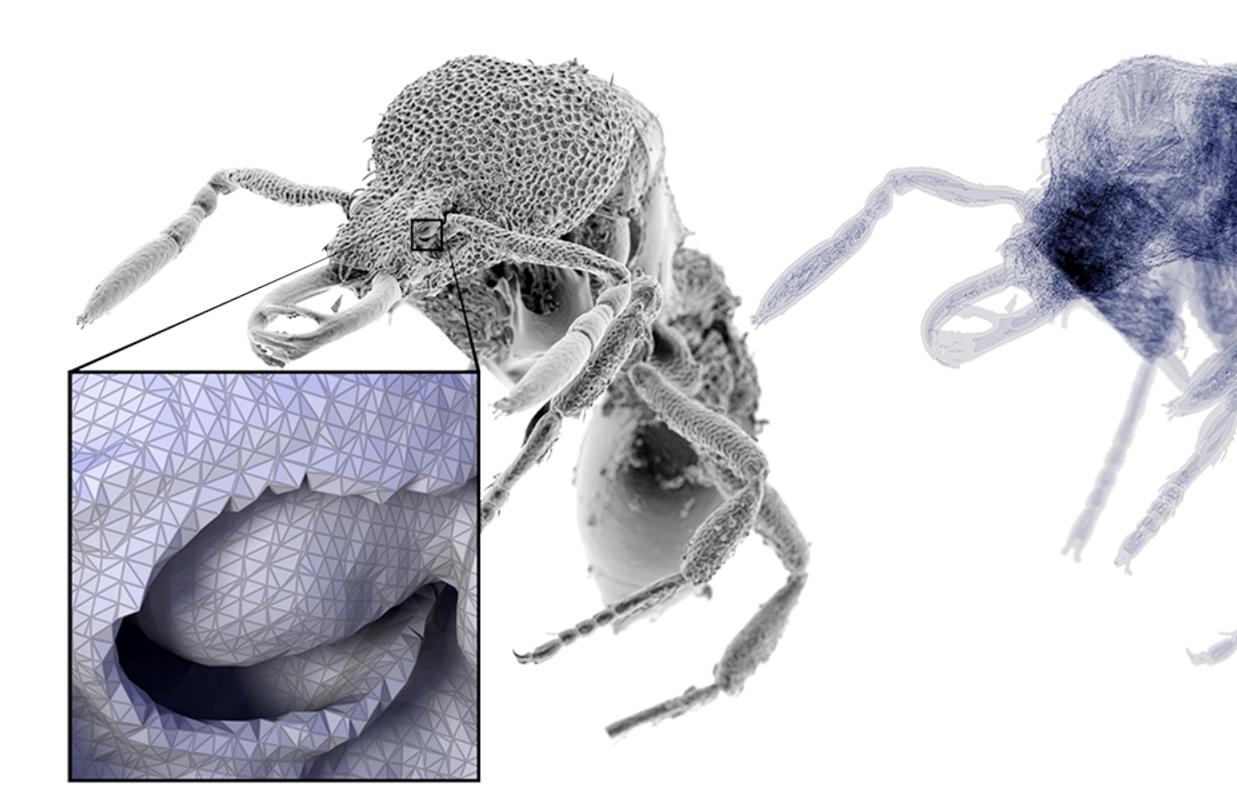
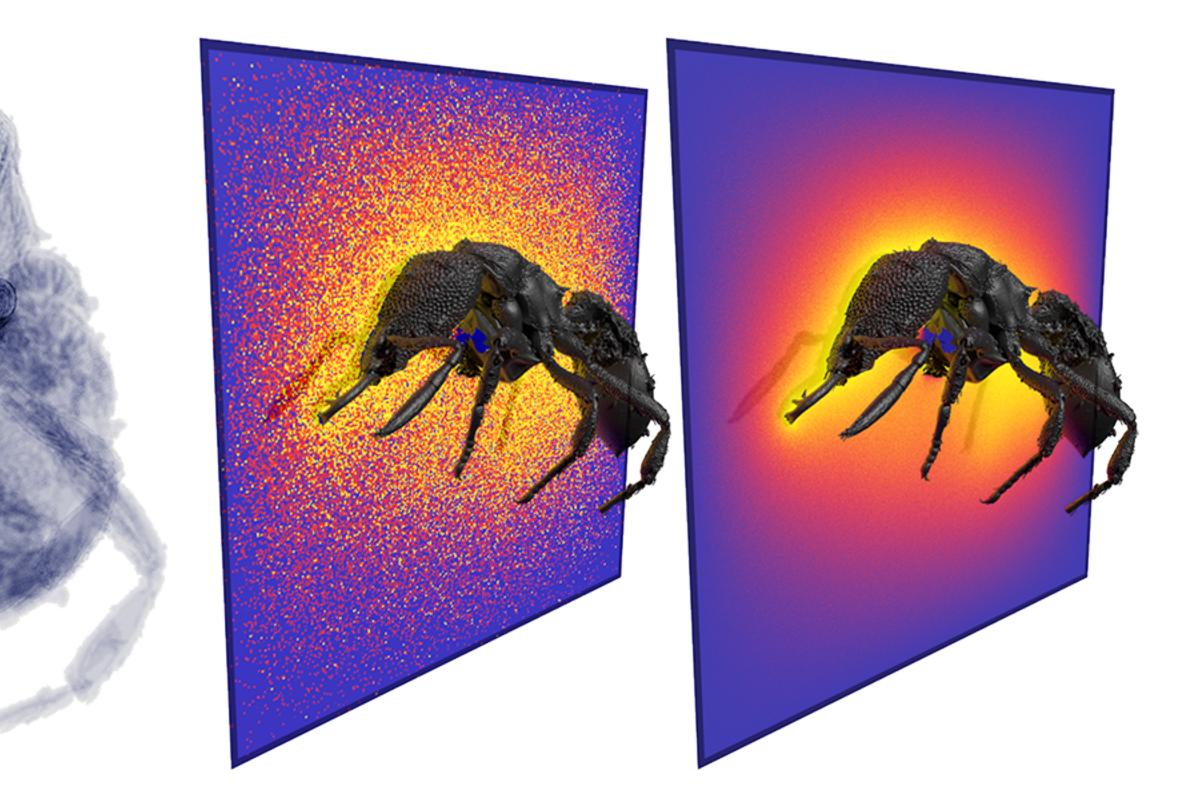
Monte Carlo Geometry Processing





Just a little bit of Laplace Equation

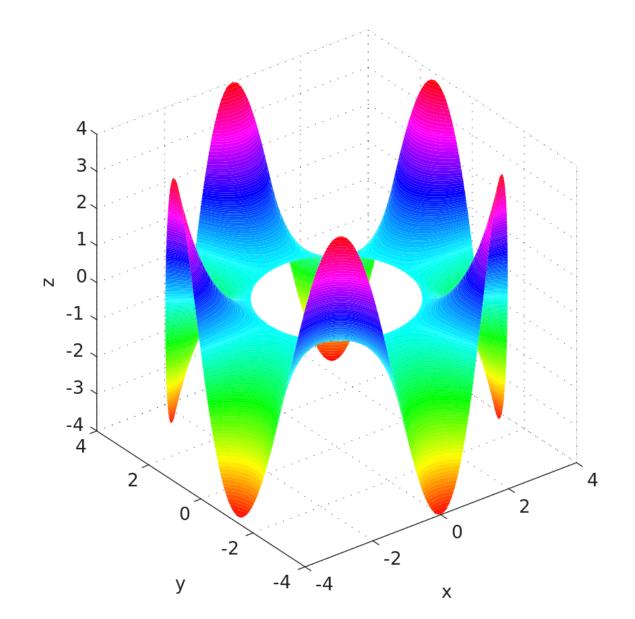
$\Delta u = 0 \quad \text{on } \Omega,$

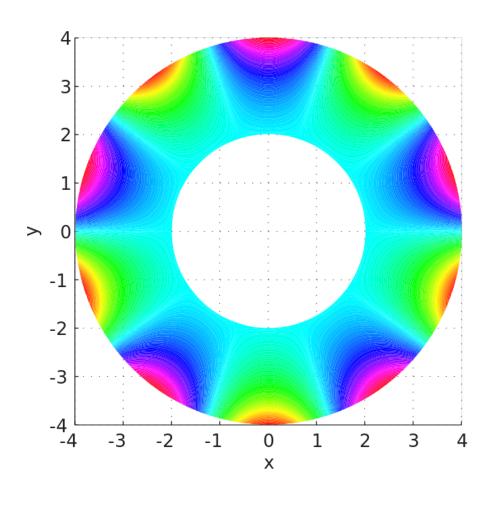
- $u = g \quad \text{on} \partial \Omega, \quad g : \partial \Omega \to \mathbb{R}$

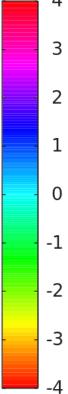
Just a little bit of Laplace Equation

$\begin{array}{lll} \Delta u = 0 & \text{on } \Omega, \\ u = g & \text{on } \partial \Omega, \quad g : \partial \Omega \to \mathbb{R} \end{array}$

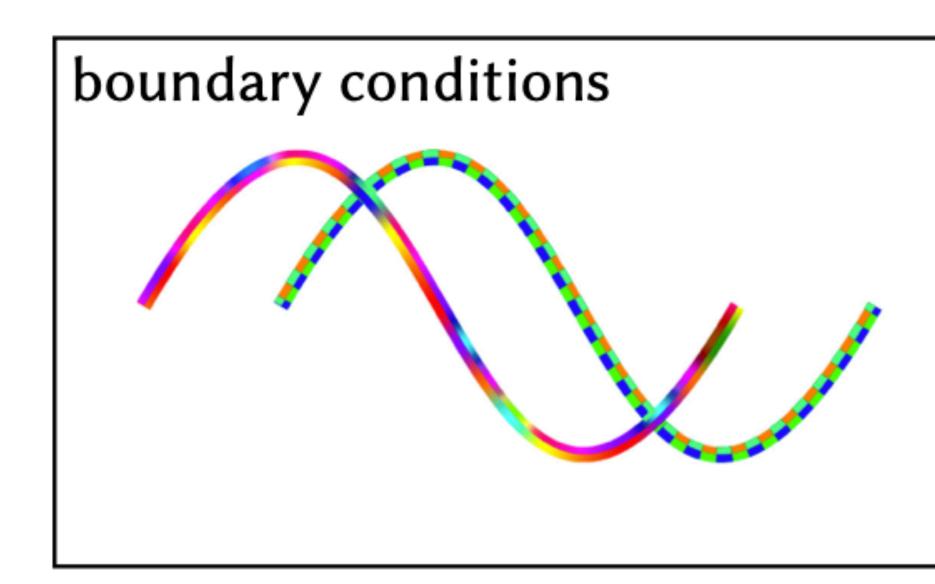
Ω is an annulus $u = 0 \quad \text{inner boundary of } ∂Ω$ $u = 4 \sin(θ) \quad \text{exterior boundary of } ∂Ω$

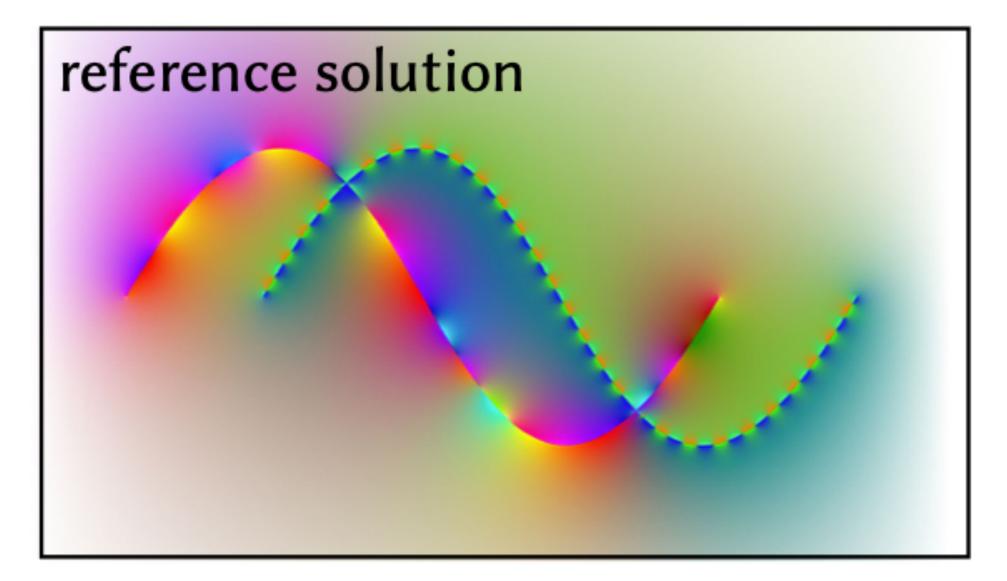






Laplace equation as a diffusion process



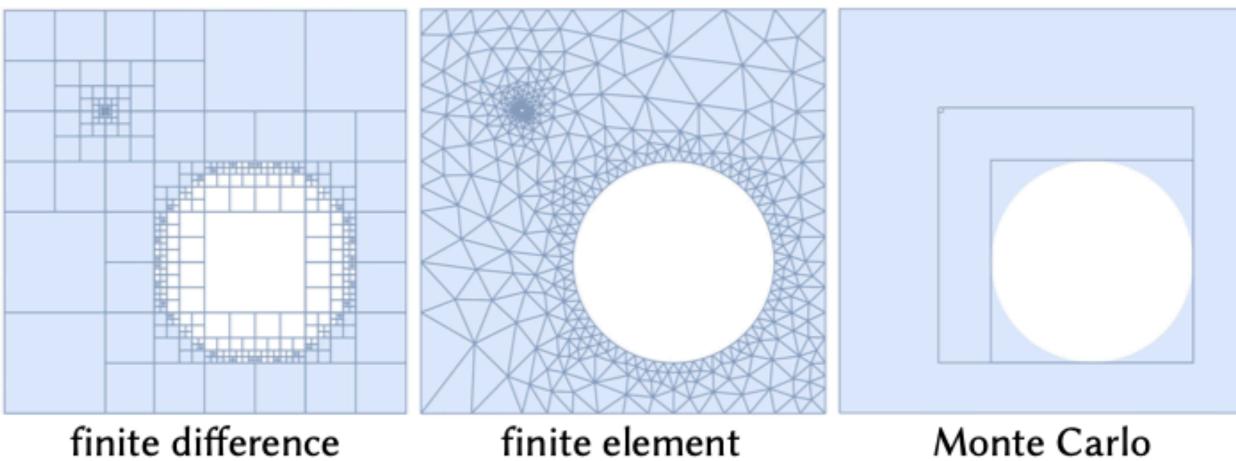


Laplace / Laplace-Beltrami operator

$\Delta u = -$

On Cartesian domains $\Delta f(x, y) =$

Many discretisation toolboxes: Finite difference, finite element, finite volume, discrete exterior calculus...

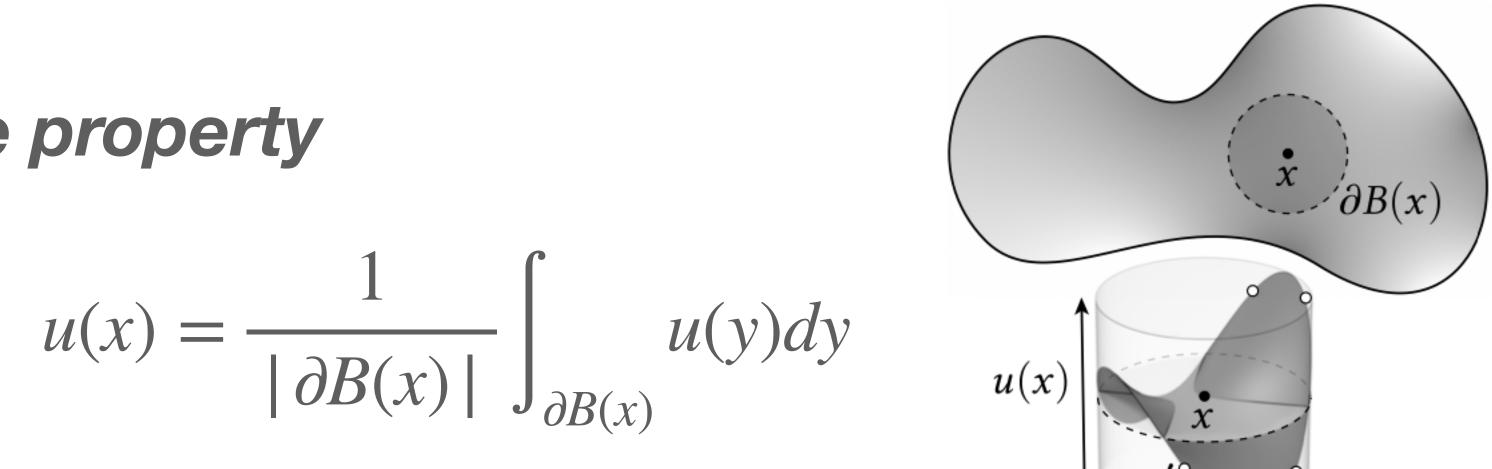


finite difference

$$- \frac{\partial iv}{\partial x^2} (\nabla u)$$
$$= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$\Delta u = 0 \quad u = g \quad \text{on } \partial \Omega.$

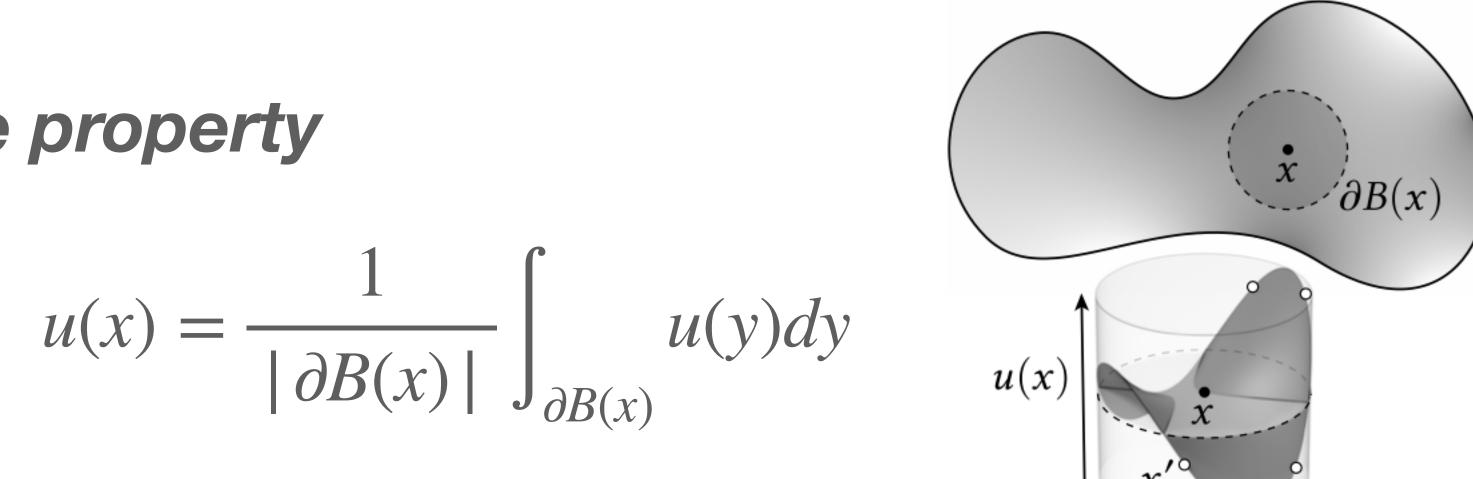
mean value property



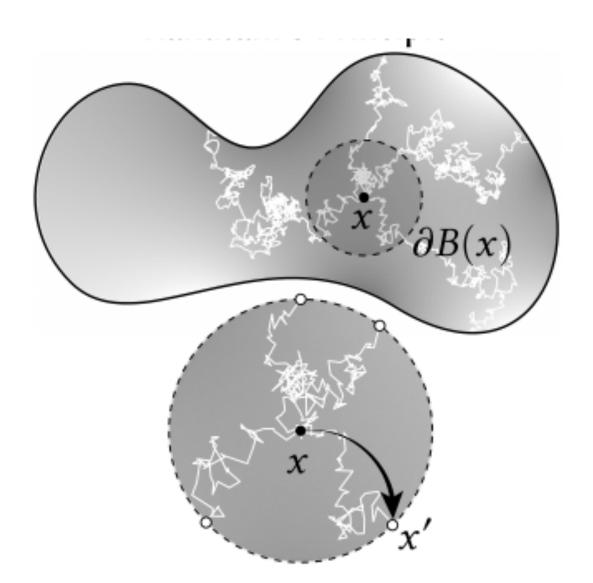
$\Delta u = 0 \quad u = g \quad \text{on } \partial \Omega.$

mean value property

Random walker



$u(x) = E[g(y)], \quad y \in \partial \Omega$

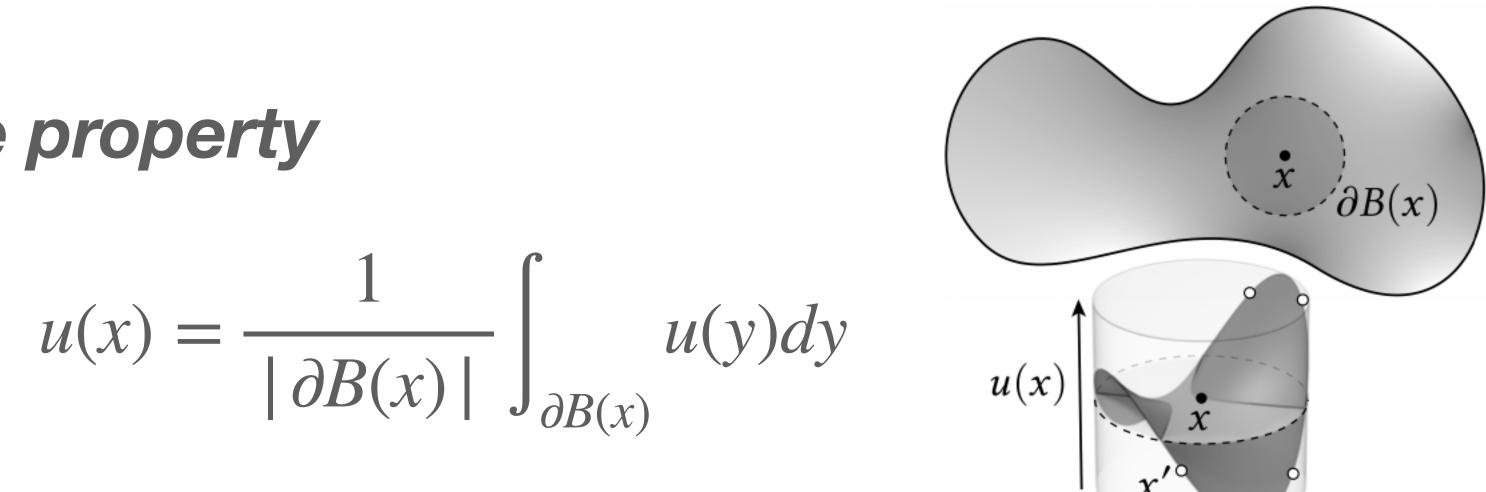


$\Delta u = 0 \quad u = g \quad \text{on } \partial \Omega.$

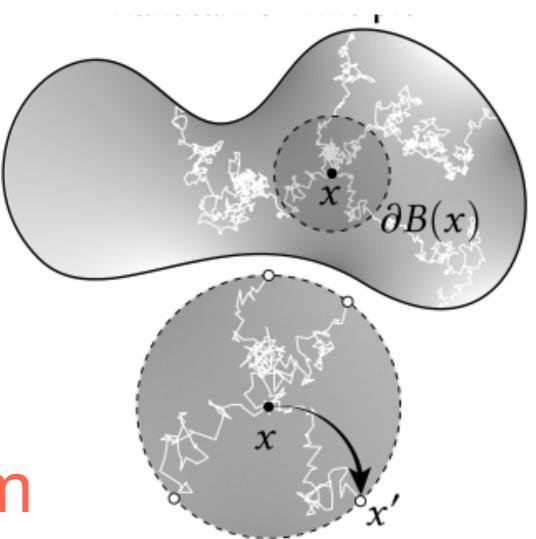
mean value property

Random walker

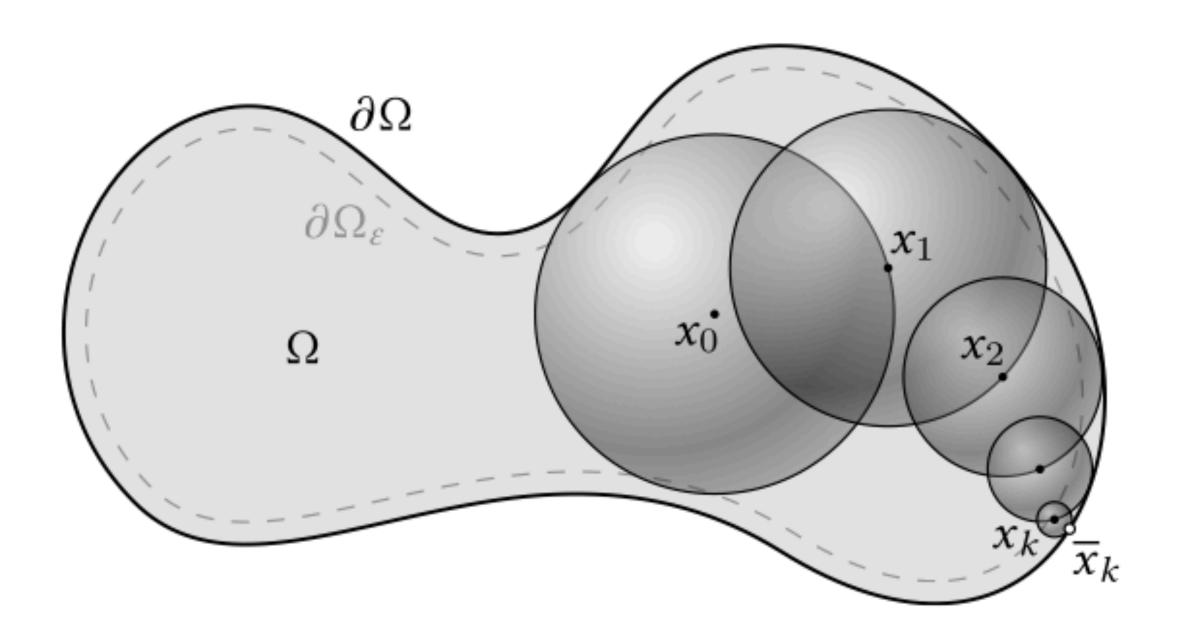
 \Rightarrow Solving linear elliptic PDE as a MC integration problem



$u(x) = E[g(y)], \quad y \in \partial \Omega$



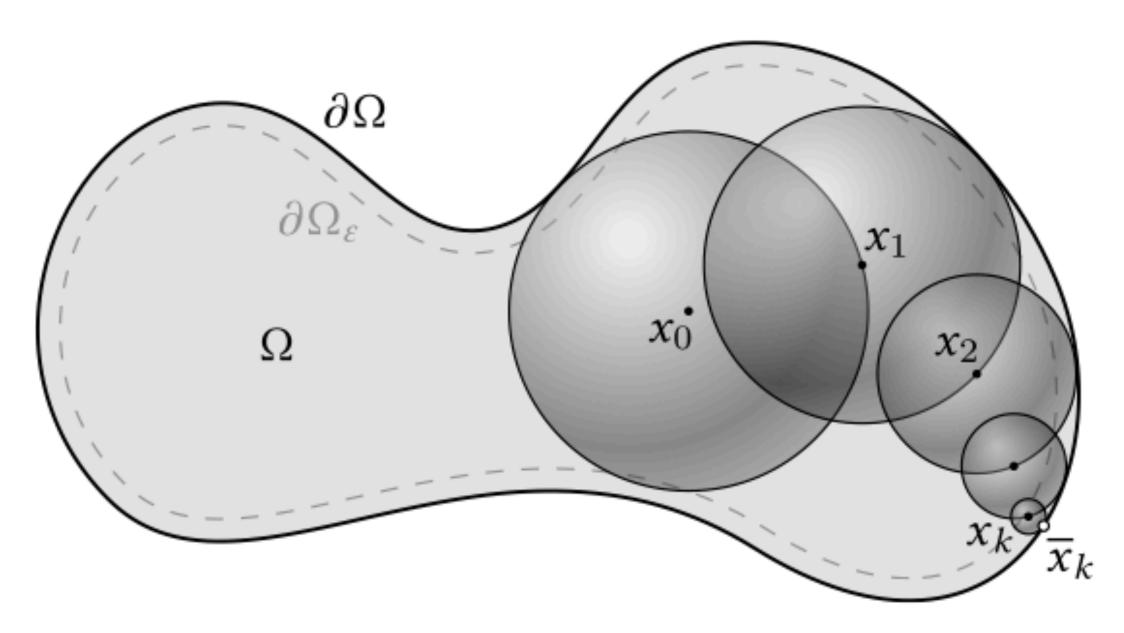
Walk Of Sphere Algorithm



Path construction

To estimate $u(x_0)$, compute the inscribed largest sphere centered at x_0 , Sample the boundary of the sphere to define x_1 , compute its largest inscribed ball Repeat until we get a sample x_k close to the boundary, accumulate contributions $g(\bar{x_k})$

Walk Of Sphere Algorithm



Path construction To estimate $u(x_0)$, compute the inscribed largest sphere centered at x_0 . Sample the boundary of the sphere to define x_1 , compute its largest inscribed ball Repeat until we get a sample x_k close to the boundary, accumulate contributions $g(\bar{x_k})$

Nearest Neighbor Search

$\Delta u = f \quad on \, \Omega$ u(x) = $u = g \quad on \,\partial\Omega$

$$\frac{1}{\partial B(x)} \int_{\partial B(x)} u(y) dy + \int_{B(x)} f(y) G(x, y) dy$$

$$\frac{1}{\partial B(x)} \int_{\partial B(x)} u(y) dy + \int_{B(x)} f(y) G(x, y) dy$$

 \Rightarrow we need to sample $\partial B(x)$ and B(x)

$$\Delta u = f \quad on \,\Omega$$

$$u(x) = \frac{1}{|\partial B(x)|} \int_{\partial B(x)} u(y) dy + \int_{B(x)} f(y) G(x, y) dy$$

$$\Delta u - cu = f \quad on \, \Omega$$
$$u = g \quad on \, \partial \Omega$$

 \Rightarrow we need to sample $\partial B(x)$ and B(x)

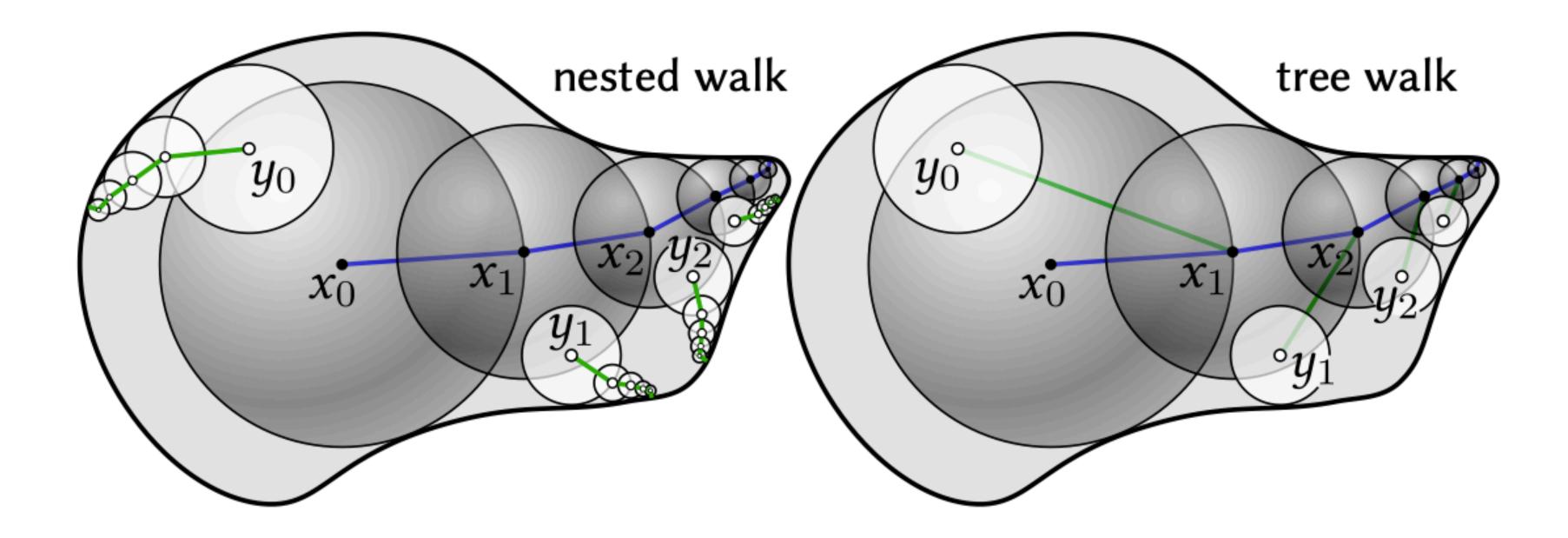
$$\Delta u = f \quad on \,\Omega \qquad \qquad u(x) = u = g \quad on \,\partial\Omega$$

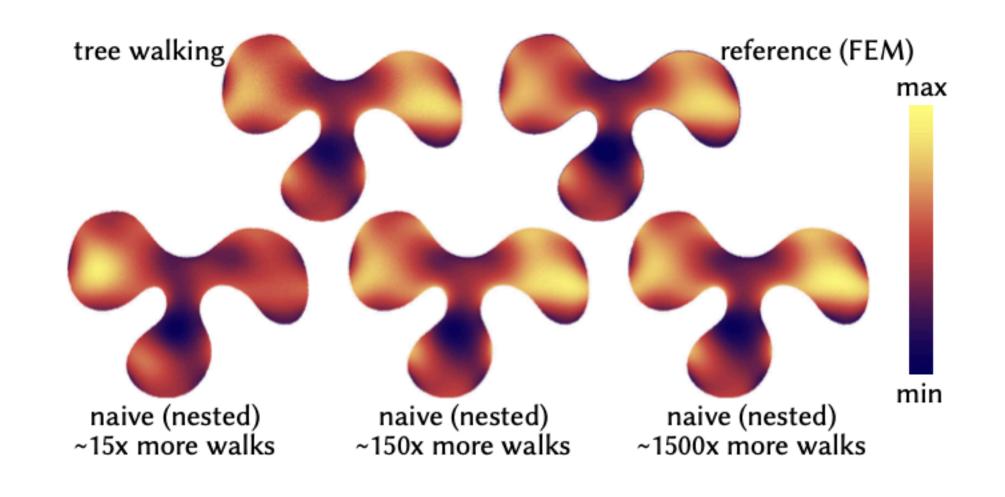
$$\Delta u - cu = f \quad on \, \Omega$$
$$u = g \quad on \, \partial \Omega$$

$$\Delta^{2} u = 0 \quad on \,\Omega$$
$$u = g \quad on \,\partial\Omega$$
$$\Delta u = h \quad on \,\partial\Omega$$

$$\frac{1}{\partial B(x)} \int_{\partial B(x)} u(y) dy + \int_{B(x)} f(y) G(x, y) dy$$

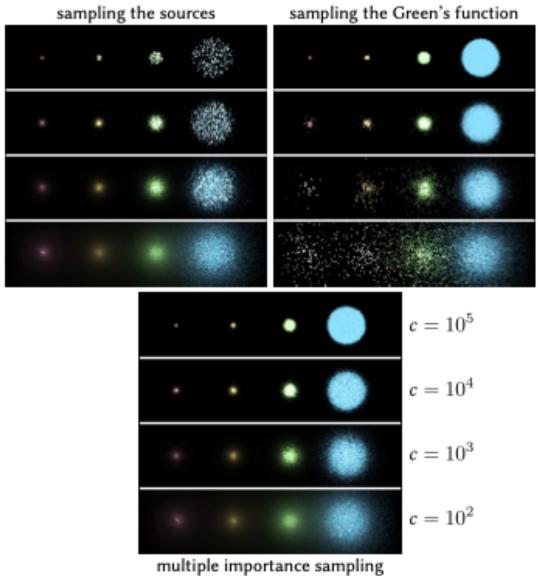
 \Rightarrow we need to sample $\partial B(x)$ and B(x)





 \Rightarrow Uniform sampling patterns

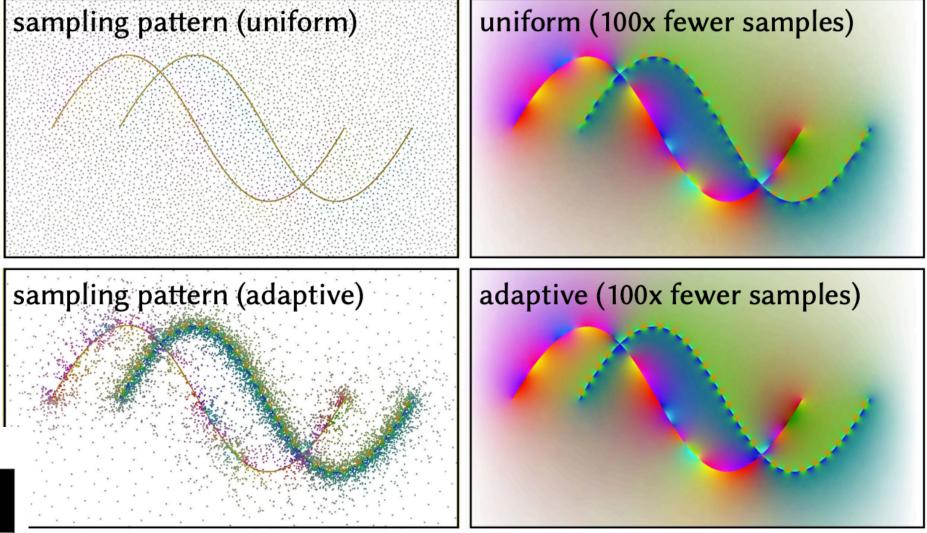
⇒ Adaptive / importance sampling

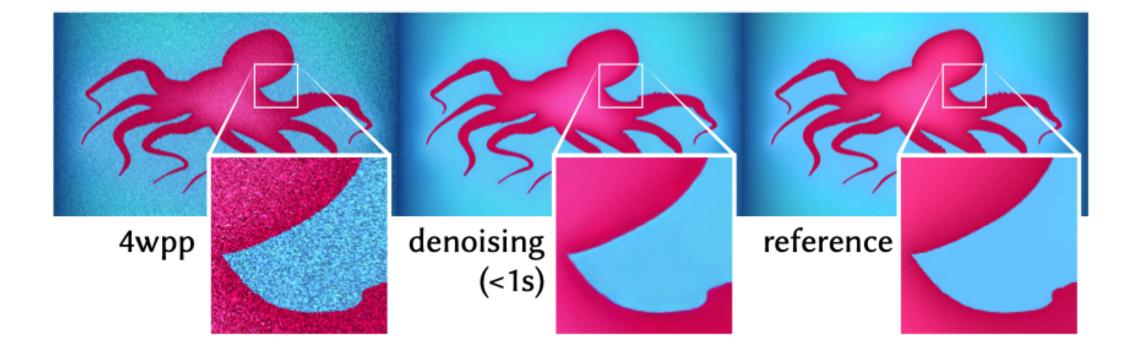


⇒ Multiple Importance Sampling

 \Rightarrow Path strategies

 \Rightarrow Russian roulette





 \Rightarrow Uniform sampling patterns

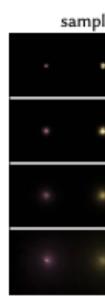
⇒ Adaptive / importance sampling

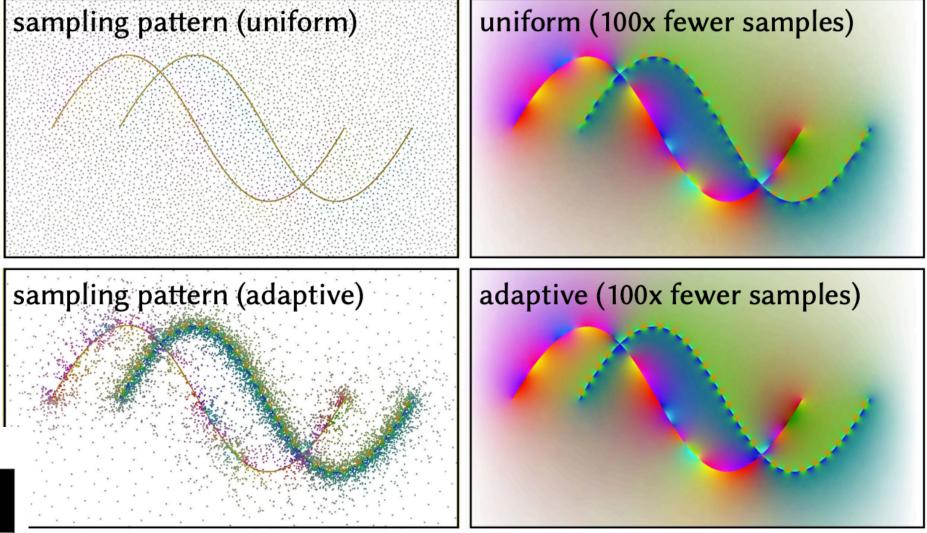
⇒ Control Variate

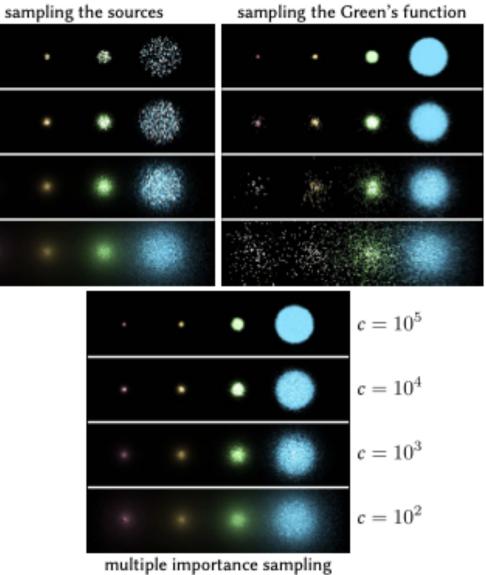
⇒ Multiple Importance Sampling

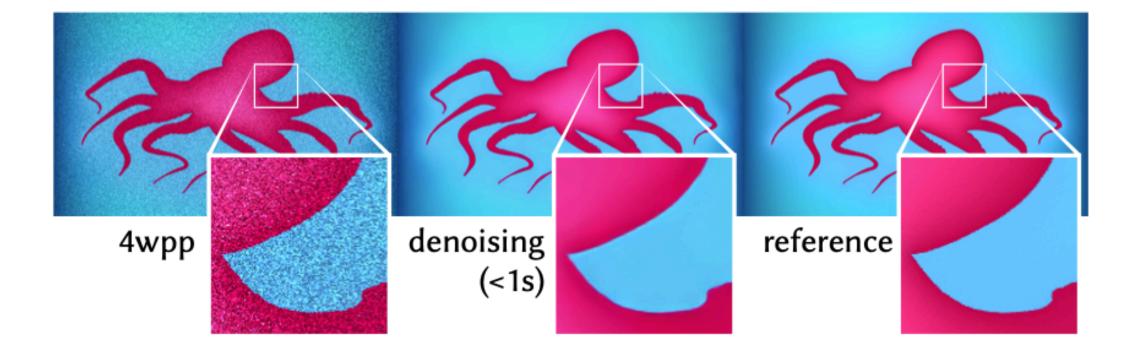
 \Rightarrow Path strategies

 \Rightarrow Russian roulette

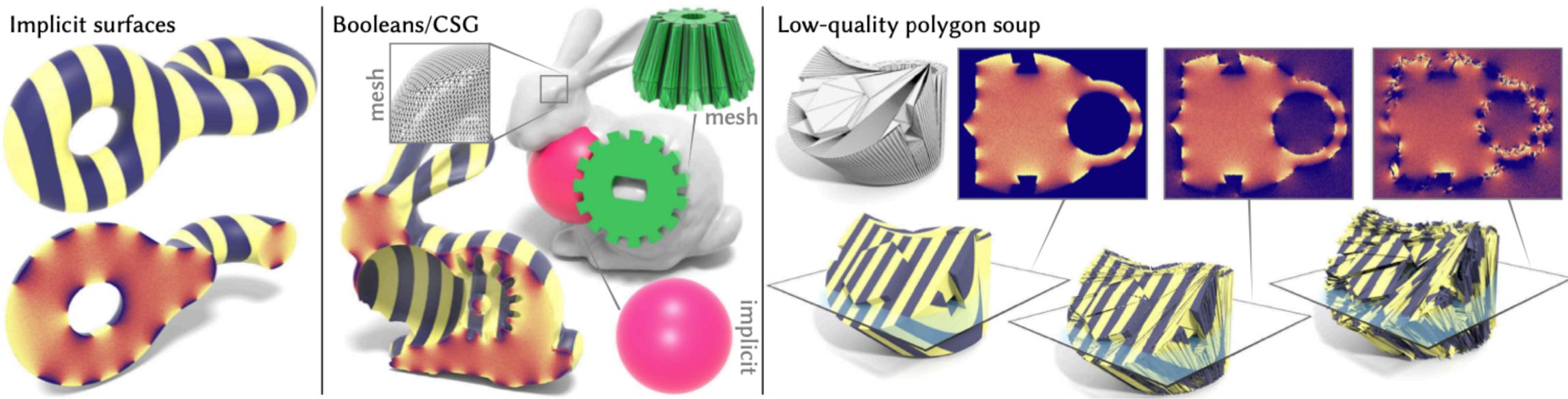








PDE based mesh-less geometry processing



PDE based mesh-less geometry processing

Fig. 16. Bézier curves with two-sided boundary conditions plus a source term *(left)* define a *diffusion curve* image *(right)*. Monte Carlo allows us to zoom in on a region of interest without computing any kind of global solution; since curves need not be discretized, there is no loss of fidelity.

