Subdivision Exterior Calculus)
- Localized geometry processing operators on DAG Sparse Voxel Octrees
https://github.com/dcoeurjo/SGP-GraduateSchool-digitalgeometry
(slides + code)

References

[Villanueva et al 17] Alberto Jaspe Villanueva, Fabio Marton, and Enrico Gobbetti, Symmetry-aware Sparse Voxel DAGs (SSVDAGs) for compression-domain tracing of high-resolution geometric scenes, Journal of Computer Graphics Techniques (JCGT), vol. 6, no. 2, 1-30, 2017
[Chen et al 2020] Half-Space Power Diagrams and Discrete Surface Offsets, Zhen Chen, Daniele Panozzo, Jérémie Dumas. In TVCG, 2019.
[C. et al 07] Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension, David Coeurjoll Annick Montanvert, IEEE Transactions on Pattern Analysis and Machine Intelligence, March 2007
[Martinez et al 20] Orthotropic k-nearest Foams for Additive Manufacturing, Jonàs Martínez, Haichuan Song, Jérémie Dumas, Sylvain Lefebvre, ACM TOG 2017
[Liu et al 18] Narrow-band topology optimization on a sparsely populated grid. Liu, H., Hu, Y., Zhu, B., Matusik, W., \& Sifakis, E. (2018). ACM Transactions on Graphics (TOG), 37(6), 1-14
[de Goes et al 20] Discrete Differential Operators on Polygonal Meshes, de Goes, Butts, Desbrun SIGGRAPH / ACM Transactions on Graphics (2020)
[C. et al 21] Digital surface regularization with guarantees, David Coeurjolly, Jacques-Olivier Lachaud, Pierre Gueth, IEEE Transactions on Visualization and Computer Graphics, January 2021
[C. et al 16] Piecewise smooth reconstruction of normal vector field on digital data, David Coeurjolly, Marion Foare, Pierre Gueth, Computer Graphics Forum (Proceedin Pacific Graphics), September 2016
[Caissard et al 19] Laplace-Beltrami Operator on Digital Surfaces, Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon, Journal of Matheme Imaging and Vision, January 2019
[Delanoy et al 19] Combining voxel and normal predictions for multi-view 3D sketching, Johanna Delanoy, David Coeurjolly, Jacques-Olivier Lachaud, Adrien Bousseal Computers and Graphics, June 2019
[Belkin et al 08] Belkin, M., Sun, J., Wang, Y.: Discrete laplace operator on meshed surfaces. In: M. Teillaud (ed.) Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, USA, June 9-11, 2008, pp. 278-287. ACM (2008)

References

[Bertrand94] Bertrand, Gilles. "Simple points, topological numbers and geodesic neighborhoods in cubic grids." Pattern recognition letters 15.10 (1994): $1003-1011$.
[BC94] Bertrand, Gilles, and Michel Couprie. "On parallel thinning algorithms: minimal non-simple sets, P-simple points and critical kernels." Journal of Mathematical Imaging and Vision 35.1 (2009): 23-35.
[YLJ18] Yan, Yajie, David Letscher, and Tao Ju. "Voxel cores: Efficient, robust, and provably good approximation of 3d medial axes." ACM Transactions on Graphics (TO 37.4 (2018): 1-13.
[LT16] Lachaud, Jacques-Olivier, and Boris Thibert. "Properties of gauss digitized shapes and digital surface integration." Journal of Mathematical Imaging and Vision 54 (2016): 162-180.
[LTC17] Lachaud, Jacques-Olivier, David Coeurjolly, and Jérémy Levallois. "Robust and convergent curvature and normal estimators with digital integral invariants." Mo Approaches to Discrete Curvature. Springer, Cham, 2017. 293-348.
[LRTC20] Lachaud, Jacques-Olivier, Pascal Romon, Boris Thibert, and David Coeurjolly. "Interpolated corrected curvature measures for polygonal surfaces." Computer Graphics Forum. Vol. 39. No. 5. 2020.

