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Course Overview - Database part

e DBMS

@ Relational model

@ SQL, Relational calculus

@ Relational algebra, Query optimization

@ Functional dependencies, Armstrong axioms, Armstrong
relations

@ Inclusion dependencies

@ Data exchange, Chase algorithm, Query rewriting



Course Overview - Data Mining part

Introduction to data mining

Usual algorithms for set based patterns

Constrained data mining

Advanced pattern languages (FCA, sequences, dynamic
graphs)

(Bi-|Co-) Clustering
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Outline

0 Introduction
@ Files
@ Database Management System
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Data(base)

A dataset is:
@ Some objects
e a name, e.g. Emmanuel
e a course, e.g. DBDM
o a date, e.g. January 1%, 2016
o ...

@ But also relations between such objects
o Emmanuel teaches the “DBDM" course on January 15, 2016

A Database (DB) is an application for storing, querying and
updating a dataset.
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Files

Files can be used for storing a dataset:

@ Collection of applications where each of them defines and
manages its own files.
@ A file is a set of records containing related data.
e One can use various libraries to ease reading/writing such files

@ record files in Pascal

o serialization APl in Java

@ JSON in Javascript (and others)
°

@ Require a tight coupling between program and files
o File management is directly integrated into the program.
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Example

Data on students in some university

@ Student’s address is used when he registers, for library access,
etc.

@ Each application must manage a set of data files and ensure
they are up to date.
@ Datafile format may vary
o Updates are done several times, which is error prone
e e.g. address update: at the registration, at the library, etc.
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Some problems when dealing with files

@ Data access can be complex
e In practice, complex data require to write a lot of code to be
accessed.
o Efficient access requires to right complex optimized code, even
for simple applications.
@ Separated files: redundancy both in definition and storage of
data.

@ Security problems: a breach in the program can compromise
the whole file content (for confidentiality and integrity).

@ No concurrency control: consistency problem may arise from
simultaneous files access leading to data corruption.
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Databases

Objective: avoid data access problem induced by direct file access

A database is a dataset:

@ which is stored
whose structure depends on the data, not on the application
consistent

minimally redundant

accessible by several users concurrently
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Who does what

The designer manages:
@ logical structure
@ non redundancy

@ sharing (and distribution) of data

The Database Management System (DBMS) manages:
@ storage
@ data availability
@ data access

@ concurrency
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DBMS

DBMS: Set of software tools allowing to create and use a database.

DBMS functions:
@ Database definition

e datatype specification
e data organization
e integrity constraints on stored data

data querying
data updates

o

o

@ ensure data integrity
@ manage concurrency
o

security
e manage data confidentiality
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Database schema

@ Centralized description of the database through a
Data Description Language (DDL):

o data organization
e data types
e integrity constraints

@ Unique, shared between applications
= one application does not guide data organization
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Manipulating data

Tools and systems to enable communication between the
database and the applications using data.

Searching, creating, updating, deleting data.

Data Manipulation Language (DML):

e Declarative: describe what you want instead of how to get it.

Data is independant from programs
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Interacting with DBMSs

@ Shells

e GUI
@ Programmatically:

o C, C++, Java, Python, PHP, OCaml,
(put your favorite practical language here)
o libraries for sending (DML) queries to the DBMS.
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Data integrity

Integrity constraints, specified in DDL

e enforced by the DBMS
e with the possibility to be programmed for complex ones

Execution safety and recovery
Storage
o Action logging

e Concurrency
o Lock mechanisms (minimize performance impacts)

Transactions: commits and rollbacks
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Security and confidentiality

@ Data sharing

@ Authentication

@ Autorisations

@ Views for selective data access
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Typical DBMS architecture

3 layers:

e External layer: user/application interaction

o Logical layer:
e global control and data organization

@ Internal layer:
e data storage on physical devices,
e management of persistance and access structures
(files, indexes, etc)
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Outline

© Relational model
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Data model

Defines a way to represent information
@ A way to represent data (DDL)
@ A way to represent data constraints (DDL)
@ A set of operations to manipulate data (DML).

Independant from physical data representation. Simplifies:
@ administration
@ optimization

@ usage



DBDM
Relational model

Relational model

Set based

@ Objects are simple, atomic:
e integers, floats, strings, dates, ...

@ No complex data structures:
e No lists, tables, records, ...

@ Relations are used to represent and manipulate data
@ seen as subsets of cartesian products

@ Usual operations on sets

e Union, intersection, difference
o Cartesian product
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Relational model advantages

Fundamentally simple
@ easier to understand

@ easier to optimize

but expressive enough

@ ways to represent complex objects through relations

used in practice since the 80's in numerous DBMS nombreux
SGBD:

@ Oracle, MySQL, PostgresQL, DB2, SQL Server, Sqlite ...
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Relational schema

Composed of

@ a set of attributes

describes atomic data to manipulate
ex: title, year, genre

@ a set of relations or tables on these attributes:

represent relationship between atomic data
can be used to represent complex objects (e.g. records)
ex: Movie(title, year, genre)
Vocabulary: title, year and genre are the attributes of
relation Movie
a table is a relation in a schema

@ whose content is extensional

@ as opposed to views whose content is intentional
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Relational model

Relational schema - 2

Constraints:

o Attribute types
e title: string, year: integer, genre: string
o Usually given with the relations definitions, e.g.
Movie(title: string, year: integer, genre:
string)
Value domain: set of instances of a given atomic type
e e.g.: integers, reals, character strings, etc

@ More complex constraints such as:

@ “In the relation Movie, there can only be one year and one
genre for a given title.” (functional dependency)
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Designing schemas

@ The choice of relations is fundamental and usually complex:

e it determines essential qualities of the database:
performance, accuracy, exhaustivity, availability of information

@ Some methodologies can help:

e ER-diagrams
e UML
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Instances, in theory

In theory

A database instance is a set of relation instances (one per relation
of the database schema)

A relation instance of a relation R(A1,...,A,) is a subset of the
cartesian product of the domain of its attributes:
@ If Dy is the domain (of the type) of Ay, ..., D, is the domain

(of the type) of A,
@ any instance of R is included in Dy x --- x D,
Consequences:
@ order between elements is not important
@ no duplication of tuples

@ all possible values of attributes are known
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Instances in practice

Real life more complex:
@ bag semantics (possible duplication)
@ order can be useful for the user

@ user defined functions make values less predictable
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Representing data using instances

Instances actually represent data:

Movie
title ‘ year‘ genre
Alien 1979 | Science-fiction
Vertigo 1958 | Thriller
Face/0ff 1997 | Crime
Pulp fiction | 1995 | Crime

Instance is a set of tuples:
{(Alien, 1979,Science-fiction),(Vertigo, 1958, Thriller),

(Volte-face,1997,Crime), (Pulp fiction,1995,Crime)}

What is stored is the instances
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Relational model

Manipulating data

Data querying is done through relation manipulation
@ Operations:

o Input: one or several relations (more precisely relation
instances)

o that can be stored tables or not (e.g. dynamic views)
e Output: one relation
@ operation kinds:
e selecting interesting tuples
o Usual set-theoretic operations: union, intersection, difference,
cartesian product

Updates: adding/deleting tuples in tables
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Two approaches for DML languages

@ Logical approach: relational calculus

@ Algebraic approach: relational algebra

Same expressive power

Concrete language for users and developpers: SQL

@ Can be seen from both points of views
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Outline

O saL



@ Concrete language, includes DDL and DML
@ From IBM in the 70's

@ Standards:
o SQL-87: 1987 (ISO)
o SQL-2: 1992 (ANSI)
e SQL-3: 1999
e SQL-2003
o SQL-2006
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Projection

SELECT atty, atto, ...
FROM table_name;

@ Obtain values in table table name, while keeping only
attributes attl, att2,

One can replace atty, atty, ... by * to get all attributes.
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Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Give the name and position of each employee:

@ SELECT Nom,Fonction FROM Employe;

Demo
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Example 2

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Give available information for each employee:

@ SELECT * FROM Employe;

Demo



DISTINCT

DISTINCT allows to remove duplicates (you have do it explicitly in
practice)

Example:

Give the various positions the company:

@ SELECT DISTINCT Fonction FROM Employe;

Demo
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Selecting specific tuples

SELECT atty, att, ...
FROM table_name
WHERE condition

@ The WHERE clause specify condition for choosing tuples to
keep.
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Conditions in WHERE

Simple expressions:
e Comparisons (=, !=, <, <=, >, >=)
@ between attributes or constants

@ constants for each (atomic) data type

e numbers: 1, 1980, 1.5
e strings: 'Martin’, 'directeur’
o dates: '1980-06-18’

o date formatting varies w.r.t. DBMS

Logical connectors that can be used: AND, OR
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Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Who are the employees whose employment (embauche) date is
before January 15t 1999 ?

@ SELECT Nom
FROM Employe
WHERE Embauche < ’1999-01-01’;

Demo
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Example 2

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Who are the employees whose employment (embauche) date is
before January 15* 1999 and that are paid at least 30000 euros a
year:

@ SELECT Nom
FROM Employe
WHERE Embauche < ’1999-01-01’
AND Salaire >= 30000;

Demo
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Other conditions

@ Operator IN: as the set operation
e Which employees are director ou engineer ?
SELECT Nom, Fonction
FROM Employe
WHERE Fonction IN (’ingenieur’,’directeur’);
@ Operator BETWEEN ... AND for specifying value intervals:
e Employee that are paid between 25000 and 30000 euros ?
SELECT Nom, Salaire

FROM Employe
WHERE Salaire BETWEEN 25000 AND 30000;
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Another example

SELECT Nom, Embauche, Fonction, Salaire

FROM Employe

WHERE Fonction IN (’ingenieur’,’directeur’)

AND Embauche BETWEEN ’1990-01-01’ AND ’1999-12-31°
AND Salaire < 32000;

condition, connector A
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Undefined values

Some values may be actually undefined in practice:
o represented by the keyword NULL.
@ can be tested with IS NULL /IS NOT NULL

Schema: Batiment(Num_bat, Nom_bat, Ent_princ, Ent_Sec)

@ Buildings with no secondary entrance have NULL as a “value”
for attribute Ent_Sec.

@ SELECT x*
FROM Batiment
WHERE Ent_sec IS NULL;



Sorting query results

While the result of a query is unsorted, it is possible to sort it
afterwards

SELECT atty, atty, ...
FROM table_name
WHERE condition
ORDER BY att;, att;, ...

@ lexicographic order on the values specified by the ORDER BY
clause

o In ORDER BY, it is possible to specify either ascending or

descending order after the value using ASC or DESC after the
value

o defaults to ASC
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Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Give employees name in dept. 20, sorted by salary decreasing then
by name in alphabetical order

SELECT Nom

FROM Employe

WHERE Num_dept=20

ORDER BY Salaire DESC, Nom;
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Querying several tables

SELECT atty, atty, ...

FROM table_namey, table_name,, . ..
WHERE condition

ORDER BY att;, att;, ...

@ Cartesian product

@ If one attribute is in several tables, use table name for
disambiguation using table_name.att



Join: special case of cartesian product with a filtering condition
that allow to combine only related tuples.

“Natural” join: condition is equalities between attributes shared
among two relations:

Schema R(Al, A2, Bl, Bg) and S(Cl, C2, Bl, Bz)

SELECT A, Ay, R.B1, $.By, Gi, G,
FROM R, S
WHERE R.B;=S5.B; AND R.B,=5.B;



DBDM
SQL

Example

Schema:
Batiment(Num_bat, Nom_bat, Ent_princ, Ent_Sec)
Departement(Num_dept, Nom_dept, Num_bat)

Departments and their related buildings:

@ SELECT Num_dept, Nom_dept, Batiment.Num_bat,
Nom_bat, Ent_princ, Ent_sec
FROM Departement, Batiment
WHERE Departement.Num_bat = Batiment.Num_bat;
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Renaming

When using a table several times, one needs to rename it:

SELECT atty, atty, ...

FROM table_name; new_namey,
table_namey new_names, . ..

WHERE condition

ORDER BY att;, att;, ...

Values in SELECT can be renamed using AS.
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Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Give each employee's name and the name of his manager.

@ SELECT Employe.Nom, Employe.Fonction,
Chef .Nom AS Superieur
FROM Employe, Employe Chef
WHERE Chef.Num = Employe.Num_sup;
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Example 2

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Who are the employees that are paid less than Bellot.

SELECT Employe.Nom, Employe.Salaire
FROM Employe, Employe bel

WHERE Employe.Salaire < bel.Salaire
AND bel.Nom = ’Bellot’;
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Subqueries

Using the result of a query in another one

@ Better expressivity through negation
@ Subqueries can be used in:

o WHERE

o FROM (needs renaming)

o SELECT (only if the subquery yields one atomic value for each
tuple in the main query).

@ not checked statically

@ Name clashes: natural scoping rules
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Example

If the subquery yields only one result

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Which employee have the same position as Jones ?

SELECT Nom

FROM Employe

WHERE Fonction =
(SELECT Fonction
FROM Employe
WHERE Nom=’Jones’);
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Example: Subquery related to main query

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Which employees are in a different departement than the one of
their manager?

SELECT Nom
FROM Employe Emp
WHERE Num_dept !=
(SELECT Num dept
FROM Employe
WHERE Emp.Num sup = Num);

Exercice: rewrite without subquery
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Subqueries with more than one result

Special operators
e a IN (subquery)
e true ais in the result of subquery.
e a O ANY (subquery)
where O can be {=,<, >, <=,>=}
e true if there exists some b in the result of subquery such that
aOb.
e a O ALL (subquery)
where O can be {=,<, >, <=,>=}
o true if for all values b in the result of subquery, aOlb.
o EXISTS (subquery)

e true if the result of subquery is not empty
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Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom, Salaire
FROM Employe
WHERE Salaire > ALL (SELECT Salaire
FROM Employe
WHERE Num dept = 20);
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Example 2

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom
FROM Employe Chef
WHERE EXISTS (SELECT Nom
FROM Employe
WHERE Employe.Num_sup = Chef.Num);



Subqueries with several attributes in SELECT

Tuples (a, b, ... ) can be used to compare with query results
having several values in SELECT

Schema:
Employe(Nom, Num, Fonction, Num _sup, Embauche, Salaire, Num_Dept)

SELECT Nom

FROM Employe

WHERE (Fonction, Num_sup) = (SELECT Fonction, Num_sup
FROM Employe
WHERE Nom=’Bellot’);
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Nested subqueries

Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom, Fonction
FROM Employe
WHERE Num_dept = 20
AND fonction IN
(SELECT Fonction
FROM Employe
WHERE Num_dept = (SELECT Num_dept
FROM Employe
WHERE Nom = ’Dupont’));
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Set theoretic operators on relations

@ Allow for combining several SELECT /FROM statements.
e U: UNION
e N: INTERSECTION
o \: MINUS
Set semantics (implicit DISTINCT).
Each SELECT must have the same number of attributes
Attribute names in the results are given by the first SELECT.

o Matching between tuples is position wise (not name wise)

The last SELECT can contain an ORDER BY for sorting the
whole result
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Example

Schema:

Employel(Nom, Num, Fonction, NumSup, Embauche, Salaire, NumDept)
Employe2(Nom, Num, Fonction, Numsup, Embauche, Salaire, NumDept)

(SELECT NumDept FROM Employel)
INTERSECT

(SELECT NumDept FROM Employe2);
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Expressions

Complex expressions are possible for values

@ Arithmetic expressions
@ String expressions
@ Date expressions

e Conversion / cast functions

Aggregation functions can be used to handle a collection of values.
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Expressions - 2

Expressions are usable:

o In SELECT:

o default name from expression, not really usable. Use AS to
rename.

o In WHERE

e In ORDER BY
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Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom, (Salaire + Commission) Revenu
FROM Employe
WHERE Fonction = ’commercial’;
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Example - 2

Schema:
Employe(Nom, Num, Fonction, Num _sup, Embauche, Salaire, Num_Dept)

SELECT Nom, (Commission/Salaire) Rapport
FROM Employe

WHERE Fonction = ’commercial’

ORDER BY Commission/Salaire;
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Example - 3

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom, ROUND(Salaire/(22*%12), 2) SJournalier
FROM Employe
WHERE Commission <= Salaire * 0.5;
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Example - 4

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

For each employee, the number of days since the employe was
recruited.

SELECT Nom, DATEDIFF(SYSDATE() ,Embauche) AS days
FROM Employe;
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Naive operational semantics

SELECT atty, atty, ...
FROM tableq, tabley, . ..
WHERE condition
ORDER BY att;, att;, ...

Retrieve data specified in FROM
— cartesian product table; x table; x ...

Filter tuples using condition in WHERE
Sort tuples according to ORDER BY
Compute SELECT for each tuple and output result



Naive operational semantics - 2

SELECT atty, atty, ...
FROM table;, tabley, ...
WHERE condition
ORDER BY att;, att;, ...

@ Subqueries in FROM are executed just before the cartesian
product

e Subqueries in WHERE/ORDER BY/SELECT are executed for
each tuple to be filtered/sorted /computed

Of course the DBMS optimizes the execution of queries

@ e.g. subqueries in WHERE that do not depend on the main
query are executed just once

@ more on optimization on the next course
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Example

Schema:
Departement(Num_dept, Nom_dept, Num_bat)
Batiment(Num_bat, Nom_bat, Ent_princ, Ent_Sec)

SELECT Nom_dept, Batiment.Nom_bat

FROM Departement, Batiment

WHERE Departement.Num_bat = Batiment.Num_bat
ORDER BY Nom_dept;
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Example - 2

Departement Batiment
Num_dept Nom_dept Num_bat Num_bat Nom_bat Ent_princ Ent_Sec
10 Marketing 1 1 Turing Nord Ouest
20 Developpement 2 1 Turing Nord Ouest
30 Direction 3 1 Turing Nord Ouest
10 Marketing 1 2 Einstein Ouest NULL
20 Developpement 2 2 Einstein Ouest NULL
30 Direction 3 2 Einstein Ouest NULL
10 Marketing 1 3 Newton Sud Nord
20 Developpement 2 3 Newton Sud Nord
30 Direction 3 3 Newton Sud Nord
10 Marketing 1 4 Pointcarre Est NULL
20 Developpement 2 4 Pointcarre Est NULL
30 Direction 3 4 Pointcarre Est NULL

FROM Departement, Batiment
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Example - 2

Departement Batiment

Num_dept Nom_dept Num_bat Num_bat Nom_bat Ent_princ Ent_Sec
10 Marketing 1 1 Turing Nord Ouest
20 Developpement 2 1 Turing Nord Ouest
30 Direction 3 1 Turing Nord Ouest
10 Marketing 1 2 Einstein Ouest NULL
20 Developpement 2 2 Einstein Ouest NULL
30 Direction 3 2 Einstein Ouest NULL
10 Marketing 1 3 Newton Sud Nord
20 Developpement 2 3 Newton Sud Nord
30 Direction 3 3 Newton Sud Nord
10 Marketing 1 4 Pointcarre Est NULL
20 Developpement 2 4 Pointcarre Est NULL
30 Direction 3 4 Pointcarre Est NULL

WHERE Departement.Num bat = Batiment.Num_bat
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Example - 3

Departement Batiment
Num_dept Nom_dept Num_bat Num_bat Nom_bat Ent_princ Ent_Sec
20 Developpement 2 2 Einstein Ouest NULL
30 Direction 3 3 Newton Sud Nord
10 Marketing 1 1 Turing Nord Ouest

ORDER BY Nom_dept

Nom_dept Num_bat
Developpement Einstein

Direction Newton

Marketing Turing

SELECT Nom_dept, Batiment.Nom_bat
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Grouping

SELECT atty, atto, ...
FROM tabley, tabley, . ..
WHERE condition
GROUP BY atty, atty, ...
ORDER BY att;, att;, ...

@ Grouping occurs just after the WHERE filter

@ partitions the collection of tuples according to the values
specified by GROUP BY
e greatest groups such that two tuples in the same partition
have the same value for atty, att, ...
e quotient by the equivalence relation consisting in having the
same values for atty, atty, ...
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Grouping - 2

@ A query produce one tuple per group.

@ SELECT and ORDER BY can only directly use
attributes/values specified in GROUP BY.
@ since these values are fixed in a group
o Other attributes can not be used directly (as their value varies)



Example

Schema: Employe(Nom, Num, Fonction, Salaire, Num_Dept)
SELECT Fonction,Num_Dept

FROM Employe

GROUP BY Fonction, Num_ Dept

ORDER BY Num Dept;

Nom Num Fonction Salaire | Num_dept

Bellot 13021 ingenieur 25000 20
Dupuis 14028 | commercial | 20000 10
LambertJr | 15630 stagiaire 6000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20
Lambert | 25012 directeur 30000 20
Fildou 25631 | commercial | 20000 10

Soule 28963 directeur 25000 10




Example - 2

SELECT Fonction
FROM Employe
GROUP BY Fonction, Num Dept

Nom Num Fonction Salaire | Num_dept
Bellot 13021 ingenieur 25000 20
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20
Dupuis 14028 | commercial | 20000 10
Fildou 25631 | commercial | 20000 10

LambertJr | 15630 stagiaire 6000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30

Lambert | 25012 directeur 30000 20
Soule 28963 directeur 25000 10




DBDM
SQL

Example - 3

ORDER BY Num_Dept

Nom Num Fonction Salaire | Num_dept
Dupuis 14028 | commercial | 20000 10
Fildou 25631 | commercial | 20000 10
Soule 28963 directeur 25000 10
Bellot 13021 ingenieur 25000 20
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20

LambertJr | 15630 stagiaire 6000 20
Lambert | 25012 directeur 30000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30
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Example - 4

SELECT Fonction, Num_Dept

Fonction Num_dept
commercial 10
directeur 10
ingenieur 20
stagiaire 20
directeur 20
directeur 30
gestionnaire 30
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Aggregation functions

@ Operate on a set of atomic values.

@ Usable in GROUP BY queries to compute a value from a set
of values coming from the tuples in a group

@ Used in SELECT and ORDER BY.

e Not in WHERE.
(As the WHERE filter occurs before grouping.)

@ For example, AVG(e) return the average of the values e of
each tuple in the group.
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Example

Schema: Employe(Nom, Num, Fonction, Salaire, Num_Dept)

Average salary for each position:

SELECT Fonction, AVG(Salaire) SalaireMoyen
FROM Employe
GROUP BY Fonction;
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Standard aggregation functions

COUNT (e): bag semantics (a value can be counted more
than one).

e tuples for which e is NULL are not counted.
e * can replace e for counting tuples

MAX (e)
MIN(e)
SUM(e)

AVG (e)
STDDEV (e)
VARIANCE (e)

e can be preceded by DISTINCT for set semantics

@ Important for COUNT, SUM, AVG, STDDEV and
VARIANCE.
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Example

Schema:
Employe(Nom, Num, Fonction, Salaire, Num_Dept)
Departement(Num_dept, Nom_dept, Num_bat)

SELECT Nom_dept, COUNT(DISTINCT Fonction) NbFonctions
FROM Employe, Departement

WHERE Employe.Num_dept = Departement.Num_dept

GROUP BY Departement.Num_dept, Nom_dept;
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Example - 2

Schema: Employe(Nom, Num, Fonction, Salaire, Num_Dept)

SELECT Num_dept, Nom, Salaire

FROM Employe

WHERE (Num_ dept, Salaire) IN
(SELECT Num dept, MAX(Salaire)
FROM Employe
GROUP BY Num dept) ;
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Filtering groups

SELECT atty, atty, ...
FROM table;, tabley, ...
WHERE condition
GROUP BY atty, atty, ...
HAVING group_condition
ORDER BY att;, att;, ...

@ WHERE can filter individual tuples, not groups
@ HAVING is for filtering groups
e same rules as SELECT and ORDER BY concerning usable

values



Example

SELECT Num Dept, COUNT(DISTINCT Fonction) NbFonctions
FROM Employe

WHERE Salaire > 15000

GROUP BY Num_Dept

HAVING COUNT(x) > 2;

Nom Num Fonction Salaire | Num_dept

Bellot 13021 ingenieur 25000 20
Dupuis 14028 | commercial | 20000 10
LambertJr | 15630 stagiaire 6000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20
Lambert | 25012 directeur 30000 20
Fildou 25631 | commercial | 20000 10

Soule 28963 directeur 25000 10
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Example - 2

FROM Employe WHERE Salaire > 15000

Nom Num Fonction Salaire | Num_dept

Bellot 13021 ingenieur 25000 20
Dupuis 14028 | commercial | 20000 10
LambertJr | 15630 stagiaire 6000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20
Lambert | 25012 directeur 30000 20
Fildou 25631 | commercial | 20000 10

Soule 28963 directeur 25000 10
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Example - 3

GROUP BY Num Dept

Nom Num Fonction Salaire | Num_dept
Bellot | 13021 ingenieur 25000 20
Jones 19563 ingenieur 20000 20
Brown | 20663 ingenieur 20000 20

Lambert | 25012 directeur 30000 20
Martin | 16712 directeur 40000 30
Dupont | 17574 | gestionnaire | 30000 30
Dupuis | 14028 | commercial | 20000 10
Fildou | 25631 | commercial | 20000 10
Soule 28963 directeur 25000 10




DBDM
SQL

Example - 4

HAVING COUNT(*) > 2

Nom Num Fonction Salaire | Num_dept

Bellot | 13021 ingenieur 25000 20
Jones 19563 ingenieur 20000 20
Brown | 20663 ingenieur 20000 20
Lambert | 25012 directeur 30000 20
Martin | 16712 directeur 40000 30
Dupont | 17574 | gestionnaire | 30000 30
Dupuis | 14028 | commercial | 20000 10
Fildou | 25631 | commercial | 20000 10

Soule | 28963 directeur 25000 10
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Example - 5

SELECT Num_Dept, COUNT(DISTINCT Fonction) NbFonctions

Num_dept | NbFonctions
10 2
20 2
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Global grouping

Using aggregation function without GROUP BY:

@ Implicit grouping with only one group

@ SELECT can then only contain aggregation functions
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Example

Schema:
Employe(Nom, Num, Fonction, Salaire, Num_Dept)

SELECT SUM(Salaire)
FROM Employe
WHERE Num_dept = 10;



DBDM
SQL

Double grouping

Nested use of aggregation functions in SELECT

@ Possible only in a GROUP BY query.
@ triggers two grouping:
o The first normal one corresponding to the GROUP BY
statement

e A second implicit one because of the englobing aggregation
function.

@ work as a global grouping

Remark: not always implemented as is but by can be recoded using
a subquery in FROM
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Example

Schema:
Employe(Nom, Num, Fonction, Salaire, Num_Dept)

Size of the largest departement for the number of employees

SELECT MAX(COUNT(*)) | SELECT MAX(NbEmp)
FROM Employe FROM ( SELECT COUNT(x) AS NbEmp
GROUP BY Num._dept; FROM Employe
GROUP BY Num_dept)
CountEmp;
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