Vector Fields in Computer Graphics

D. Coeurjolly
Introduction
The Bestiary:
ambient vs. Intrinsic Vector Fields, Direction fields, k-RoSy fields….

ambient per face
ambient per vertex
intrinsic per vertex
intrinsic per face

1-RoSy direction field
2-RoSy vector field
4-RoSy direction field
4-RoSy vector field

RoSy = Rotational Symmetry
Integrability / Smooth (tangent) vector fields

⇒ Notion of parallel transport of vectors on a manifold
⇒ Energy model
⚠️ Singularities!!
Let’s comb some bunnies…
Let’s comb some bunnies…

Thm: Bunnies cannot be combed properly!

Coro: Bunnies have at least 2 cowlicks.
Let’s try simpler shapes…
Singularities encode the topology

Singularities have rational indices
Sum of indices == Euler characteristics
\[\sum_i k_i = \chi \]

N-RoSy fields: \[k_i = n_i/N, \quad n_i \in \mathbb{Z} \]
Singularities encode the topology

Singularities have rational indices
Sum of indices == Euler characteristics
\[\sum_i k_i = \chi \]

Proof Punk Bunnies Theorem: Bunnies are homeomorphic to spheres (😉) whose Euler characteristics are 2. At least two +1 singularities for 1-fields, or a single +2 one. QED:=)

N-RoSy fields: \[k_i = n_i / N, \quad n_i \in \mathbb{Z} \]
$\chi = 0$
\(\chi = -1440 \)
Controlling a vector field?

1. Add hard / soft constraints on the field
 ➡ per triangle constraints
 ➡ via brushing tools

2. Play with singularities (location+indices)
Objectives: authoring vector fields
Objectives: authoring vector fields
Objectives: authoring vector fields
QuadMeshes

4-RoSy field + meshing

(usually curvature guided, singularities matter)
Sweet kitty warm kitty little ball of fur…

1-RoSy field to control the hair in the tangent plane + extrusion to 3D
Scales, Feathers, geometries…

1-RoSy field to have a consistent local frame + patterns glued to the base mesh
Example: VF controlled micro-geometries

Base mesh + pattern

- Compute consistent frames using a smooth 1-field with smooth constraints
- Surface sampling
- Oriented instances
- Rendering
Mathematical background
Directional/vector fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-vector field</td>
<td>One vector, classical “vector field”</td>
</tr>
<tr>
<td>2-direction field</td>
<td>Two directions with (\pi) symmetry, “line field”, “2-RoSy field”</td>
</tr>
<tr>
<td>3-vector field</td>
<td>Three independent vectors, “3-polyvector field”</td>
</tr>
<tr>
<td>4-vector field</td>
<td>Four vectors with (\pi/2) symmetry, “non-unit cross field”</td>
</tr>
<tr>
<td>4-direction field</td>
<td>Four directions with (\pi/2) symmetry, “unit cross field”, “4-RoSy field”</td>
</tr>
<tr>
<td>2(^2)-vector field</td>
<td>Two pairs of vectors with (\pi) symmetry each, “frame field”</td>
</tr>
<tr>
<td>2(^2)-direction field</td>
<td>Two pairs of directions with (\pi) symmetry each, “non-ortho. cross field”</td>
</tr>
<tr>
<td>6-direction field</td>
<td>Six directions with (\pi/3) symmetry, “6-RoSy”</td>
</tr>
<tr>
<td>2(^3)-vector field</td>
<td>Three pairs of vectors with (\pi) symmetry each</td>
</tr>
</tbody>
</table>
Tangent Bundle

- **Smooth 2-manifold** $M, p \in M$

- **Tangent space** T_pM: orthogonal subspace of the surface normal of M at p
Tangent Bundle

- **Smooth 2-manifold** $M, p \in M$

- **Tangent space** $T_p M$: orthogonal subspace of the surface normal of M at p

- **Tangent bundle**: $TM = \bigcup_p T_p M$
Tangent Bundle

- **Smooth 2-manifold** \(M, p \in M \)

- **Tangent space** \(T_p M \): orthogonal subspace of the surface normal of \(M \) at \(p \)

- **Tangent bundle**: \(TM = \bigcup_p T_p M \)

- **Projection of a vector**: \(\pi : TM \rightarrow M \)
Tangent Bundle

- **Smooth 2-manifold** $M, p \in M$

- **Tangent space** $T_p M$: orthogonal subspace of the surface normal of M at p

- **Tangent bundle**: $TM = \bigcup_p T_p M$

- **Projection of a vector**: $\pi : TM \rightarrow M$

- **Tangent Vector field**: $v : M \rightarrow TM$ such that $\pi \circ v = Id$
Connections, Parallel Transport…

- **Directional derivative:** $\nabla_v f$

- **Affine Connection:**
 \[
 \nabla_w (fv_1 + v_2) = (\nabla_w f)v_1 + f\nabla_w v_1 + \nabla_w v_2 \\
 \nabla_{fw_1+w_2} v = f\nabla_{w_1} v + \nabla_{w_2} v
 \]

- **Parallel Transport** of a vector v_0 along a curve $c : [0,1] \to M$
 \[
 \nabla_{\dot{c}(t)} v(t) = 0 \\
 \text{s.t. } v(0) = v_0
 \]
Riemannian Metric and Levi-Civita Connection
Riemannian Metric and Levi-Civita Connection

- **Riemannian metric** $g = \langle \cdot, \cdot \rangle_p$ on T_pM
Riemannian Metric and Levi-Civita Connection

- **Riemannian metric** $g = \text{scalar product } \langle \cdot , \cdot \rangle_p$ on T_pM

- From g, we can measure the **distance between pair of points** on M, define geodesics, compute angles between vectors, between curves, define intrinsic quantities (e.g. *Gaussian curvature*), define **VF differential operators**…
Riemannian Metric and Levi-Civita Connection

- **Riemannian metric** $g = \text{scalar product} \langle \cdot, \cdot \rangle_p$ on T_pM

- From g, we can measure the **distance between pair of points** on M, define geodesics, compute angles between vectors, between curves, define intrinsic quantities (e.g. **Gaussian curvature**), define **VF differential operators**...
Riemannian Metric and Levi-Civita Connection

- **Riemannian metric** $g = \text{scalar product } \langle \cdot, \cdot \rangle_p$ on T_pM

- From g, we can measure the **distance between pair of points** on M, define geodesics, compute angles between vectors, between curves, define intrinsic quantities (e.g. **Gaussian curvature**), define **VF differential operators**…

- **Levi-Civita Connection**: $\nabla_u g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$
Riemannian Metric and Levi-Civita Connection

- **Riemannian metric** \(g = \text{scalar product} \langle \cdot , \cdot \rangle_p \) on \(T_pM \)

- From \(g \), we can measure the **distance between pair of points** on \(M \), define geodesics, compute angles between vectors, between curves, define intrinsic quantities (e.g. **Gaussian curvature**), define **VF differential operators**…

- **Levi-Civita Connection**: \(\nabla_u g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w) \)

 - i.e. scalar product between pairs of vectors does not change when parallel-transported
Riemannian Metric and Levi-Civita Connection

- **Riemannian metric** $g = \text{scalar product } \langle \cdot , \cdot \rangle_p$ on T_pM

- From g, we can measure the **distance between pair of points** on M, define geodesics, compute angles between vectors, between curves, define intrinsic quantities (e.g. **Gaussian curvature**), define **VF differential operators**…

- **Levi-Civita Connection:** $\nabla_u g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$

 - i.e. scalar product between pairs of vectors does not change when parallel-transported

- linked to geodesic curvature of a curve on M
Holonomy

- **Holonomy angle**: angle defect when parallel transporting a vector along a closed curve

- **Using Levi-Citiva connection**: holonomy \equiv integral of the Gaussian curvature on the patch (mod 2π)
Gradient, divergence and curl
Gradient, divergence and curl

- **Gradient of a function** f: VF « grad f » such that
 $\langle \text{grad } f, v \rangle = \nabla_v f$, $\forall v \in TM$
Gradient, divergence and curl

- **Gradient of a function** f: ∇f such that $\langle \nabla f, v \rangle = \nabla_v f$, $\forall v \in TM$
Gradient, divergence and curl

- **Gradient of a function** f: VF « grad f » such that
 $$\langle \text{grad} f, v \rangle = \nabla_v f, \ \forall v \in TM$$

- **Divergence:**
 $$\text{div} \ v(p) = \sum_{i=1}^{d} \langle \nabla_{e_i} v(p), e_i \rangle$$

 ($\{e_i\}$ an orthogonal basis of T_pM)
Gradient, divergence and curl

- **Gradient of a function** f: \(\text{VF} \leftarrow \text{grad} \ f \) such that
 \[\langle \text{grad} \ f, \ v \rangle = \nabla_v f, \; \forall \ v \in TM \]

- **Divergence:** \(\text{div} \ v(p) = \sum_{i=1}^{d} \langle \nabla_{e_i} v(p), e_i \rangle \)
 \((\{e_i\} \text{ an orthogonal basis of } T_pM) \)

- **Curl:** \(\text{curl} \ v = -\text{div} J \ v \)
 \[J : v \mapsto \mathbf{N} \times v \]
Gradient, divergence and curl

- **Gradient of a function** f: VF « grad f » such that
 \[
 \langle \text{grad} f, v \rangle = \nabla_v f, \ \forall v \in TM
 \]

- **Divergence**: $\text{div} \ v(p) = \sum_{i=1}^{d} \langle \nabla_{e_i} v(p), e_i \rangle$
 \[
 (\{e_i\} \text{ an orthogonal basis of } T_p M)
 \]

- **Curl**: $\text{curl} \ v = - \text{div} \ J \ v$
 \[
 J : v \mapsto \mathbb{N} \times v
 \]
Gradient, divergence and curl

- **Gradient of a function** \(f \): \(\text{VF « \nabla f } \) such that
 \[\langle \nabla f, v \rangle = \nabla_v f, \forall v \in TM \]

- **Divergence**: \(\text{div } v(p) = \sum_{i=1}^{d} \langle \nabla_{e_i} v(p), e_i \rangle \)

 Sinks and sources
 \(\{e_i\} \) an orthogonal basis of \(T_p M \)

- **Curl**: \(\text{curl } v = - \text{div } J v \)
 \(J: v \mapsto N \times v \)

 Rotation around a point
Helmholtz-Hodge decomposition
Helmholtz-Hodge decomposition

\[\mathcal{X} = \text{Image(\text{grad})} \oplus \text{Image(J grad)} \oplus \mathcal{H} \]
Fields on patches

⚠ boundary conditions
Fields on patches

Boundary points \approx singularities or hard constraints

⚠️ boundary conditions
Fairness of a vector field

• How to evaluate / control the smoothness of a VF?
Computing smooth intrinsic n-RoSy fields
Discretization issues

• Piecewise constant VF per face vs linearly interpolated VF

• Closely related to space of scalar functions

Lagrange elements

Crouzeix-Raviart elements
Discretization issues

- Piecewise constant VF per face vs linearly interpolated VF
- Closely related to space of scalar functions

Computational efficiency, Discrete Helmotz-Hodge, implicit/explicit singularities…

Lagrange elements
Crouzeix-Raviart elements
How to compute discrete N-RoSy fields?

TL;DR: unknowns are one angle per face, big linear operator (matrix) to encode the geometry and topology, minimizing energy ⇔ solve linear system or eigendecomposition problem.
Two algorithms:

• one focusing on holonomy
• one based on a PDE approach
Linear Solve!
Basis for loops on a surface

Cycles: contractibles / noncontractibles

\(d_0 \in \mathbb{R}^{|E| \times |V|}\)

\((d_0)_{ij} = \begin{cases}
\pm 1, & \text{dual edge } i \text{ is contained in dual cell } j \\
0, & \text{otherwise.}
\end{cases}\)

\(H_{ij} = \begin{cases}
\pm 1, & \text{if dual edge } i \text{ is in generator } j \\
0, & \text{otherwise.}
\end{cases}\)

\[
A = \begin{bmatrix}
d_0^T \\
H^T
\end{bmatrix}.
\]
Holonomy, angular defects and trivial connection

Contractibles: Gaussian curvature
\[K \in \mathbb{R}^{V} \]

Non contractibles: holonomie
\[z \in \mathbb{R}^{2g} \]
Holonomy, angular defects and trivial connection

Contractibles: Gaussian curvature
\[K \in \mathbb{R}^{|V|} \]

Non contractibles: holonomie
\[z \in \mathbb{R}^{2g} \]

Trivial connection = angular defect for every cycle is zero
Singularities and indices

Index of a vertex: $k \in \mathbb{Z}^{|V|} + 2g$

$$\sum_i k_i = \chi$$ \hspace{1cm} (Euler)

New angle defects:

$$\tilde{K}_i = K_i - 2k_i \pi$$

$$\tilde{z}_i = z_i - 2k_i \pi$$

$$b = [\tilde{K} \ \tilde{z}]^T$$

n-RoSy fields: $k_i = n_i/N$, $n_i \in \mathbb{Z}$
Solve

$$\min_x ||x||_2 \quad \text{s.t.} \quad Ax = -b,$$

A unique solution exists, using a projection onto the kernel:

$$Ax = -b$$

$$x^* = \tilde{x} - d_1^T (d_1 d_1^T)^{-1} d_1 \tilde{x}$$
The Vector Heat Method

NICHOLAS SHARP, YOUSUF SOLIMAN, and KEENAN CRANE, Carnegie Mellon University

This paper describes a method for efficiently computing parallel transport of tangent vectors on curved surfaces, or more generally, any vector-valued data on a curved manifold. More precisely, it extends a vector field defined over any region to the rest of the domain via parallel transport along shortest geodesics. This basic operation enables fast, robust algorithms for extrapolating level set velocities, inverting the exponential map, computing geometric medians and Karcher/Fréchet means of arbitrary distributions, constructing centroidal Voronoi diagrams, and finding consistently ordered landmarks. Rather than evaluate parallel transport by explicitly tracing geodesics, we show that it can be computed via a short-time heat flow involving the connection Laplacian. As a result, transport can be achieved by solving three prefactored linear systems, each akin to a standard Poisson problem. Moreover, to implement the method we need only a discrete connection Laplacian, which we describe for a variety of geometric data structures (point clouds, polygon meshes, etc.). We also study the numerical behavior of our method, showing empirically that it converges under refinement, and augment the construction of intrinsic Delaunay triangulations (IDT) so that they can be used in the context of tangent vector field processing.

CCS: • Mathematics of computing → Discretization; Partial differential equations; • Computing methodologies → Shape analysis;

Additional Key Words and Phrases: discrete differential geometry, parallel transport, velocity extrapolation, logarithmic map, exponential map, Karcher
Prelim: Heat diffusion

\[u(x, t) : \Omega \times \mathbb{R}^+ \rightarrow \mathbb{R} \]

\[\frac{\partial u}{\partial t} = \Delta u \quad \text{subject to} \quad u(x, 0) = u_0(x) \]
Discrete Laplace Operator in 2D

In \mathbb{R}^2, $\Delta f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
Discrete Laplace Operator in 2D

In \mathbb{R}^2, \(\Delta f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \)

In $[0,n]^2$, with 1st order finite diff. appRox.

\[
Lf(x, y) = f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1) - 4f(x, y)
\]
Discrete Laplace Operator in 2D

In \mathbb{R}^2, \[\Delta f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

In $[0,n]^2$, with 1st order finite diff. approx.

\[Lf(x, y) = f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1) - 4f(x, y) \]

\[L \in \mathbb{R}^{|V| \times |V|} \]

$L(i, j) = 1$ if i is adjacent to j

$L(i, i) = \text{degree}(i)$
Discrete Heat Equation

\[\frac{\partial u}{\partial t} = \Delta u \quad \Rightarrow \quad (id - t\Delta)u_t = u_0 \] (backward Euler)

Solve a (sparse) linear system \((Id - tL)u_t = u_0\)

\[\Omega = 3 \times 3 \text{ image } = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \]

\[L = \begin{bmatrix} -2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -3 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & -3 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -2 \end{bmatrix} \]

\[u_0 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

\[u_t = (Id - tL)^{-1}u_0 \]
Laplace-Beltrami operator on surfaces

\[\tilde{L} \in \mathbb{R}^{V \times V} \]

\[\tilde{L}(i, j) = \frac{1}{2} \left(\cot(\alpha_{ij}) + \cot(\beta_{ij}) \right) \text{ if } i \text{ is adjacent to } j \]

\[\tilde{L}(i, i) = - \sum_j L(i, j) \]

weak form of the laplacian, Heat equation becomes

\[(M + t\tilde{L})u_t = u_0 \]
if (ImGui::Button("Heat diffusion"))
{
 // Sources
 u0[mesh->vertex(2714)] = 42.0;
 u0[mesh->vertex(1613)] = 17;
 Eigen::SparseMatrix<double> Poisson = (massMatrix + delta*laplacian); // same as (I - tL)

 // We solve are solving the Poisson problem
 SquareSolver<double> heatSolver(Poisson);
 auto ut = heatSolver.solve(u0.toVector());

 // Display
 utQ.fromVector(ut);
 polyscope::getSurfaceMesh()->addQuantity("u_t", utQ);
 polyscope::getSurfaceMesh()->addQuantity("u_0", u0);
}
Connection Laplacian and Vector Heat equation

Δ^∇ is the connection Laplacian (second derivative of vector fields)

Vector heat equation: \[\frac{d}{dt} X_t = \Delta^\nabla X_t \]

$\Rightarrow (M + tL^\nabla)Y = Y_0$

Vector heat kernel behaves like parallel transport along geodesics!
Algorithm 1: Vector Heat Method

Input: A vector field X supported on a subset $\Omega \subset M$ of the domain M.

Output: A vector field \overline{X} on all of M.

I. Integrate the vector heat flow $\frac{d}{dt} Y_t = \nabla^\Omega Y_t$ for time t, with $Y_0 = X$.

II. Integrate the scalar heat flow $\frac{d}{dt} u_t = \Delta u_t$ for time t, with $u_0 = |X|$.

III. Integrate the scalar heat flow $\frac{d}{dt} \phi_t = \Delta \phi_t$ for time t, with $\phi_0 = \mathbb{1}_\Omega$.

IV. Evaluate the vector field $\overline{X}_t = u_t Y_t / \phi_t |Y_t|$.
Vector Heat Method [Sharp et al 2019]

Algorithm 1: Vector Heat Method

Input: A vector field X supported on a subset $\Omega \subset M$ of the domain M.

Output: A vector field \overline{X} on all of M.

I. Integrate the vector heat flow $\frac{d}{dt} Y_t = \nabla Y_t$ for time t, with $Y_0 = X$.
II. Integrate the scalar heat flow $\frac{d}{dt} u_t = \Delta u_t$ for time t, with $u_0 = |X|$.
III. Integrate the scalar heat flow $\frac{d}{dt} \phi_t = \Delta \phi_t$ for time t, with $\phi_0 = 1_{\Omega}$.
IV. Evaluate the vector field $\overline{X}_t = u_t Y_t / \phi_t |Y_t|$.

Heat diffusion on scalars 😃
ALGORITHM 1: Vector Heat Method

Input: A vector field X supported on a subset $\Omega \subset M$ of the domain M.

Output: A vector field \overline{X} on all of M.

I. Integrate the vector heat flow $\frac{d}{dt} Y_t = \Delta Y_t$ for time t, with $Y_0 = X$.

II. Integrate the scalar heat flow $\frac{d}{dt} u_t = \Delta u_t$ for time t, with $u_0 = |X|$.

III. Integrate the scalar heat flow $\frac{d}{dt} \phi_t = \Delta \phi_t$ for time t, with $\phi_0 = \mathbb{1}_\Omega$.

IV. Evaluate the vector field $\overline{X}_t = u_t Y_t / \phi_t |Y_t|$.
Vector Heat Method in Euclidean domains

\[(\text{Id} - tL)u = u_0 \quad (\text{Id} - tL)\phi = \phi_0 \]
\[(\text{Id} - tL)Y^x = Y^x_0 \quad (\text{Id} - tL)Y^y = Y^y_0 \]
\[\Rightarrow \bar{Y} = \frac{u}{\phi} \cdot \frac{Y}{\|Y\|} \]

(\(\Delta^V \equiv \Delta \) in \(\mathbb{R}^d\))

Solve 4 (sparse) Poisson problems

\(Y_0 \) : input vectors
\(u_0 \) : input vector norms
\(\phi_0 \) : Diracs at vector positions

(toroidal boundary conditions 😍)
Vector Heat Method in Euclidean domains

\[Y_0 : \text{input vectors} \]
\[u_0 : \text{input vector norms} \]
\[\phi_0 : \text{Diracs at vector positions} \]

Solve 4 (sparse) Poisson problems

\[(Id - tL)u = u_0 \quad (Id - tL)\phi = \phi_0 \]
\[(Id - tL)Y^x = Y^x_0 \quad (Id - tL)Y^y = Y^y_0 \]

\[\Rightarrow \bar{Y} = \frac{u}{\phi} \cdot \frac{Y}{\|Y\|} \]

\((\Delta^V \equiv \Delta \text{ in } \mathbb{R}^d) \)

(toroidal boundary conditions 😍)
int W=512, H=512;
Eigen::SparseMatrix<double> lap(W*H, W*H);
Eigen::SparseMatrix<double> Id(W*H, W*H);
Id.setIdentity();

Eigen::Vector2d u_0(W*H);
Eigen::Vector2d phi_0(W*H);
Eigen::Vector2d v_x0(W*H);
Eigen::Vector2d v_y0(W*H);

// Single vector source
v_x0[123] = 1.0;
v_y0[123] = 1.0;
u_0[123] = std::sqrt(2.0); // norm
phi_0[123] = 1.0; // diracs

// Lap
for(auto i=0; i < W*H; ++i)
 for(auto j=0; j < H*W; ++j)
 {
 lap.coeffRef(i, j) = -4.0;
 if (adjacent(i, j))
 lap.coeffRef(i, j) = 1.0;
 }

// Solve
SquareSolver<double> solver(Id - t*lap);
auto u_t = solver.solve(u_0);
auto phi_t = solver.solve(phi_0);
auto v_xt = solver.solve(v_x0);
auto v_yt = solver.solve(v_y0);

Eigen::Vector2d final_x(W*H);
Eigen::Vector2d final_y(W*H);

for(auto i=0; i < W*H; ++i)
 {
 final_x[i] = v_xt[i] / std::sqrt((v_xt[i]*v_xt[i] + v_yt[i]*v_yt[i])) * u_t[i] / phi_t[i];
 final_y[i] = v_yt[i] / std::sqrt((v_xt[i]*v_xt[i] + v_yt[i]*v_yt[i])) * u_t[i] / phi_t[i];
 }
Discrete Connection Laplacian

Intrinsic vector per vertex = a complex number \(z = r e^{i \theta} \)

\[
L^V \in \mathbb{C}^{|V| \times |V|}
\]

\[
L^V(i, j) = \begin{cases} r_{ij} \cdot \tilde{L}(i, j) & \text{if } i \text{ is adjacent to } j \\ \tilde{L}(i, i) & \end{cases}
\]

\[
r_{ij} = e^{\phi_{ji} + \pi - \phi_{ij}}
\]

\((L^V \text{ is sparse!})\)

// Connection Laplacian
connectionLaplacian = Eigen::SparseMatrix<Complex> (laplacian.cast< std::complex<double>>());
for (auto edge: mesh->edges())
{
 auto he = edge.halfedge();
 Complex r_ij = gc.vertexTransportCoeffs[he];
 auto i = gc.vertexIndices[he.vertex()];
 auto j = gc.vertexIndices[he.twin().vertex()];
 connectionLaplacian.coeffRef(i, j) = connectionLaplacian.coeffRef(i, j) * inv(r_ij);
 connectionLaplacian.coeffRef(j, i) = connectionLaplacian.coeffRef(j, i) * (r_ij);
Heat Vector Field

\[
(M + t\tilde{L})u = u_0 \quad (M + i\tilde{L})\phi = \phi_0
\]

\[
(M + t\mathcal{L}_\nabla)Y = Y_0
\]

\[
\Rightarrow \tilde{Y} = \frac{u}{\phi} \cdot \frac{Y}{\|Y\|}
\]

2 linear solves on real numbers + 1 solve on complex numbers

```cpp
// Two vectors
vf0[mesh->vertex(1613)] = (double)scale* std::exp((double)theta*IM_1);
vf0[mesh->vertex(2714)] = (double)scale* std::exp((double)theta*IM_1);

// Vector norms
u0[mesh->vertex(2714)] = std::abs(vf0[mesh->vertex(2714)]);
u0[mesh->vertex(1613)] = std::abs(vf0[mesh->vertex(1613)]);

// Diracs
phi0[mesh->vertex(2714)] = 1.0;
phi0[mesh->vertex(1613)] = 1.0;

// Solve
auto ut = solver->solve(u0.toVector());
auto Y = solverConnection->solve(vf0.toVector());
auto phi = solver->solve(phi0.toVector());

// Final
for(auto v: mesh->vertices())
    YfinalQ[v] = YQ[v] / std::abs(YQ[v]) + utQ[v] / phiQ[v];
```
Heat Vector Field

\[(M + t\tilde{L})u = u_0 \quad (M + t\tilde{L})\phi = \phi_0\]

\[(M + tL^\nabla)Y = Y_0\]

\[\Rightarrow \bar{Y} = \frac{u}{\phi} \cdot \frac{Y}{\|Y\|}\]

2 linear solves on real numbers + 1 solve on complex numbers
< Demo >
Further readings

• Similarly to Laplace-Beltrami for scalar functions, VF admits a **spectral decomposition** (and eigenvector basis)

• N-polyvector fields

• VF interpretation of optimal transport (W_1)

