Data Bases Data Mining

Fondements des Bases de Données: des Dépendances Fonctionnelles aux Formes Normales

Équipe pédagogique $B D$

http://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:
dbdm:start
Version du February 26, 2016

Exemple

Let $\mathcal{U}=\{$ id, name, address, cnum, desc, grade $\}$ a set of attributes to model students and courses. Whe consider the following database schemas:

- $R 1=\{$ Data $\}$ with schema $($ Data $)=\mathcal{U}^{1}$.
- $R 2=\{$ Student, Course, Enrollment $\}$ avec
- schema(Student) $=\{$ id, name, address $\}$
- schema(Course) $=\{$ cnum, desc $\}$
- schema(Enrollment) $=\{$ id, cnum, grade $\}$

How to compare these schemas?

- Which one is the "best"?
- Why?

Exemple

Data	id	name	address	cnum	desc	grade
	124	Jean	Paris	F234	Philo I	A
	456	Emma	Lyon	F234	Philo I	B
	789	Paul	Marseille	M321	Analyse I	C
124	Jean	Paris	M321	Analyse I	A	
	789	Paul	Marseille	CS24	BD I	B

Is there any problem here?

Exemple

Data	id	name	address	cnum	desc	grade
	124	Jean	Paris	F234	Philo I	A
	456	Emma	Lyon	F234	Philo I	B
	789	Paul	Marseille	M321	Analyse I	C
124	Jean	Paris	M321	Analyse I	A	
	789	Paul	Marseille	CS24	BD I	B

Is there any problem here?
Redundancies!

Redundancies

Data	id	name	address	cnum	desc	grade
124	Jean	Paris	F234	Philo I	A	
456	Emma	Lyon	F234	Philo I	B	
789	Paul	Marseille	M321	Analyse I	C	
124	Jean	Paris	M321	Analyse I	A	
789	Paul	Marseille	CS24	BD I	B	

Intuition on functional dependencies

- A student' id gives her/his name and address, so for each new enrollment, his/her name and address are duplicated!
- $\pi_{i d, \text { name,address }}$ (Data) is the graph of a (partial) function $f:$ id \rightarrow name \times address, similarly for $\pi_{\text {cnum, desc }}$ (Data)
- $R 2=\{$ Student, Course, Enrollment $\}$ is better than $R 1=\{$ Data $\}$ because it avoids redundancies by keeping unrelated information (e.g., a student's name and a course' description) unrelated...

Functional is a theoretical tool to capture and reason on this phenomenon.

Functional Dependencies
Inference

Closure algorithm

Normalization

Functional dependencies: definition

Syntax

A Functional Dependency (FD) over a relation schema R is a formal expression of the form ${ }^{2}$, with $X, Y \subseteq R$:

$$
R: X \rightarrow Y
$$

- $X \rightarrow Y$ is read " X functionally determines Y " or " X gives Y "
- A FD $X \rightarrow Y$ is trivial when $Y \subseteq X$
- A FD is standard when $X \neq \emptyset$.
- A set of attributes X is a key when $R: X \rightarrow R$

Semantics

Let r be a relation (a.k.a. instance) over R. The FD $R: X \rightarrow Y$ is satisfied by r, written $r \vDash R: X \rightarrow Y$, iff

$$
\forall t_{1}, t_{2} \in r \cdot t_{1}[X]=t_{2}[X] \Rightarrow t_{1}[Y]=t_{2}[Y]
$$

What constraint is implied by a non-standard FD? Why a trivial FD is said to be trivial ?

Example

r	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
t_{1}	a_{1}	b_{1}	c_{1}	d_{1}
t_{2}	a_{1}	b_{1}	c_{1}	d_{2}
t_{3}	a_{1}	b_{2}	c_{2}	d_{3}
t_{4}	a_{2}	b_{2}	c_{3}	d_{4}

- $r \models A B \rightarrow C$ (no counter-example)
- $r \vDash D \rightarrow A B C D$ (no counter-example)
- $r \not \models A B \rightarrow D$ (e.g., $t_{1}[A B]=t_{2}[A B]$ but $\left.t_{1}[D] \neq t_{2}[D]\right)$
- $r \not \models A \rightarrow C\left(\right.$ e.g., $t_{2}[A]=t_{3}[A]$ but $\left.t_{2}[C] \neq t_{3}[C]\right)$

Functional Dependencies

Inference

Closure algorithm

Normalization

Logical implication

Definition

Let F be a set of FDs on a relation schema R and let f be a single FD on R. We overload \models for a set of FDs:

$$
r \models F \text { iff } \forall f \in F . r \models f
$$

F logical (semantically) implies f, written

$$
F \models f \text { iff } \forall r . r \models F \Rightarrow r \models f
$$

Example
With $F=\{A \rightarrow B C D, B C \rightarrow E\}$ and $r \models F$, the following hold as well:

- $r \vDash A \rightarrow C D$
- $r \models A \rightarrow E$

It can be proved using the definition of \models and basic reasoning on projection of tuples.

Armstrong's System for FD

Armstrong's System
The following rules constitute the so call Armstrong's system for FDs:

- Reflexivity

$$
\frac{Y \subseteq X}{X \rightarrow Y}
$$

- Augmentation

$$
\begin{gathered}
X \rightarrow Y \\
W X \rightarrow W Y
\end{gathered}
$$

- Transitivity

$$
\frac{X \rightarrow Y \quad Y \rightarrow Z}{X \rightarrow Z}
$$

Proof using Armstrong's system

Example
Let $\Sigma=\{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ be a set of FDs on $\{A, B, C, D, E\}$. We show that $\Sigma \vdash A D \rightarrow E$

$$
\frac{A \rightarrow B \quad B \rightarrow C}{\frac{A \rightarrow C}{A D \rightarrow C D}} \quad C D \rightarrow E
$$

Properties

Soundness and completeness

- The system is sound if $F \vdash f \Rightarrow F \models f$ if there is a proof, the proof is valid
- The system is complete if $F \models f \Rightarrow F \vdash f$ if it's valid, there is a proof

$$
F \models \alpha \Leftrightarrow F \vdash \alpha
$$

Soundness

Prove for every rule that, if its hypothesis are valid then its conclusion is valid as well.

Example: la transitivity

Let r be ans instance on R s.t. $r \models X \rightarrow Y$ et $r \models Y \rightarrow Z$. Let $t_{1}, t_{2} \in r$ be two tuples in r s.t. $t_{1}[X]=t_{2}[X]$, we have to show that $t_{1}[Z]=t_{2}[Z]$. Using $r \models X \rightarrow Y$ we deduce that $t_{1}[Y]=t_{2}[Y]$, then using $r \vDash Y \rightarrow Z$ we deduce that $t_{1}[Z]=t_{2}[Z]$. So the transitivity of FDs amounts to the transitivity of equality...

Additional rules

- Decomposition

$$
\frac{X \rightarrow Y Z}{X \rightarrow Y}
$$

- Composition

$$
\frac{X \rightarrow Y \quad X \rightarrow Z}{X \rightarrow Y Z}
$$

- Pseudo-transitivity

$$
\frac{X \rightarrow Y \quad W Y \rightarrow Z}{W X \rightarrow Z}
$$

This rules are sound and can be (safely) added to Armstrong's system

Completeness

Preuve formelle
A (formal) proof of f from Σ using Armstrong' system written $\Sigma \vdash f$ is a sequence $\left\langle f_{0}, \ldots, f_{n}\right\rangle$ of FDs s.t. $f_{n}=f$ et $\forall i \in[0 . . n]$:

- either $f_{i} \in \Sigma$;
- or f_{i} is the conclusion of a rule of which all its antecedents $f_{0} \ldots f_{p}$ appear before f_{i} in the sequence.

Completeness: $\Sigma \models X \rightarrow Y \Rightarrow \Sigma \vdash X \rightarrow Y$

We need a clear distinction between

- the semantic closure of $X: X^{+}=\{A \mid \Sigma \models X \rightarrow A\}$
- the syntactic closure of $X: X^{\star}=\{A \mid \Sigma \vdash X \rightarrow A\}$

Lemma: $\Sigma \vdash X \rightarrow Y \Leftrightarrow Y \subseteq X^{\star}$

Completeness

$$
\begin{aligned}
& \Sigma \models X \rightarrow Y \Rightarrow \Sigma \vdash X \rightarrow Y \\
\equiv & \Sigma \nvdash X \rightarrow Y \Rightarrow \Sigma \not \models X \rightarrow Y \\
\equiv & \Sigma \nvdash X \rightarrow Y \Rightarrow \exists r .(r \models \Sigma \wedge r \not \models X \rightarrow Y)
\end{aligned}
$$

The crux is to find an instance r, with $X^{\star}=X_{1} \ldots X_{n}$ et $Z_{1} \ldots Z_{p}=R \backslash X^{\star}$

r	X_{1}	\ldots	X_{n}	Z_{1}	\ldots	Z_{p}
s	x_{1}	\ldots	x_{n}	z_{1}	\ldots	z_{p}
t	x_{1}	\ldots	x_{n}	y_{1}	\ldots	y_{p}

$$
r \models \Sigma \text { but } r \not \models X \rightarrow Y
$$

Functional Dependencies

Inference

Closure algorithm

Normalization

Inference problem for FDs

Armstrong's system leads to a (inefficient) decision procedure for the inference problem.
Inference problem for FDs

```
Let F be a set of FDs and f a single FD, does F\modelsf hold true?
```

Lemma: $F \models X \rightarrow Y$ iff $Y \subseteq X^{+}$
Thus, if we have an (efficient) algorithm to compute X^{+}, we can (efficiently) solve the inference problem:

1. Given Σ and $X \rightarrow Y$, compute X^{+}w.r.t. Σ
2. Return $Y \subseteq X^{+}$

Closure algorithm: $\operatorname{Closure}(\Sigma, X)$

Data: Σ a set of FDs, X a set of d'attributes.
Result: X^{+}, the closure of X w.r.t. Σ
$1 \mathrm{Cl}:=X$
2 done $:=$ false
3 while (\neg done) do
4 done := true
5 forall the $W \rightarrow Z \in \Sigma$ do
6
if $W \subseteq C I \wedge Z \nsubseteq C l$ then
$C l:=C l \cup Z$
done := false
9 return Cl

How many times ${ }^{3}$ do we compute $W \subseteq C l \wedge Z \nsubseteq C l$ w.r.t. $|\Sigma|=n$?
${ }^{3}$ at worst, using a bad strategy at line 5 .

Second algorithm

Data: Σ a set of FDs, X a set of d'attributes.
Result: X^{+}, the closure of X w.r.t. Σ
10 for $W \rightarrow Z \in F$ do
$11 \quad$ count $[W \rightarrow Z]:=|W|$
$12 \quad$ for $A \in W$ do
13
$\lfloor\operatorname{list}[A]:=\operatorname{list}[A] \cup W \rightarrow Z$
14 closure $:=X$, update $:=X$
15 while update $\neq \emptyset$ do
16 Choose $A \in$ update
$17 \quad$ update $:=$ update $\backslash\{A\}$
18 for $W \rightarrow Z \in \operatorname{list}[A]$ do
19
20
21
22 $\operatorname{count}[W \rightarrow Z]:=\operatorname{count}[W \rightarrow Z]-1$ if count $[W \rightarrow Z]=0$ then
update $:=$ update $\cup(Z \backslash$ closure $)$
closure $:=$ closure $\cup Z$
23 return closure

Example : $A E^{+}$

$$
\Sigma=\{A \rightarrow I ; A B \rightarrow E ; B I \rightarrow E ; C D \rightarrow I ; E \rightarrow C\}
$$

Initialization

$$
\begin{array}{ll}
\operatorname{List}[A]=\{A \rightarrow D ; A B \rightarrow E\} & \text { count }[A \rightarrow D]=1 \\
\operatorname{List}[B]=\{A B \rightarrow E ; B I \rightarrow E\} & \text { count }[A B \rightarrow E]=2 \\
\operatorname{List}[C]=\{C D \rightarrow I\} & \text { count }[B I \rightarrow E]=2 \\
\operatorname{List}[D]=\{C D \rightarrow I\} & \operatorname{count}[C D \rightarrow I]=2 \\
\operatorname{List}[E]=\{E \rightarrow C\} & \operatorname{count}[E \rightarrow C]=1 \\
\operatorname{List}[I]=\{B I \rightarrow E\} &
\end{array}
$$

Cover

Cover of a set of FDs

$$
\begin{gathered}
\text { With } F^{+}=\{f \mid F \models f\}, \text { let } \Sigma \text { et } \Gamma \text { be two sets of FDs, } \\
\Gamma \text { is a cover of } \Sigma \text { iff } \Gamma^{+}=\Sigma^{+}
\end{gathered}
$$

Data: F a set of FDs
Result: G a minimal cover of F
$24 G:=\emptyset$
25 for $X \rightarrow Y \in F$ do
$26\left\lfloor G:=G \cup\left\{X \rightarrow X^{+}\right\}\right.$
27 for $X \rightarrow X^{+} \in G$ do
28
29

$$
\text { if } G-\left\{X \rightarrow X^{+}\right\} \vdash X \rightarrow X^{+} \text {then }
$$

$$
L G:=G-\left\{X \rightarrow X^{+}\right\}
$$

30 return G

Functional Dependencies

Inference

Closure algorithm

Normalization

Application of FD: Normalization

We write $\langle R, \Sigma\rangle$ with R a relation schema and Σ a set of FDs on R. A set of attribute X is a minimal key of $\langle R, \Sigma\rangle$ iff:

- X is a key of R (i.e., $X \rightarrow R$ holds)
- X is minimal w.r.t. set inclusion: $\forall . X^{\prime} \subsetneq X \Rightarrow X^{\prime} \nrightarrow R$

Third Normal Form (3NF)

$\langle R, \Sigma\rangle$ is in 3NF iff, for all non-trivial FD $X \rightarrow A$ of Σ^{+}, one of the following conditions holds:

- X is a key of R
- A is a member of at least one minimal key of R^{4}

Boyce-Codd Normal Form (BCNF)

$\langle R, \Sigma\rangle$ is in BCNF iff, for all non-trivial $X \rightarrow A$ of Σ^{+}, X is a key of R.
Informally, $\langle R, \Sigma\rangle$ is good when Σ is nothing but the key!

[^0]
Example

3NF captures most of redundancies

- $\langle A B C,\{A \rightarrow B, B \rightarrow C\}\rangle$ is not in 3NF
A is the unique minimal key. Considering $B \rightarrow C, C$ is not prime and B is not a key. Clearly, $A B C$ should be divided into $A B$ and $B C$
- $\langle A B C,\{A B \rightarrow C, C \rightarrow B\}\rangle$ is in 3NF

There are two minimal keys: $A B$ and $A C$. Every attribute is prime so the 3NF condition holds. Unfortunately, some redundancies still hold but there is no way to decompose $A B C$ into smaller relation without loss of FD!

BCNF captures all redundancies (expressed by FD)

- $\langle A B C,\{A B \rightarrow C, C \rightarrow B\}\rangle$ is not in BCNF Considering $C \rightarrow B, C$ alone is not a key.

Example

Back to the introductory example

With $\mathcal{U}=\{i d$, name, address, cnum, desc, grade $\}$:

- the natura ${ }^{5}$ FDs are $f_{1}=i d \rightarrow$ name, address, $f_{2}=$ cnum \rightarrow desc and $f_{3}=i d$, cnum \rightarrow grade.
- The minimal key of \mathcal{U} is $\{i d, c n u m\}$.
- Without refinement, \mathcal{U} is not in 3NF, e.g., f_{1} holds but id is not a key.
- The decomposition of \mathcal{U} into
- $\left\langle\{\right.$ id, name, address $\left.\},\left\{f_{1}\right\}\right\rangle$
- $\left\langle\{\right.$ cnum, desc $\left.\},\left\{f_{2}\right\}\right\rangle$
- $\left\langle\{i d\right.$, cnum, grade $\left.\},\left\{f_{3}\right\}\right\rangle$
is good because the BCNF condition holds for each relation.

[^1]End.

[^0]: ${ }^{4}$ An attribute that appears in at least one minimal key is said to be a prime attribute.

[^1]: ${ }^{5}$ Those which hold from the user's perspective, or alternatively, those that are true in the existing dataset.

