DBDM

DBDM

DataBases and Data Mining

E.Coquery, R.Thion, A. Bonifati, M. Plantevit, M. Kaytoue, C.
Robardet

emmanuel . coquery@liris.cnrs.fr

http://liris.cnrs.fr/~ecoquery/dbdm/

http://liris.cnrs.fr/~ecoquery/dbdm/

Course Overview - Database part

e DBMS

@ Relational model

@ SQL, Relational calculus

@ Relational algebra, Query optimization

@ Functional dependencies, Armstrong axioms, Armstrong
relations

@ Inclusion dependencies

@ Data exchange, Chase algorithm, Query rewriting

Course Overview - Data Mining part

Introduction to data mining

Usual algorithms for set based patterns

Constrained data mining

Advanced pattern languages (FCA, sequences, dynamic
graphs)

(Bi-|Co-) Clustering

DBDM
Introduction

Outline

0 Introduction
@ Files
@ Database Management System

DBDM
Introduction

Data(base)

A dataset is:
@ Some objects
e a name, e.g. Emmanuel
e a course, e.g. DBDM
o a date, e.g. January 1%, 2016
o ...

@ But also relations between such objects
o Emmanuel teaches the “DBDM" course on January 15, 2016

A Database (DB) is an application for storing, querying and
updating a dataset.

DBDM
Introduction
Files

Files

Files can be used for storing a dataset:

@ Collection of applications where each of them defines and
manages its own files.
@ A file is a set of records containing related data.
e One can use various libraries to ease reading/writing such files

@ record files in Pascal

o serialization APl in Java

@ JSON in Javascript (and others)
°

@ Require a tight coupling between program and files
o File management is directly integrated into the program.

DBDM
Introduction
Files

Example

Data on students in some university

@ Student’s address is used when he registers, for library access,
etc.

@ Each application must manage a set of data files and ensure
they are up to date.
@ Datafile format may vary
o Updates are done several times, which is error prone
e e.g. address update: at the registration, at the library, etc.

DBDM
Introduction
Files

Some problems when dealing with files

@ Data access can be complex
e In practice, complex data require to write a lot of code to be
accessed.
o Efficient access requires to right complex optimized code, even
for simple applications.
@ Separated files: redundancy both in definition and storage of
data.

@ Security problems: a breach in the program can compromise
the whole file content (for confidentiality and integrity).

@ No concurrency control: consistency problem may arise from
simultaneous files access leading to data corruption.

DBDM
Introduction
Database Management System

Databases

Objective: avoid data access problem induced by direct file access

A database is a dataset:

@ which is stored
whose structure depends on the data, not on the application
consistent

minimally redundant

accessible by several users concurrently

DBDM
Introduction
Database Management System

Who does what

The designer manages:
@ logical structure
@ non redundancy

@ sharing (and distribution) of data

The Database Management System (DBMS) manages:
@ storage
@ data availability
@ data access

@ concurrency

DBDM
Introduction
Database Management System

DBMS

DBMS: Set of software tools allowing to create and use a database.

DBMS functions:
@ Database definition

e datatype specification
e data organization
e integrity constraints on stored data

data querying
data updates

o

o

@ ensure data integrity
@ manage concurrency
o

security
e manage data confidentiality

DBDM
Introduction
Database Management System

Database schema

@ Centralized description of the database through a
Data Description Language (DDL):

o data organization
e data types
e integrity constraints

@ Unique, shared between applications
= one application does not guide data organization

DBDM
Introduction
Database Management System

Manipulating data

Tools and systems to enable communication between the
database and the applications using data.

Searching, creating, updating, deleting data.

Data Manipulation Language (DML):

e Declarative: describe what you want instead of how to get it.

Data is independant from programs

DBDM
Introduction
Database Management System

Interacting with DBMSs

@ Shells

e GUI
@ Programmatically:

o C, C++, Java, Python, PHP, OCaml,
(put your favorite practical language here)
o libraries for sending (DML) queries to the DBMS.

DBDM
Introduction
Database Management System

Data integrity

Integrity constraints, specified in DDL

e enforced by the DBMS
e with the possibility to be programmed for complex ones

Execution safety and recovery
Storage
o Action logging

e Concurrency
o Lock mechanisms (minimize performance impacts)

Transactions: commits and rollbacks

DBDM
Introduction
Database Management System

Security and confidentiality

@ Data sharing

@ Authentication

@ Autorisations

@ Views for selective data access

DBDM
Introduction
Database Management System

Typical DBMS architecture

3 layers:

e External layer: user/application interaction

o Logical layer:
e global control and data organization

@ Internal layer:
e data storage on physical devices,
e management of persistance and access structures
(files, indexes, etc)

DBDM
Relational model

Outline

© Relational model

DBDM
Relational model

Data model

Defines a way to represent information
@ A way to represent data (DDL)
@ A way to represent data constraints (DDL)
@ A set of operations to manipulate data (DML).

Independant from physical data representation. Simplifies:
@ administration
@ optimization

@ usage

DBDM
Relational model

Relational model

Set based

@ Objects are simple, atomic:
e integers, floats, strings, dates, ...

@ No complex data structures:
e No lists, tables, records, ...

@ Relations are used to represent and manipulate data
@ seen as subsets of cartesian products

@ Usual operations on sets

e Union, intersection, difference
o Cartesian product

DBDM
Relational model

Relational model advantages

Fundamentally simple
@ easier to understand

@ easier to optimize

but expressive enough

@ ways to represent complex objects through relations

used in practice since the 80's in numerous DBMS nombreux
SGBD:

@ Oracle, MySQL, PostgresQL, DB2, SQL Server, Sqlite ...

DBDM
Relational model

Relational schema

Composed of

@ a set of attributes

describes atomic data to manipulate
ex: title, year, genre

@ a set of relations or tables on these attributes:

represent relationship between atomic data
can be used to represent complex objects (e.g. records)
ex: Movie(title, year, genre)
Vocabulary: title, year and genre are the attributes of
relation Movie
a table is a relation in a schema

@ whose content is extensional

@ as opposed to views whose content is intentional

DBDM

Relational model

Relational schema - 2

Constraints:

o Attribute types
e title: string, year: integer, genre: string
o Usually given with the relations definitions, e.g.
Movie(title: string, year: integer, genre:
string)
Value domain: set of instances of a given atomic type
e e.g.: integers, reals, character strings, etc

@ More complex constraints such as:

@ “In the relation Movie, there can only be one year and one
genre for a given title.” (functional dependency)

DBDM
Relational model

Designing schemas

@ The choice of relations is fundamental and usually complex:

e it determines essential qualities of the database:
performance, accuracy, exhaustivity, availability of information

@ Some methodologies can help:

e ER-diagrams
e UML

DBDM
Relational model

Instances, in theory

In theory

A database instance is a set of relation instances (one per relation
of the database schema)

A relation instance of a relation R(A1,...,A,) is a subset of the
cartesian product of the domain of its attributes:
@ If Dy is the domain (of the type) of Ay, ..., D, is the domain

(of the type) of A,
@ any instance of R is included in Dy x --- x D,
Consequences:
@ order between elements is not important
@ no duplication of tuples

@ all possible values of attributes are known

DBDM
Relational model

Instances in practice

Real life more complex:
@ bag semantics (possible duplication)
@ order can be useful for the user

@ user defined functions make values less predictable

DBDM
Relational model

Representing data using instances

Instances actually represent data:

Movie
title ‘ year‘ genre
Alien 1979 | Science-fiction
Vertigo 1958 | Thriller
Face/0ff 1997 | Crime
Pulp fiction | 1995 | Crime

Instance is a set of tuples:
{(Alien, 1979,Science-fiction),(Vertigo, 1958, Thriller),

(Volte-face,1997,Crime), (Pulp fiction,1995,Crime)}

What is stored is the instances

DBDM

Relational model

Manipulating data

Data querying is done through relation manipulation
@ Operations:

o Input: one or several relations (more precisely relation
instances)

o that can be stored tables or not (e.g. dynamic views)
e Output: one relation
@ operation kinds:
e selecting interesting tuples
o Usual set-theoretic operations: union, intersection, difference,
cartesian product

Updates: adding/deleting tuples in tables

DBDM
Relational model

Two approaches for DML languages

@ Logical approach: relational calculus

@ Algebraic approach: relational algebra

Same expressive power

Concrete language for users and developpers: SQL

@ Can be seen from both points of views

DBDM
SQL

Outline

O saL

@ Concrete language, includes DDL and DML
@ From IBM in the 70's

@ Standards:
o SQL-87: 1987 (ISO)
o SQL-2: 1992 (ANSI)
e SQL-3: 1999
e SQL-2003
o SQL-2006

DBDM
SQL

Projection

SELECT atty, atto, ...
FROM table_name;

@ Obtain values in table table name, while keeping only
attributes attl, att2,

One can replace atty, atty, ... by * to get all attributes.

DBDM
SQL

Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Give the name and position of each employee:

@ SELECT Nom,Fonction FROM Employe;

Demo

DBDM
SQL

Example 2

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Give available information for each employee:

@ SELECT * FROM Employe;

Demo

DISTINCT

DISTINCT allows to remove duplicates (you have do it explicitly in
practice)

Example:

Give the various positions the company:

@ SELECT DISTINCT Fonction FROM Employe;

Demo

DBDM
SQL

Selecting specific tuples

SELECT atty, att, ...
FROM table_name
WHERE condition

@ The WHERE clause specify condition for choosing tuples to
keep.

DBDM
SQL

Conditions in WHERE

Simple expressions:
e Comparisons (=, !=, <, <=, >, >=)
@ between attributes or constants

@ constants for each (atomic) data type

e numbers: 1, 1980, 1.5
e strings: 'Martin’, 'directeur’
o dates: '1980-06-18’

o date formatting varies w.r.t. DBMS

Logical connectors that can be used: AND, OR

DBDM
SQL

Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Who are the employees whose employment (embauche) date is
before January 15t 1999 ?

@ SELECT Nom
FROM Employe
WHERE Embauche < ’1999-01-01’;

Demo

DBDM
SQL

Example 2

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Who are the employees whose employment (embauche) date is
before January 15* 1999 and that are paid at least 30000 euros a
year:

@ SELECT Nom
FROM Employe
WHERE Embauche < ’1999-01-01’
AND Salaire >= 30000;

Demo

DBDM
SQL

Other conditions

@ Operator IN: as the set operation
e Which employees are director ou engineer ?
SELECT Nom, Fonction
FROM Employe
WHERE Fonction IN (’ingenieur’,’directeur’);
@ Operator BETWEEN ... AND for specifying value intervals:
e Employee that are paid between 25000 and 30000 euros ?
SELECT Nom, Salaire

FROM Employe
WHERE Salaire BETWEEN 25000 AND 30000;

DBDM
SQL

Another example

SELECT Nom, Embauche, Fonction, Salaire

FROM Employe

WHERE Fonction IN (’ingenieur’,’directeur’)

AND Embauche BETWEEN ’1990-01-01’ AND ’1999-12-31°
AND Salaire < 32000;

condition, connector A

DBDM
SQL

Undefined values

Some values may be actually undefined in practice:
o represented by the keyword NULL.
@ can be tested with IS NULL /IS NOT NULL

Schema: Batiment(Num_bat, Nom_bat, Ent_princ, Ent_Sec)

@ Buildings with no secondary entrance have NULL as a “value”
for attribute Ent_Sec.

@ SELECT x*
FROM Batiment
WHERE Ent_sec IS NULL;

Sorting query results

While the result of a query is unsorted, it is possible to sort it
afterwards

SELECT atty, atty, ...
FROM table_name
WHERE condition
ORDER BY att;, att;, ...

@ lexicographic order on the values specified by the ORDER BY
clause

o In ORDER BY, it is possible to specify either ascending or

descending order after the value using ASC or DESC after the
value

o defaults to ASC

DBDM
SQL

Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Give employees name in dept. 20, sorted by salary decreasing then
by name in alphabetical order

SELECT Nom

FROM Employe

WHERE Num_dept=20

ORDER BY Salaire DESC, Nom;

DBDM
SQL

Querying several tables

SELECT atty, atty, ...

FROM table_namey, table_name,, . ..
WHERE condition

ORDER BY att;, att;, ...

@ Cartesian product

@ If one attribute is in several tables, use table name for
disambiguation using table_name.att

Join: special case of cartesian product with a filtering condition
that allow to combine only related tuples.

“Natural” join: condition is equalities between attributes shared
among two relations:

Schema R(Al, A2, Bl, Bg) and S(Cl, C2, Bl, Bz)

SELECT A, Ay, R.B1, $.By, Gi, G,
FROM R, S
WHERE R.B;=S5.B; AND R.B,=5.B;

DBDM
SQL

Example

Schema:
Batiment(Num_bat, Nom_bat, Ent_princ, Ent_Sec)
Departement(Num_dept, Nom_dept, Num_bat)

Departments and their related buildings:

@ SELECT Num_dept, Nom_dept, Batiment.Num_bat,
Nom_bat, Ent_princ, Ent_sec
FROM Departement, Batiment
WHERE Departement.Num_bat = Batiment.Num_bat;

DBDM
SQL

Renaming

When using a table several times, one needs to rename it:

SELECT atty, atty, ...

FROM table_name; new_namey,
table_namey new_names, . ..

WHERE condition

ORDER BY att;, att;, ...

Values in SELECT can be renamed using AS.

DBDM
SQL

Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Give each employee's name and the name of his manager.

@ SELECT Employe.Nom, Employe.Fonction,
Chef .Nom AS Superieur
FROM Employe, Employe Chef
WHERE Chef.Num = Employe.Num_sup;

DBDM
SQL

Example 2

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Who are the employees that are paid less than Bellot.

SELECT Employe.Nom, Employe.Salaire
FROM Employe, Employe bel

WHERE Employe.Salaire < bel.Salaire
AND bel.Nom = ’Bellot’;

DBDM
SQL

Subqueries

Using the result of a query in another one

@ Better expressivity through negation
@ Subqueries can be used in:

o WHERE

o FROM (needs renaming)

o SELECT (only if the subquery yields one atomic value for each
tuple in the main query).

@ not checked statically

@ Name clashes: natural scoping rules

DBDM
SQL

Example

If the subquery yields only one result

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Which employee have the same position as Jones ?

SELECT Nom

FROM Employe

WHERE Fonction =
(SELECT Fonction
FROM Employe
WHERE Nom=’Jones’);

DBDM
SQL

Example: Subquery related to main query

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

Which employees are in a different departement than the one of
their manager?

SELECT Nom
FROM Employe Emp
WHERE Num_dept !=
(SELECT Num dept
FROM Employe
WHERE Emp.Num sup = Num);

Exercice: rewrite without subquery

DBDM
SQL

Subqueries with more than one result

Special operators
e a IN (subquery)
e true ais in the result of subquery.
e a O ANY (subquery)
where O can be {=,<, >, <=,>=}
e true if there exists some b in the result of subquery such that
aOb.
e a O ALL (subquery)
where O can be {=,<, >, <=,>=}
o true if for all values b in the result of subquery, aOlb.
o EXISTS (subquery)

e true if the result of subquery is not empty

DBDM
SQL

Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom, Salaire
FROM Employe
WHERE Salaire > ALL (SELECT Salaire
FROM Employe
WHERE Num dept = 20);

DBDM
SQL

Example 2

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom
FROM Employe Chef
WHERE EXISTS (SELECT Nom
FROM Employe
WHERE Employe.Num_sup = Chef.Num);

Subqueries with several attributes in SELECT

Tuples (a, b, ...) can be used to compare with query results
having several values in SELECT

Schema:
Employe(Nom, Num, Fonction, Num _sup, Embauche, Salaire, Num_Dept)

SELECT Nom

FROM Employe

WHERE (Fonction, Num_sup) = (SELECT Fonction, Num_sup
FROM Employe
WHERE Nom=’Bellot’);

DBDM
SQL

Nested subqueries

Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom, Fonction
FROM Employe
WHERE Num_dept = 20
AND fonction IN
(SELECT Fonction
FROM Employe
WHERE Num_dept = (SELECT Num_dept
FROM Employe
WHERE Nom = ’Dupont’));

DBDM
SQL

Set theoretic operators on relations

@ Allow for combining several SELECT /FROM statements.
e U: UNION
e N: INTERSECTION
o \: MINUS
Set semantics (implicit DISTINCT).
Each SELECT must have the same number of attributes
Attribute names in the results are given by the first SELECT.

o Matching between tuples is position wise (not name wise)

The last SELECT can contain an ORDER BY for sorting the
whole result

DBDM
SQL

Example

Schema:

Employel(Nom, Num, Fonction, NumSup, Embauche, Salaire, NumDept)
Employe2(Nom, Num, Fonction, Numsup, Embauche, Salaire, NumDept)

(SELECT NumDept FROM Employel)
INTERSECT

(SELECT NumDept FROM Employe2);

DBDM
SQL

Expressions

Complex expressions are possible for values

@ Arithmetic expressions
@ String expressions
@ Date expressions

e Conversion / cast functions

Aggregation functions can be used to handle a collection of values.

DBDM
SQL

Expressions - 2

Expressions are usable:

o In SELECT:

o default name from expression, not really usable. Use AS to
rename.

o In WHERE

e In ORDER BY

DBDM
SQL

Example

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom, (Salaire + Commission) Revenu
FROM Employe
WHERE Fonction = ’commercial’;

DBDM
SQL

Example - 2

Schema:
Employe(Nom, Num, Fonction, Num _sup, Embauche, Salaire, Num_Dept)

SELECT Nom, (Commission/Salaire) Rapport
FROM Employe

WHERE Fonction = ’commercial’

ORDER BY Commission/Salaire;

DBDM
SQL

Example - 3

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

SELECT Nom, ROUND(Salaire/(22*%12), 2) SJournalier
FROM Employe
WHERE Commission <= Salaire * 0.5;

DBDM
SQL

Example - 4

Schema:
Employe(Nom, Num, Fonction, Num_sup, Embauche, Salaire, Num_Dept)

For each employee, the number of days since the employe was
recruited.

SELECT Nom, DATEDIFF(SYSDATE() ,Embauche) AS days
FROM Employe;

DBDM
SQL

Naive operational semantics

SELECT atty, atty, ...
FROM tableq, tabley, . ..
WHERE condition
ORDER BY att;, att;, ...

Retrieve data specified in FROM
— cartesian product table; x table; x ...

Filter tuples using condition in WHERE
Sort tuples according to ORDER BY
Compute SELECT for each tuple and output result

Naive operational semantics - 2

SELECT atty, atty, ...
FROM table;, tabley, ...
WHERE condition
ORDER BY att;, att;, ...

@ Subqueries in FROM are executed just before the cartesian
product

e Subqueries in WHERE/ORDER BY/SELECT are executed for
each tuple to be filtered/sorted /computed

Of course the DBMS optimizes the execution of queries

@ e.g. subqueries in WHERE that do not depend on the main
query are executed just once

@ more on optimization on the next course

DBDM
SQL

Example

Schema:
Departement(Num_dept, Nom_dept, Num_bat)
Batiment(Num_bat, Nom_bat, Ent_princ, Ent_Sec)

SELECT Nom_dept, Batiment.Nom_bat

FROM Departement, Batiment

WHERE Departement.Num_bat = Batiment.Num_bat
ORDER BY Nom_dept;

DBDM
SQL

Example - 2

Departement Batiment
Num_dept Nom_dept Num_bat Num_bat Nom_bat Ent_princ Ent_Sec
10 Marketing 1 1 Turing Nord Ouest
20 Developpement 2 1 Turing Nord Ouest
30 Direction 3 1 Turing Nord Ouest
10 Marketing 1 2 Einstein Ouest NULL
20 Developpement 2 2 Einstein Ouest NULL
30 Direction 3 2 Einstein Ouest NULL
10 Marketing 1 3 Newton Sud Nord
20 Developpement 2 3 Newton Sud Nord
30 Direction 3 3 Newton Sud Nord
10 Marketing 1 4 Pointcarre Est NULL
20 Developpement 2 4 Pointcarre Est NULL
30 Direction 3 4 Pointcarre Est NULL

FROM Departement, Batiment

DBDM
SQL

Example - 2

Departement Batiment

Num_dept Nom_dept Num_bat Num_bat Nom_bat Ent_princ Ent_Sec
10 Marketing 1 1 Turing Nord Ouest
20 Developpement 2 1 Turing Nord Ouest
30 Direction 3 1 Turing Nord Ouest
10 Marketing 1 2 Einstein Ouest NULL
20 Developpement 2 2 Einstein Ouest NULL
30 Direction 3 2 Einstein Ouest NULL
10 Marketing 1 3 Newton Sud Nord
20 Developpement 2 3 Newton Sud Nord
30 Direction 3 3 Newton Sud Nord
10 Marketing 1 4 Pointcarre Est NULL
20 Developpement 2 4 Pointcarre Est NULL
30 Direction 3 4 Pointcarre Est NULL

WHERE Departement.Num bat = Batiment.Num_bat

DBDM
SQL

Example - 3

Departement Batiment
Num_dept Nom_dept Num_bat Num_bat Nom_bat Ent_princ Ent_Sec
20 Developpement 2 2 Einstein Ouest NULL
30 Direction 3 3 Newton Sud Nord
10 Marketing 1 1 Turing Nord Ouest

ORDER BY Nom_dept

Nom_dept Num_bat
Developpement Einstein

Direction Newton

Marketing Turing

SELECT Nom_dept, Batiment.Nom_bat

DBDM
SQL

Grouping

SELECT atty, atto, ...
FROM tabley, tabley, . ..
WHERE condition
GROUP BY atty, atty, ...
ORDER BY att;, att;, ...

@ Grouping occurs just after the WHERE filter

@ partitions the collection of tuples according to the values
specified by GROUP BY
e greatest groups such that two tuples in the same partition
have the same value for atty, att, ...
e quotient by the equivalence relation consisting in having the
same values for atty, atty, ...

DBDM
SQL

Grouping - 2

@ A query produce one tuple per group.

@ SELECT and ORDER BY can only directly use
attributes/values specified in GROUP BY.
@ since these values are fixed in a group
o Other attributes can not be used directly (as their value varies)

Example

Schema: Employe(Nom, Num, Fonction, Salaire, Num_Dept)
SELECT Fonction,Num_Dept

FROM Employe

GROUP BY Fonction, Num_ Dept

ORDER BY Num Dept;

Nom Num Fonction Salaire | Num_dept

Bellot 13021 ingenieur 25000 20
Dupuis 14028 | commercial | 20000 10
LambertJr | 15630 stagiaire 6000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20
Lambert | 25012 directeur 30000 20
Fildou 25631 | commercial | 20000 10

Soule 28963 directeur 25000 10

Example - 2

SELECT Fonction
FROM Employe
GROUP BY Fonction, Num Dept

Nom Num Fonction Salaire | Num_dept
Bellot 13021 ingenieur 25000 20
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20
Dupuis 14028 | commercial | 20000 10
Fildou 25631 | commercial | 20000 10

LambertJr | 15630 stagiaire 6000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30

Lambert | 25012 directeur 30000 20
Soule 28963 directeur 25000 10

DBDM
SQL

Example - 3

ORDER BY Num_Dept

Nom Num Fonction Salaire | Num_dept
Dupuis 14028 | commercial | 20000 10
Fildou 25631 | commercial | 20000 10
Soule 28963 directeur 25000 10
Bellot 13021 ingenieur 25000 20
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20

LambertJr | 15630 stagiaire 6000 20
Lambert | 25012 directeur 30000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30

DBDM
SQL

Example - 4

SELECT Fonction, Num_Dept

Fonction Num_dept
commercial 10
directeur 10
ingenieur 20
stagiaire 20
directeur 20
directeur 30
gestionnaire 30

DBDM
SQL

Aggregation functions

@ Operate on a set of atomic values.

@ Usable in GROUP BY queries to compute a value from a set
of values coming from the tuples in a group

@ Used in SELECT and ORDER BY.

e Not in WHERE.
(As the WHERE filter occurs before grouping.)

@ For example, AVG(e) return the average of the values e of
each tuple in the group.

DBDM
SQL

Example

Schema: Employe(Nom, Num, Fonction, Salaire, Num_Dept)

Average salary for each position:

SELECT Fonction, AVG(Salaire) SalaireMoyen
FROM Employe
GROUP BY Fonction;

DBDM
SQL

Standard aggregation functions

COUNT (e): bag semantics (a value can be counted more
than one).

e tuples for which e is NULL are not counted.
e * can replace e for counting tuples

MAX (e)
MIN(e)
SUM(e)

AVG (e)
STDDEV (e)
VARIANCE (e)

e can be preceded by DISTINCT for set semantics

@ Important for COUNT, SUM, AVG, STDDEV and
VARIANCE.

DBDM
SQL

Example

Schema:
Employe(Nom, Num, Fonction, Salaire, Num_Dept)
Departement(Num_dept, Nom_dept, Num_bat)

SELECT Nom_dept, COUNT(DISTINCT Fonction) NbFonctions
FROM Employe, Departement

WHERE Employe.Num_dept = Departement.Num_dept

GROUP BY Departement.Num_dept, Nom_dept;

DBDM
SQL

Example - 2

Schema: Employe(Nom, Num, Fonction, Salaire, Num_Dept)

SELECT Num_dept, Nom, Salaire

FROM Employe

WHERE (Num_ dept, Salaire) IN
(SELECT Num dept, MAX(Salaire)
FROM Employe
GROUP BY Num dept) ;

DBDM
SQL

Filtering groups

SELECT atty, atty, ...
FROM table;, tabley, ...
WHERE condition
GROUP BY atty, atty, ...
HAVING group_condition
ORDER BY att;, att;, ...

@ WHERE can filter individual tuples, not groups
@ HAVING is for filtering groups
e same rules as SELECT and ORDER BY concerning usable

values

Example

SELECT Num Dept, COUNT(DISTINCT Fonction) NbFonctions
FROM Employe

WHERE Salaire > 15000

GROUP BY Num_Dept

HAVING COUNT(x) > 2;

Nom Num Fonction Salaire | Num_dept

Bellot 13021 ingenieur 25000 20
Dupuis 14028 | commercial | 20000 10
LambertJr | 15630 stagiaire 6000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20
Lambert | 25012 directeur 30000 20
Fildou 25631 | commercial | 20000 10

Soule 28963 directeur 25000 10

DBDM
SQL

Example - 2

FROM Employe WHERE Salaire > 15000

Nom Num Fonction Salaire | Num_dept

Bellot 13021 ingenieur 25000 20
Dupuis 14028 | commercial | 20000 10
LambertJr | 15630 stagiaire 6000 20
Martin 16712 directeur 40000 30
Dupont 17574 | gestionnaire | 30000 30
Jones 19563 ingenieur 20000 20
Brown 20663 ingenieur 20000 20
Lambert | 25012 directeur 30000 20
Fildou 25631 | commercial | 20000 10

Soule 28963 directeur 25000 10

DBDM
SQL

Example - 3

GROUP BY Num Dept

Nom Num Fonction Salaire | Num_dept
Bellot | 13021 ingenieur 25000 20
Jones 19563 ingenieur 20000 20
Brown | 20663 ingenieur 20000 20

Lambert | 25012 directeur 30000 20
Martin | 16712 directeur 40000 30
Dupont | 17574 | gestionnaire | 30000 30
Dupuis | 14028 | commercial | 20000 10
Fildou | 25631 | commercial | 20000 10
Soule 28963 directeur 25000 10

DBDM
SQL

Example - 4

HAVING COUNT(*) > 2

Nom Num Fonction Salaire | Num_dept

Bellot | 13021 ingenieur 25000 20
Jones 19563 ingenieur 20000 20
Brown | 20663 ingenieur 20000 20
Lambert | 25012 directeur 30000 20
Martin | 16712 directeur 40000 30
Dupont | 17574 | gestionnaire | 30000 30
Dupuis | 14028 | commercial | 20000 10
Fildou | 25631 | commercial | 20000 10

Soule | 28963 directeur 25000 10

DBDM
SQL

Example - 5

SELECT Num_Dept, COUNT(DISTINCT Fonction) NbFonctions

Num_dept | NbFonctions
10 2
20 2

DBDM
SQL

Global grouping

Using aggregation function without GROUP BY:

@ Implicit grouping with only one group

@ SELECT can then only contain aggregation functions

DBDM
SQL

Example

Schema:
Employe(Nom, Num, Fonction, Salaire, Num_Dept)

SELECT SUM(Salaire)
FROM Employe
WHERE Num_dept = 10;

DBDM
SQL

Double grouping

Nested use of aggregation functions in SELECT

@ Possible only in a GROUP BY query.
@ triggers two grouping:
o The first normal one corresponding to the GROUP BY
statement

e A second implicit one because of the englobing aggregation
function.

@ work as a global grouping

Remark: not always implemented as is but by can be recoded using
a subquery in FROM

DBDM
SQL

Example

Schema:
Employe(Nom, Num, Fonction, Salaire, Num_Dept)

Size of the largest departement for the number of employees

SELECT MAX(COUNT(*)) | SELECT MAX(NbEmp)
FROM Employe FROM (SELECT COUNT(x) AS NbEmp
GROUP BY Num._dept; FROM Employe
GROUP BY Num_dept)
CountEmp;

	Introduction
	Files
	Database Management System

	Relational model
	SQL

