Digital Geometry: Estimators§

author:David Coeurjolly

Principles§

Introduction§

Objectives

e.g.

Algorithmic point of view

Mathematical Context§

Multigrid analysis Gauss digitization scheme parametrized by a grid-step

Dig(\mathcal{X},h) = \left (\frac{1}{h}\cdot \mathcal{X}\right )\cap \mathbb{Z}^n

_images/multi-ellipse-1.png _images/multi-ellipse-2.png _images/multi-ellipse-4.png

Global Quantities§

Definition§

Idea

Multigrid convergence definition

Def.

A discrete geometric estimator \tilde{E} of some geometric quantity E is multigrid convergent for a family of shapes \mathbb{X} and a digitization process Dig iff for all shape X \in \mathbb{X}, there exists a grid step h_X>0 such that the estimate \tilde{E}(Dig(X,h),h) is defined for all 0<h < h_X and

| \tilde{E}(Dig(X,h),h) - E(X) | \le \tau_X(h)

where \tau_X : \mathbb{R}^+ \rightarrow \mathbb{R}^{+} with null limit at 0. This function is the speed of convergence of the estimator.

Area/Volume§

From previous lectures…

Quantity 1 0.1 0.01 0.001
h 1 0.1 0.01 0.001
h^{\frac{15}{11}} 1 0.04328 0.00187 0.00008
_images/gaussConv.png

Step-based Length Estimation§

Idea

We specify:

\Rightarrow statistical analysis to optimize the weights to minimize errors for random distribution of segments of length n

Step-based Perimeter Estimation (bis)§

Generalizarion

Main Result

Thm.

\forall\,n and \forall \, p(\cdot) the set of slopes \alpha such that the estimator is convergent is countable \Rightarrow most of the time, the estimator does not converge

[Tajine,Daurat]

Solution locally adapt the parameter m ? set m as a function of h ? (\rightarrow DSS)

DSS Based Perimeter Estimation§

Basic Idea

Main result

Thm.

\tilde{E}_{DSS}(Dig(X,h)) is multigrid convergent for convex shapes with speed 4.5h

Experimental evaluation§

We need

_images/square1.png _images/square01.png _images/triangle1.png _images/triangle01.png _images/flower1-eps-converted-to.png _images/flower01-eps-converted-to.png _images/ellipse1-eps-converted-to.png _images/ellipse01-eps-converted-to.png _images/accflower1.png _images/accflower01.png
_images/lengths-ball-R10-bis.png _images/lengths-ball-R1000-timings.png

Useful tool: Maximal Segment Covering§

Principle

Maximal covering = set of all maximal segment of \partial Dig(X,h)

Algorithmic point of view

Illustration§

_images/flower5.png _images/flower5-1.png _images/flower5-2.png _images/flower5-3.png
_images/flower5.png _images/flower5-1-zoom.png _images/flower5-2-zoom.png _images/flower5-3-zoom.png
X Dig(X,1) Dig(X,\frac{1}{2}) Dig(X,\frac{1}{4})

Useful to

From normal vector local estimator to length/surface area estimator§

Idea digital version of

l(\gamma) =\int_\gamma n(s)\cdot ds

Hence:

\tilde{E}_{norm}(Dig(X,h)) = h\cdot \sum_{s\in \partial Dig(X,h)} \tilde{n}(s)\cdot\vec{n}_{elem}(s)

_images/snapshot.jpg

Main result: If \tilde{n} uniformly converges in O(h^\alpha) , \tilde{E}_{norm}(Dig(X,h)) converges in O(h^\alpha)

Local Quantities§

Definition of multigrid convergence§

Multigrid convergence for local geometric quantities

Def.

The estimator \tilde{Q} is multigrid-convergent for the family \mathbb{X} if and only if, for any X \in \mathbb{X}, there exists a grid step h_X>0 such that the estimate \tilde{Q}(Dig(X,h),y,h) is defined for all y \in \partial{Dig(X,h)} with 0<h < h_X, and for any x  \in \partial{X},

\forall y \in \partial{Dig(X,h)}

with

\| y - x \|_\infty \le h, \quad \left | \tilde{Q}(Dig(X,h),y,h) - Q(X,x) \right | \le \tau_{X,x}(h),

where \tau_{X,x}: \mathbb{R}^{+*} \rightarrow \mathbb{R}^+ has null limit at 0. This function defines the speed of convergence of \tilde{Q} toward Q at point x of \partial{X}. The convergence is uniform for X when every \tau_{X,x} is bounded from above by a function \tau_X independent of x \in \partial{X} with null limit at 0

\Rightarrow we need a mapping \partial X\rightarrow\partial Dig(X,h)

\Rightarrow Uniform convergence is a strong constraint

Normal/Tangent estimation§

Generic fitting approach

E.g., f(x_i,\vec\beta) = \beta_0 + \beta_1 x for linear fitting.

Example: tangent vector estimator

\Rightarrow No convergence results for fixed m

DSS based Normal vector§

Trivial idea Use a kind of symmetric maximal DSS to estimate the tangent

_images/tangente.png

Algorithmic

Maximal Segment Analysis§

More flexible approach Maximal segment from mxaimal covering

Maximal Segment Analysis (bis)§

If the curve is locally linear, f(l) = f'(0)l, and

\alpha_h=f'(0) + \frac{O(h)}{l}

If the curve has curvature greater than k_{min}>0, Taylor decomposition gives us:

\alpha_h = f'(0) + O(l) + \frac{O(h)}{l}

Convergence Result

Prop.

lim_{h\rightarrow 0} \alpha_h  = f'(0)\,\Leftrightarrow\, \Omega(h^a)\leq l \leq O(h^b)

with 0 < b \leq a < 1

\Rightarrow Length of maximal DSS is crucial !

Curvature Estimation§

Fitting an order-2 polyonmial

Chord length approach

Circumscribing circle from two half-tangent

Nice but l is not in \Theta(h^{-1/2})

Maximal Segment Again§

We need to consider the following quantities

Then, we want to compute:

Everything as functions of h and considering specific shape family \mathbb{X}

Step 1: Digital Convex Hull§

Convex hull of X smallest convex set containing point set X. As consequence of the Def, the convex hull is polygonal convex set with vertices in X

Main result in Lattice polytope in 2D [Barany, Zunic, Balog, Acketa,…]

Thm.

c_1(X) h^{-\frac{2}{3}} \leq n_e \leq c_2(X)h^{-\frac{2}{3}}

\Rightarrow n_e = \Theta\left(h^{-\frac{2}{3}}\right)

(Similar results in n-D exist)

_images/acketa.png _images/exempleILP.png _images/exempleILPcvx.png

Step 2: Number of maximal segments§

Main result [Lachaud, de Vieilleville, Feschet]

If \partial X is convex and C^3

\frac{n_e}{\Theta(\log(h^{-1}))} \leq n_{MS} \leq 3 n_e

Hence

\Theta\left (\frac{h^{-\frac{2}{3}}}{\log(h^{-1})}\right ) \leq n_{MS} \leq \Theta(h^{-\frac{2}{3}})

_images/farey-ms-conv.png _images/square-ms-conv.png
n_e=16\,, n_{MS}=24 n_e=24\,, n_{MS}=4

Step 3: Length of convex hull edges/MS§

(Length = l_1 distance for (1)-contours)

Results on the sum of lengths

\sum_e t_e = |\partial Dig(X,h)| = \Theta(h^{-1})

From [Lachaud, de Vieilleville, Feschet]

|\partial Dig(X,h)| <      \sum_e t_{MS} \leq 19|\partial Dig(X,h)|

Hence

\sum_e t_{MS} = \Theta(h^{-1})

Summary§

If \partial X is convex and C^3

Quantity Smallest MS length Average MS length Largest MS length
t_{MS} \Omega(h^{-\frac{1}{3}}) \Theta(h^{-\frac{1}{3}}) \leq \cdot \leq \Theta(h^{-\frac{1}{3}}log(h^{-1}) O(h^{-\frac{1}{2}})
ht_{MS} \Omega(h^{\frac{2}{3}}) \Theta(h^{\frac{2}{3}}) \leq \cdot \leq \Theta(h^{\frac{2}{3}}log(h^{-1})) O(h^{\frac{1}{2}})

(Hints for \bar{t}_{MS}, the lower bound = lower bound on \sum t_{MS} / upper bound n_{MS}, results for smallest/largest MS require couple of more steps)

\Rightarrow Any slope of MS containing P provides multigrid convergent estimation of tangent at P

Local Differential Estimator Summary§

Tangent Estimation in 2D

_images/all-tangent.png

Curvature Estmiation in 2D

_images/all-curvature.png

Tangent Estimation in Dimension 3§

Slice based approaches

_images/parc.png _images/3cercles.png

Tangent Estimation in Dimension 3§

Convolution based approaches

Convolution of elementary normal vectors in a given neighborhood

_images/normale_elem.png _images/normale_papier.png
_images/snapshot2-1024x610.png

\Rightarrow still have to fix a neighborhood parameter

Tangent Estimation in Dimension 3§

Digital Plane Recognition approaches

… but …

Curvature in dimension 3§

Mean and Gaussian curvature

_images/curvatures.png

Integral based Approaches§

Fitting an implicit polynomial surface is still doable but we need information on the neighborhood

Integral Invariant approach neighborhood in O(h^\frac{1}{3}) seems to be required

Then, from Taylor expansion and for r\rightarrow 0

A_r(x) = \frac{\pi}{2} r^2 - \frac{\kappa(X,x)}{3}r^3 + O(r^4)

V_r(x) = \frac{2\pi}{3} r^3 - \frac{\pi H(X,x)}{4}r^4 + O(r^5)

Hence,

\tilde{H}_r(X,x)\stackrel{def}{=} \frac{8}{3r} - \frac{4V_r(x)}{\pi r^4}

\tilde{H}_r(X,x)\rightarrow H(X,x) by definition when r\rightarrow 0

Toward Digital Version of Integral Invariants§

_images/integral.png

Main Result

Thm.

For a family of shape with onvex C^3-boundary and bounded curvature, \exists h_0 \in  \mathbb{R}^+, for any h \le h_0, setting r=k h^{\frac{1}{3}}, we have

\forall x \in \partial X, \forall \hat{x} \in \partial Dig(X,h),     \| \hat{x} -x\|_\infty \le h \Rightarrow

|    \tilde{Q}(Dig(X,h),\hat{x}) - k(X,x) | \le K     h^{\frac{1}{3}}.

(similar bound in 3D)

What about Gaussian curvature§

Idea

M_1 = \frac{\pi}{48}(3\kappa_1(x) + \kappa_2(x))r^6 + O(r^7)

M_2 = \frac{2\pi}{15}r^5 - \frac{\pi}{48}(\kappa_1(x) + 3\kappa_2(x))r^6 + O(r^7)

M_3 = \frac{19\pi}{480}r^5 - \frac{9\pi}{512}(\kappa_1(x) + \kappa_2(x))r^6 + O(r^7)

Result

Similar convergence results exist with speed O(h^\frac{1}{3})

Experimental analysis confirms the h^\frac{1}{3} neighborhood size

Illustrations§

_images/snapshot-K-zero.png _images/snapshot-mean-zero.png _images/LeopoldSurfaceMean_clean.png _images/al_curvature.png
_images/directioncourbure1.png _images/directioncourbure2.png

Parameter-free Curvature Estimator§

First, let’s have a look to the theorem statement

Thm.

For a family of shape with convex C^3-boundary and bounded curvature, \exists h_0 \in  \mathbb{R}^+, for any h \le
h_0, setting r=k h^{\frac{1}{3}}, we have …………

To have the convergence, we need the radius to be in O(h^{\frac{1}{3}})

We know that

\Theta(h^{\frac{1}{3}}) \leq h\bar{t}^2_{MS} \leq \Theta(h^{\frac{1}{3}}log^2(h^{-1}))

\Rightarrow Let’s use (square of) average MS length to define r

\Rightarrow Parameter-free convergence in \Theta(h^{\frac{1}{3}}log(h^{-1})) !

\Rightarrow Automatic selection of the scale parameter

Illustrations§

_images/ScaleSpace_Flower_Global.png
_images/ScaleSpace_Flower_Local.png
_images/Bunny_64_mean.png _images/Bunny_128_mean.png _images/Bunny_256_mean.png _images/Bunny_64_k1.png

Feature Selection§

Idea Use scale-space behavior of II estimators to classify surfels into flat,smooth,edge regions

_images/Bunny_512_II_scale.png _images/Snow_I08_II_scale.png
_images/OctaFlower_512_noise_II_scale.png _images/OctaFlower_512_II_scale.png

Other quantities/properties§

Digital Convextiy§

Simple definition

S \subset\mathbb{Z}^d is digitally convex iff there exists convex shape X\subset\mathbb{R}^d such that S = X\cap\mathbb{Z}^d

_images/conv1.png _images/conv2.png

Convexity and DSS§

Let S\subset \mathbb{Z}^2 be a (1)-curve

Properties on convex hull

Main result [Debled-Rennesson, Doerksen-Reiter]

Thm.

S is digitally convex \Leftrightarrow slopes of maximal segment in the covering are monotonic

_images/conv_maxseg1.png _images/conv_maxseg2.png