Introduction to Digital Geometry

David Coeurjolly, CNRS, Lyon, France
Jacques-Olivier Lachaud, Université Sầvoie Mont-Blanc, France

Outline

- context
- dgtal.org
- geometry with integers
- geometry processing on grids
- digital surface processing
- conclusion

Outline

- context
- dgtal.org
- geometry with integers
- geometry processing on grids
- digital surface processing
- conclusion

Motivations (1): devices

- Micro-tomographic images
- material sciences
- medical images
- Process geometry/topology of images partitions

Motivations (1): devices

- Micro-tomographic images
- material sciences
- medical images
- Process geometry/topology of images partitions

$$
\Rightarrow X \subset \mathbb{Z}^{3}
$$

Motivations (2): \mathbb{Z}^{d} as an efficient modelling space

- Shape optimization / fabrication
- As a proxy or an intermediate representation

light transport simulation, booleans, medial axis, distance fields, multiple interfaces/objects tracking in a simulation loop...

Focus: characteristic functions / labelled images / level sets / ...

Digital Geometry

Topology and geometry processing on regular data:

- fast algorithms thanks to the regularity of the data
- simple topological structure
- integer based computations
- advanced surface based geometry processing
\ldots in \mathbb{Z}^{d}
dgtal.org


```
DGtal
```


News

https://dgtal.org

DGtal release 1.3

Posted on November 25, 2022
We are thrilled to announce the release 1.3 of DGtal and its tools. Many new features, edits and bugfixes are listed in the Changelog, and we would like to thank all devs involved in this release. In this short review, we would like to only focus on selected new features.... [Read More]

T

Quick example

- Rational slope \Rightarrow finite set of remainders \Rightarrow periodic structure \Rightarrow canonical pattern from continued fraction

\rightarrow arithmetization to speed-up tracing (e.g. fast ray marching on Sparse Voxel Octree)
\rightarrow useful to design fast recognition algorithms (pixels/voxels \Rightarrow digital straight lines, planes, circles...)

Quick example

- Rational slope \Rightarrow finite set of remainders \Rightarrow periodic structure \Rightarrow canonical pattern from continued fraction

\rightarrow arithmetization to speed-up tracing (e.g. fast ray marching on Sparse Voxel Octree)
\rightarrow useful to design fast recognition algorithms (pixels/voxels \Rightarrow digital straight lines, planes, circles...)

Quick example

- Rational slope \Rightarrow finite set of remainders \Rightarrow periodic structure \Rightarrow canonical pattern from continued fraction

$$
\begin{array}{r}
a_{0}+\frac{b_{1}}{a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{a_{3}+.}}} \\
\text { action }
\end{array}
$$

\rightarrow arithmetization to speed-up tracing (e.g. fast ray marching on Sparse Voxel Octree)
\rightarrow useful to design fast recognition algorithms (pixels/voxels \Rightarrow digital straight lines, planes, circles...)

Quick example

- Rational slope \Rightarrow finite set of remainders \Rightarrow periodic structure \Rightarrow canonical pattern from continued fraction

$$
a_{0}+\frac{b_{1}}{a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{a_{3}+.}}}
$$

\rightarrow arithmetization to speed-up tracing (e.g. fast ray marching on Sparse Voxel Octree)
\rightarrow useful to design fast recognition algorithms (pixels/voxels \Rightarrow digital straight lines, planes, circles...)

Further elements

Let $P \subset \mathbb{Z}^{d}$ a lattice polytope with non-empty interior, then: $f_{k} \ll c_{d}(\text { Vol P })^{\frac{d-1}{d+1}}$

Convex on the lattice $[1, n]^{2}$ grid has $O\left(n^{2 / 3}\right)$ edges

Let $P \subset[1, U]^{2}$ (with $U \leq 2^{m}$) and $n:=|P|$, the expected time for Voronoi diagram / Delaunay triangulation is:

$$
O(\min \{n \log n, n \sqrt{U}\})
$$

Further elements

Let $P \subset \mathbb{Z}^{d}$ a lattice polytope with non-empty interior, then: $f_{k} \ll c_{d}(\text { Vol P })^{\frac{d-1}{d+1}}$

Convex on the lattice $[1, n]^{2}$ grid has $O\left(n^{2 / 3}\right)$ edges

Let $P \subset[1, U]^{2}$ (with $U \leq 2^{m}$) and $n:=|P|$, the expected time for Voronoi diagram / Delaunay triangulation is:

$$
O(\min \{n \log n, n \sqrt{U}\})
$$

hands on...
auto params $=$ SH3 :: defaultParameters();
params("polynomial", "sphere1")("gridstep", myh)
("minAABB", -1.25)("maxAABB", 1.25);
auto implicit_shape = SH3::makeImplicitShape3D (params);
auto digitized_shape = SH3::makeDigitizedImplicitShape3D(implicit_shape, params);
std:: vector<Point> points;
std:: cout << "Digitzing shape" << std:: endl;
auto domain = digitized_shape \rightarrow getDomain(); for(auto \&p: domain)
if (digitized_shape \rightarrow operator()(p))
points.push_back(p);
std:: cout << "Computing convex hull" << std:: endl;
QuickHull3d hull;
hull.setInput(points);
hull.computeConvexHull();
std:: cout << "\#points="
<< hull.nbPoints()
<< " \#vertices=" << hull.nbVertices()
<< " \#facets=" << hull.nbFacets() << std:: endl;
std:: vector< RealPoint > vertices
hull.getVertexPositions(vertices);
std:: vector< std:: vector< std:: size_t \gg facets;
hull.getFacetVertices(facets);
polyscope:: registerSurfaceMesh("Convex hull", vertices, facets) \rightarrow rescaleToUnit();
auto params $=$ SH3 :: defaultParameters();
params("polynomial", "sphere1")("gridstep", myh)
("minAABB", -1.25)("maxAABB", 1.25);
auto implicit_shape = SH3::makeImplicitShape3D (params);
auto digitized_shape = SH3::makeDigitizedImplicitShape3D(implicit_shape, params);
std:: vector<Point> points;
std:: cout << "Digitzing shape" << std:: endl;
auto domain = digitized_shape \rightarrow getDomain(); for(auto \&p: domain)
if (digitized_shape \rightarrow operator()(p))
points.push_back(p);
std:: cout << "Computing convex hull" << std:: endl;
QuickHull3d hull;
hull.setInput(points);
hull.computeConvexHull();
std:: cout << "\#points="
<< hull.nbPoints()
<< " \#vertices=" << hull.nbVertices()
<< " \#facets=" << hull.nbFacets() << std:: endl;
std:: vector< RealPoint > vertices
hull.getVertexPositions(vertices);
std:: vector< std:: vector< std:: size_t \gg facets;
hull.getFacetVertices(facets);
polyscope:: registerSurfaceMesh("Convex hull", vertices, facets) \rightarrow rescaleToUnit();

\mathbb{Z}^{d}

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

$$
D T(x)=\min _{y \in D \backslash X} d(x, y) \quad \text { (aka distance map) }
$$

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

$$
\begin{array}{ll}
D T(x)=\min _{y \in D \backslash X} d(x, y) & \text { (aka distance map) } \\
\sigma(x)=\operatorname{argmin}_{y \in D \backslash X} d(x, y) & \text { (aka Voronoi map } \left.\mathscr{V}(X) \cap \mathbb{Z}^{d}\right)
\end{array}
$$

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

$$
\begin{array}{ll}
D T(x)=\min _{y \in D \backslash X} d(x, y) & \text { (aka distance map) } \\
\sigma(x)=\operatorname{argmin}_{y \in D \backslash X} d(x, y) & \text { (aka Voronoi map } \mathscr{V}(X) \cap \mathbb{Z}^{d} \text {) } \\
M=\left\{(x, r) \in \mathbb{Z}^{d+1} \mid \mathscr{B}(x, r) \cap \mathbb{Z}^{d} \subset X, \text { there is no }\left(x^{\prime}, r^{\prime}\right) \text { s.t. } \mathscr{B}(x, r) \subset \mathscr{B}\left(x^{\prime}, r^{\prime}\right)\right\} \text { (aka discrete medial axis) }
\end{array}
$$

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:

$$
\left.\begin{array}{l}
D T(x)=\min _{y \in D \backslash X} d(x, y) \quad \text { (aka distance map) } \\
\sigma(x)=\operatorname{argmin}_{y \in D \backslash X} d(x, y) \quad \text { (aka Voronoi map } \mathscr{V}(X) \cap \mathbb{Z}^{d} \text {) } \\
M=\left\{(x, r) \in \mathbb{Z}^{d+1} \mid \mathscr{B}(x, r) \cap \mathbb{Z}^{d} \subset X, \text { there is no }\left(x^{\prime}, r^{\prime}\right) \text { s.t. } \mathscr{B}(x, r) \subset \mathscr{B}\left(x^{\prime}, r^{\prime}\right)\right\} \text { (aka discrete medial axis) } \\
\pi(x)=\operatorname{argmin} \\
(y, r) \in M
\end{array}\|x-y\|_{2}^{2}-r^{2} \quad \text { (aka } l_{2} \text { Power map } \mathscr{P}(M) \cap \mathbb{Z}^{d} \text {) }\right) ~ \$
$$

Volumetric analysis

Given $X \subset \mathbb{Z}^{d}$ and a domain $[0, n]^{d}$, compute:
$\rightarrow D T(x)=\min _{y \in D \backslash X} d(x, y) \quad$ (aka distance map)
$\longrightarrow \sigma(x)=\operatorname{argmin}_{y \in D \backslash X} d(x, y) \quad$ (aka Voronoi map $\mathscr{V}(X) \cap \mathbb{Z}^{d}$)
$M=\left\{(x, r) \in \mathbb{Z}^{d+1} \mid \mathscr{B}(x, r) \cap \mathbb{Z}^{d} \subset X\right.$, there is no $\left(x^{\prime}, r^{\prime}\right)$ s.t. $\left.\mathscr{B}(x, r) \subset \mathscr{B}\left(x^{\prime}, r^{\prime}\right)\right\}$ (aka discrete medial axis) $\pi(x)=\operatorname{argmin}_{(y, r) \in M}\|x-y\|_{2}^{2}-r^{2} \quad$ (aka l_{2} Power map $\mathscr{P}(M) \cap \mathbb{Z}^{d}$)

Separable Volumetric approaches

\qquad

Separable Volumetric approaches

The separable algorithm is correct:

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

Same techniques and computational costs for: [C. et al 07]

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction
- Discrete Medial Axis extraction (aka non-empty inner power cells)

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction
- Discrete Medial Axis extraction (aka non-empty inner power cells)
- Reverse reconstruction (balls \rightarrow shape)

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction
- Discrete Medial Axis extraction (aka non-empty inner power cells)
- Reverse reconstruction (balls \rightarrow shape)

Separable Volumetric approaches

The separable algorithm is correct:

- for any dimension
- for any metric with axis symmetric unit ball (e.g. any l_{p}, chamfer norms)
- on any toroidal nD domains

Exact and linear in time w.r.t. the number of grid points $O\left(d \cdot n^{d}\right)$ for l_{2}
$O\left(d^{2} \cdot \log (p) \cdot \log (n) \cdot n^{d}\right)$ for exact $l_{p}\left(p \in \mathbb{Z}^{+}\right), O\left(d \cdot n^{d}\right)$ approx.
Trivial multithread / GPU / out-of-core implementations

Same techniques and computational costs for: [C. et al 07]

- Power diagram / power maps construction
- Discrete Medial Axis extraction (aka non-empty inner power cells)
- Reverse reconstruction (balls \rightarrow shape)

topology on \mathbb{Z}^{d}

Before geometry : topological models for \mathbb{Z}^{d}

How to represent volumes, boundaries, curves, surfaces, partitions?

2. cubical complexes

Digital topology

(8,4)-topology

(8,8)-topology

(4,8)-topology

Good adjacencies for object/background

- Jordan separation theorem
- consistence borders and interior components
- definition of surfaces in \mathbb{Z}^{d}

Topology invariance: simple points

(8,4)-topology
locally keep connected components

Simple points: points whose removal preserves topology

- digital topology invariance of object and background
- very fast: look-up tables in 2D and 3D
- useful for skeleton extraction / coupled with medial axis

Topology invariance: simple points

(8,4)-topology
locally keep connected components

Simple points: points whose removal preserves topology

- digital topology invariance of object and background
- very fast: look-up tables in 2D and 3D
- useful for skeleton extraction / coupled with medial axis
hands on...
// Build object with digital topology
const auto $\mathrm{K}=$ SH3:: getKSpace(binary_image); Create object with $(26,6)$ Domain domain(K.lowerBound(), K.upperBound() topology from binary image z3i:: DigitalSet voxel_set(domain); for (auto p : domain)
if ((*binary_image)(p)) voxel_set.insertNew(p); the_object = CountedPtr< Z3i:: Object26_6 >(new Z3i:: Object26_6(dt26_6, voxel_set)); the_object \rightarrow setTable(functions :: loadTable<3>(simplicity:: tableSimple26_6));
// Removes a peel of simple points onto voxel object.
bool oneStep(CountedPtr< Z3i::Object26_6 > object) \{
DigitalSet \& S = object \rightarrow pointSet ();

<< " points." << std:: endl;
registerDigitalSurface(binary_image, "Thinned object");
return nb_simple $=0$;

// Build object with digital topology
const auto $\mathrm{K}=$ SH3:: getKSpace(binary_image); Create object with $(26,6)$ Domain domain(K.lowerBound(), K.upperBound() topology from binary image z3i:: DigitalSet voxel_set(domain); for (auto p : domain)
if ((*binary_image)(p)) voxel_set.insertNew(p); the_object = CountedPtr< Z3i:: Object26_6 >(new Z3i:: Object26_6(dt26_6, voxel_set)); the_object \rightarrow setTable(functions :: loadTable<3>(simplicity:: tableSimple26_6));
// Removes a peel of simple points onto voxel object.
bool oneStep(CountedPtr< Z3i::Object26_6 > object) \{
DigitalSet \& S = object \rightarrow pointSet ();

<< " points." << std:: endl;
registerDigitalSurface(binary_image, "Thinned object");
return nb_simple $=0$;

Homotopic collapses

x and y are simple
but cannot be removed in parallel

Needs cubical complex representation

Elementary collapse : removing cell pairs (f, g) where g is free preserves homotopy

Homotopic collapses and critical kernels

cubical complex X

Both complexes Y_{1}, Y_{2} are thinning, since $Z \subseteq Y_{i} \subseteq X$
critical cells: cells that do not collapse onto their neighborhood

All complexes Y , such that $Z \subseteq Y \subseteq X$ are homotopic to X !

Allows parallel algorithms for extracting skeletons

Skeletons with critical kernels

« curved » skeleton

« surface » skeleton

Digital surfaces

Primal surface
(here, digitization of some ellipsoid)

- digital surface \approx set of faces of voxels
- in « ideal cases » 4-regular graph (3D)
- vertices $=$ surfels/faces
- generally not a manifold
- pinched on edges and/or vertices
- not a sampling, only approximation
- only 6 different normals in 3D
- even fine digital surface have poor normals

Digital surfaces + topology (primal \leftrightarrow dual)

Primal surface

Dual surface $(26,6)$ topology

Dual surface $(6,26)$ topology

Adding object/background topology allows manifoldness in arbitrary dimensions - exactly d-1 paths crossing at each point

digital surface geometry

Linking continuous and digital geometry : Gauss digitization with gridstep h

$$
X \quad \partial X-\quad\left(h \cdot \mathrm{G}_{h}(X)\right) \bullet \quad\left[\mathrm{G}_{h}(X)\right]_{h} \amalg \quad \partial\left[\mathrm{G}_{h}(X)\right]_{h}-
$$

«digitization»
«voxelization»
« digitized surface "

What can we say for finer and finer digitization ? $(h \rightarrow 0)$

What can we say for finer and finer digitization? $(h-\infty)$

Hausdorff closeness of digitized shapes

For any compact domain $X \in \mathbb{R}^{d}$ such that ∂X has positive reach, and its digitization $X_{h}:=\left[G_{h}(X)\right]_{h}$ on a grid with grid-step h, then $d_{H}\left(\partial X, \partial X_{h}\right) \leq h \sqrt{d} / 2$ for small enough h

Bijectivity of projection and manifoldness

$$
h=0.1
$$

$$
\begin{equation*}
\text { If } X \text { has positive reach, } \tag{LI16}
\end{equation*}
$$

[LT16]
If X has positive reach,
[LT16]
the size of the non-injective part of projection $\pi_{X}: \partial X_{h} \rightarrow \partial X$ tends to zero as $h \rightarrow 0$. (light gray + dark gray zones $\approx O(h)$)

$$
h=0.05
$$

$h=0.025$

the size of the non-manifoldness part of ∂X_{h} tends quickly to zero as $h \rightarrow 0$.
(dark gray zones $\approx O\left(h^{2}\right)$)

Multigrid convergence

For digitization process G, the discrete geometric estimator \hat{E} is multigrid convergent to the geometric quantity E for the family of shapes \mathbb{X}, iff, for any $X \in \mathbb{X}$, there exists a grid step $h_{X}>0$, such that :

$$
\begin{gathered}
\hat{E}\left(G_{h}(X), h\right) \text { is defined for any } 0<h<h_{X}, \\
\left|\hat{E}\left(G_{h}(X), h\right)-E(X)\right|<\tau_{X}(h)
\end{gathered}
$$

where the speed of convergence $\tau_{X}(h)$ has null limit when $h \rightarrow 0$.
(Typically area, perimeter, integrals)

$M \in \mathbb{X}$

$\mathrm{G}_{1}(M)$

$\mathrm{G}_{0.5}(M)$
$\widehat{\text { Area }}\left(G_{h}(X), h\right):=h^{2} \#\left(G_{h}(X)\right)$ tends toward $\operatorname{Area}(M)$ as $h \rightarrow 0$

Convergence speed is $O(h)$ and even $O\left(h^{\frac{22}{15}}\right)$ for smooth enough M

Multigrid convergence (local version)

For digitization process G, the local discrete geometric estimator \hat{E} is multigrid convergent to the geometric quantity E for the family of shapes \mathbb{X}, iff, for any $X \in \mathbb{X}$, there exists a grid step $h_{X}>0$, such that :

$$
\begin{gathered}
\hat{E}\left(G_{h}(X), \hat{x}, h\right) \text { is defined for any } \hat{x} \in \partial\left[G_{h}(X)\right]_{h} \text { with } 0<h<h_{X} \\
\text { for any } x \in \partial X \text {, for any } \hat{x} \in \partial\left[G_{h}(X)\right]_{h} \text { with }\|x-\hat{x}\|_{\infty} \leq h, \quad\left|\hat{E}\left(G_{h}(X), \hat{x}, h\right)-E(X, x)\right|<\tau_{X}(h)
\end{gathered}
$$

where the speed of convergence $\tau_{X}(h)$ has null limit when $h \rightarrow 0$.
(Typically normal direction, curvatures, ...)

$M \in \mathbb{X}$

$\mathrm{G}_{1}(M)$

$\mathrm{G}_{0.5}(M)$

$\mathrm{G}_{0.25}(M)$

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

$$
\kappa(M, \mathbf{x}):=\underbrace{\frac{3 \pi}{2 R}-\frac{3 \cdot A_{R}(M, \mathbf{x})}{R^{3}}}_{\kappa^{R}(M, \mathbf{x})}+O(R) \text { [Pottmann et al. 2007] }
$$

$A_{R}(M, \mathbf{x}) \rightarrow \widehat{\operatorname{Area}}\left(B_{R / h}(\mathbf{x} / h) \cap G_{h}(M)\right)$
Let \boldsymbol{M} be a convex shape in \mathbb{R}^{2} with a C^{3} bounded positive curvature

$$
\forall \mathbf{x} \in \partial M, \forall \hat{\mathbf{x} \in} \dot{\hat{D}}\left[\mathrm{G}_{h}(M)\right] h,\left\|\hat{x^{-}}-x\right\|_{\infty} \leq h \Rightarrow
$$

$\left|\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x}}, h\right)-\kappa(M, \mathbf{x})\right|=O(R)$

$$
\begin{aligned}
& +o\left(\frac{h^{\beta}}{R^{1+\beta}}\right) \\
& +o\left(\frac{h^{\alpha}}{R^{2}}\right)+o\left(h^{h^{\alpha}}\right)+o\left(\frac{h^{2 \alpha}}{R^{2}}\right)
\end{aligned}
$$

+ [Pottmann et al. 2007]

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \mathbf{x}, h\right)
$$

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x},} h\right) \rightarrow \kappa(M, \mathbf{x})
$$

Normal vector and curvatures estimation

- Integral Invariants : analyzing set $B_{R}(x) \cap X$ gives normal vector, principal directions and curvatures [Pottmann et al. 2007]

$$
\kappa(M, \mathbf{x}):=\underbrace{\frac{3 \pi}{2 R}-\frac{3 \cdot A_{R}(M, \mathbf{x})}{R^{3}}}_{\kappa^{R}(M, \mathbf{x})}+O(R) \text { [Pottmann et al. 2007] }
$$

$A_{R}(M, \mathbf{x}) \rightarrow \widehat{\operatorname{Area}}\left(B_{R / h}(\mathbf{x} / h) \cap \mathrm{G}_{h}(M)\right)$
Let \boldsymbol{M} be a convex shape in \mathbb{R}^{2} with a C^{3} bounded positive curvature
$\forall \mathbf{x} \in \partial M, \forall \hat{X} \in \partial\left[G_{h}(M)\right]_{h},\|\hat{x}-x\|_{\infty} \leq h \Rightarrow$
$\left|\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x}}, h\right)-\kappa(M, \mathbf{x})\right|=O(R)$
$+o\left(\frac{h^{\beta}}{R^{1+\beta}}\right)$
$+o\left(\frac{h^{\alpha}}{R^{2}}\right)+O\left(h^{\alpha}\right)+O\left(\frac{h^{2 \alpha}}{R^{2}}\right)$

+ [Pottmann et al. 2007]

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \mathbf{x}, h\right)
$$

$$
\kappa^{R}\left(\mathrm{G}_{h}(M), \hat{\mathbf{x},} h\right) \rightarrow \kappa(M, \mathbf{x})
$$

With optimal radius $R=O\left(h^{\frac{1}{3}}\right)$, then

- normals $\left.\| \hat{\mathbf{n}}\left(G_{h}(M), \xi(x), h\right)\right)-\mathbf{n}(M, x) \| \leq C \cdot h^{\frac{2}{3}}$
- mean curvature $\left.\| \hat{\kappa}\left(M_{h}, \xi(x)\right)\right)-\kappa(M, x) \|_{2} \leq C \cdot h^{\frac{1}{3}}$
- ... [CLL2014], [LCL2017]

Normal vector field estimation

Incremental computation : estimate at y nearby x only requires preceding result + looking at points within $B_{R}(y) \ominus B_{R}(x)$

hands on...

void onestenall (a

auto params = SH3::defaultParameters() | SHG3::defaultParameters()| SHG3:: parametersGeometryEstimation(); params("polynomial", "goursat")("gridstep", h);
auto implicit_shape = SH3:: makeImplicitShape3D (params);
auto digitized_shape $=$ SH3::makeDigitizedImplicitShape 3D(implicit_shape, params);
auto K = sH3:: getKSpace(params);
auto binary_image = SH3::makeBinaryImage(digitized_shape, params);
auto surface $=$ SH3::makeDigitalSurface(binary_image, K, params);
auto surface
= SH3:: getCellEmbedder(K);
SH3::Cell2Index c2i
auto surfels
= SH3:: getSurfelRange(surface, params);
auto primalSurface $=$ SH3:: getSurfelRange(surface, params);

//Attaching quantities
digsurf \rightarrow addFaceVectorQuantity("II normal vectors", normalsII, polyscope::VectorType ::AMBIENT); digsurf \rightarrow addFaceScalarQuantity("II mean curvature", Mcurv);
digsurf \rightarrow addFaceScalarQuantity("II Gaussian curvature", Gcurv);
digsurf \rightarrow addFaceScalarQuantity("II k1 curvature", k1);
digsurf \rightarrow addFaceScalarQuantity("II k2 curvature", k2);
digsurf \rightarrow addFaceVectorQuantity("II first principal direction", d1, polyscope::VectorType ::AMBIENT); digsurf \rightarrow addFaceVectorQuantity("II second principal direction", d2, polyscope ::VectorType :: AMBIENT);
\qquad

void onestenall (a

auto params = SH3::defaultParameters() | SHG3::defaultParameters()| SHG3:: parametersGeometryEstimation(); params("polynomial", "goursat")("gridstep", h);
auto implicit_shape = SH3:: makeImplicitShape3D (params);
auto digitized_shape $=$ SH3::makeDigitizedImplicitShape 3D(implicit_shape, params);
auto K = sH3:: getKSpace(params);
auto binary_image = SH3::makeBinaryImage(digitized_shape, params);
auto surface $=$ SH3::makeDigitalSurface(binary_image, K, params);
auto surface
= SH3:: getCellEmbedder(K);
SH3::Cell2Index c2i
auto surfels
= SH3:: getSurfelRange(surface, params);
auto primalSurface $=$ SH3:: getSurfelRange(surface, params);

//Attaching quantities
digsurf \rightarrow addFaceVectorQuantity("II normal vectors", normalsII, polyscope::VectorType ::AMBIENT); digsurf \rightarrow addFaceScalarQuantity("II mean curvature", Mcurv);
digsurf \rightarrow addFaceScalarQuantity("II Gaussian curvature", Gcurv);
digsurf \rightarrow addFaceScalarQuantity("II k1 curvature", k1);
digsurf \rightarrow addFaceScalarQuantity("II k2 curvature", k2);
digsurf \rightarrow addFaceVectorQuantity("II first principal direction", d1, polyscope::VectorType ::AMBIENT); digsurf \rightarrow addFaceVectorQuantity("II second principal direction", d2, polyscope ::VectorType :: AMBIENT);
\qquad

digital surface geometry processing

$\dot{u}=\Delta u$
$u(0)=u_{0}$
u
∇u
$\operatorname{div} \vec{F}$
curl \vec{F}
$\Delta u:=\operatorname{div} \nabla u$
$\dot{u}=\Delta u$
$u(0)=u_{0}$
u
∇u
$\operatorname{div} \vec{F}$
curl \vec{F}
$\Delta u:=\operatorname{div} \nabla u$
$\Delta u=g$

Discrete Differential Operators on Polygonal Meshes

[de Goes et al 20]
[C. \& L. DGMM2022]

Discrete Differential Operators on Polygonal Meshes

[de Goes et al 20]
[C. \& L. DGMM2022]

Discrete Differential Operators on Polygonal Meshes

We can correct the face embedding using asymptotic convergence normal vector field

Challenges: advance corrections (e.g. on the Grassmanian, higher order schemes...) for asymptotic properties

Discrete Differential Operators on Polygonal Meshes

We can correct the face embedding using asymptotic convergence normal vector field

Challenges: advance corrections (e.g. on the Grassmanian, higher order schemes...) for asymptotic properties

Experimental validation: stability of Laplace-Beltrami eigenvectors

Experimental validation: stability of Laplace-Beltrami eigenvectors

Experimental validation: Geodesics using the heat method

Solely Neumann b. c.	Mixed Neumann and Dirichlet b. c	Solely Neumann b. c.	Mixed Neumann and Dirichlet b. c

$$
50
$$

hands on...

void initQuantities(

PolygonalCalculusSH3::RealPoint,SH3::RealVector calculus(surfmesh)

Init phi

Compute quantities
std::vector<PolygonalCalculusSH3::RealPoint,SH3::RealVector: Vector> gradients; std::vector<PolygonalCalculusSH3::RealPoint,SH3::RealVector::Vector> cogradients; std::vector<PolygonalCalculusSH3::RealPoint,SH3::RealVector::Real3dVector> normals; std::vector<PolygonalCalculusSH3::RealPoint,SH3::RealVector::Real3dVector> vectorArea; std::vector<PolygonalCalculus<SH3::RealPoint,SH3: :RealVector>: :Real3dPoint> centroids; std::vector<double> faceArea;
for(auto f=0; f < surfmesh.nbFaces(); ++f)
PolygonalCalculusSH3::RealPoint,SH3::RealVector::Vector ph = phiFace(f);
PolygonalCalculus<SH3: :RealPoint,SH3::RealVector>::Vector grad = calculus.gradient(f) * ph; gradients.push_back(grad);
PolygonalCalculusSH3::RealPoint,SH3::RealVector::Vector cograd = calculus.coGradient(f) * ph; cogradients.push_back(cograd)
normals.push_back(calculus.faceNormalAsDGtalVector(f));

auto $\mathrm{vA}=$ calculus.vectorArea(f);

vectorArea.push_back(\{vA(0) , vA(1), vA(2) \})
faceArea.push_back(calculus.faceArea(f));
centroids.push_back(calculus.centroidAsDGtalPoint(f)); psMesh->addFaceVectorQuantity("co-Gradients", cogradients): psMesh->addFaceVectorQuantity("Normals", normals);
psMesh->addFaceScalarQuantity("Face area", faceArea);
psMesh->addFaceVectorQuantity("Vector area", vectorArea);
polyscope::registerPointCloud("Centroids", centroids);

void initQuantities(

PolygonalCalculusSH3::RealPoint,SH3::RealVector calculus(surfmesh)

Init phi

Compute quantities
std::vector<PolygonalCalculusSH3::RealPoint,SH3::RealVector: Vector> gradients; std::vector<PolygonalCalculusSH3::RealPoint,SH3::RealVector::Vector> cogradients; std::vector<PolygonalCalculusSH3::RealPoint,SH3::RealVector::Real3dVector> normals; std::vector<PolygonalCalculusSH3::RealPoint,SH3::RealVector::Real3dVector> vectorArea; std::vector<PolygonalCalculus<SH3::RealPoint,SH3: :RealVector>: :Real3dPoint> centroids; std::vector<double> faceArea;
for(auto f=0; f < surfmesh.nbFaces(); ++f)
PolygonalCalculusSH3::RealPoint,SH3::RealVector::Vector ph = phiFace(f);
PolygonalCalculus<SH3: :RealPoint,SH3::RealVector>::Vector grad = calculus.gradient(f) * ph; gradients.push_back(grad);
PolygonalCalculusSH3::RealPoint,SH3::RealVector::Vector cograd = calculus.coGradient(f) * ph; cogradients.push_back(cograd)
normals.push_back(calculus.faceNormalAsDGtalVector(f));

auto $\mathrm{vA}=$ calculus.vectorArea(f);

vectorArea.push_back(\{vA(0) , vA(1), vA(2) \})
faceArea.push_back(calculus.faceArea(f));
centroids.push_back(calculus.centroidAsDGtalPoint(f)); psMesh->addFaceVectorQuantity("co-Gradients", cogradients): psMesh->addFaceVectorQuantity("Normals", normals);
psMesh->addFaceScalarQuantity("Face area", faceArea);
psMesh->addFaceVectorQuantity("Vector area", vectorArea);
polyscope::registerPointCloud("Centroids", centroids);

conclusion

Conclusion

Topology and geometry processing on regular data:

- fast algorithms thanks to the regularity of the data
- simple topological structure
- integer based computations
- advanced surface based geometry processing
\ldots in \mathbb{Z}^{d}

Challenges

- Foundation of Digital Geometry
- Objects (hyperplane, spheres..): arithmetical properties,
- Digital convexity
- Bijective transformations
- Alternative pavings
- Discrete <-> Continuous
- Digitization: stable properties (topology, geometric quantities...)
- Unified model
- Reconstruction (2d, 3d...)
- Applications
- Material sciences
- Image processing

References

[Villanueva et al 17] Alberto Jaspe Villanueva, Fabio Marton, and Enrico Gobbetti, Symmetry-aware Sparse Voxel DAGs (SSVDAGs) for compression-domain tracing of high-resolution geometric scenes, Journal of Computer Graphics Techniques (JCGT), vol. 6, no. 2, 1-30, 2017
[Chen et al 2020] Half-Space Power Diagrams and Discrete Surface Offsets, Zhen Chen, Daniele Panozzo, Jérémie Dumas. In TVCG, 2019.
[C. et al 07] Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension, David Coeurjoll Annick Montanvert, IEEE Transactions on Pattern Analysis and Machine Intelligence, March 2007
[Martinez et al 20] Orthotropic k-nearest Foams for Additive Manufacturing, Jonàs Martínez, Haichuan Song, Jérémie Dumas, Sylvain Lefebvre, ACM TOG 2017
[Liu et al 18] Narrow-band topology optimization on a sparsely populated grid. Liu, H., Hu, Y., Zhu, B., Matusik, W., \& Sifakis, E. (2018). ACM Transactions on Graphics (TOG), 37(6), 1-14
[de Goes et al 20] Discrete Differential Operators on Polygonal Meshes, de Goes, Butts, Desbrun SIGGRAPH / ACM Transactions on Graphics (2020)
[C. et al 21] Digital surface regularization with guarantees, David Coeurjolly, Jacques-Olivier Lachaud, Pierre Gueth, IEEE Transactions on Visualization and Computer Graphics, January 2021
[C. et al 16] Piecewise smooth reconstruction of normal vector field on digital data, David Coeurjolly, Marion Foare, Pierre Gueth, Computer Graphics Forum (Proceedin Pacific Graphics), September 2016
[Caissard et al 19] Laplace-Beltrami Operator on Digital Surfaces, Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon, Journal of Matheme Imaging and Vision, January 2019
[Delanoy et al 19] Combining voxel and normal predictions for multi-view 3D sketching, Johanna Delanoy, David Coeurjolly, Jacques-Olivier Lachaud, Adrien Bousseal Computers and Graphics, June 2019
[Belkin et al 08] Belkin, M., Sun, J., Wang, Y.: Discrete laplace operator on meshed surfaces. In: M. Teillaud (ed.) Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, USA, June 9-11, 2008, pp. 278-287. ACM (2008)

References

[Bertrand94] Bertrand, Gilles. "Simple points, topological numbers and geodesic neighborhoods in cubic grids." Pattern recognition letters 15.10 (1994): $1003-1011$.
[BC94] Bertrand, Gilles, and Michel Couprie. "On parallel thinning algorithms: minimal non-simple sets, P-simple points and critical kernels." Journal of Mathematical Imaging and Vision 35.1 (2009): 23-35.
[YLJ18] Yan, Yajie, David Letscher, and Tao Ju. "Voxel cores: Efficient, robust, and provably good approximation of 3d medial axes." ACM Transactions on Graphics (TO 37.4 (2018): 1-13.
[LT16] Lachaud, Jacques-Olivier, and Boris Thibert. "Properties of gauss digitized shapes and digital surface integration." Journal of Mathematical Imaging and Vision 54 (2016): 162-180.
[LTC17] Lachaud, Jacques-Olivier, David Coeurjolly, and Jérémy Levallois. "Robust and convergent curvature and normal estimators with digital integral invariants." Mo Approaches to Discrete Curvature. Springer, Cham, 2017. 293-348.
[LRTC20] Lachaud, Jacques-Olivier, Pascal Romon, Boris Thibert, and David Coeurjolly. "Interpolated corrected curvature measures for polygonal surfaces." Computer Graphics Forum. Vol. 39. No. 5. 2020.

