Data Bases Data Mining

Fondements des Bases de Données : des Dépendances Fonctionnelles aux Formes Normales

Équipe pédagogique BD

Exemple

Let $\mathcal{U}=\{id, name, address, cnum, desc, grade\}$ a set of attributes to model students and courses. Whe consider the following database schemas :

- $ightharpoonup R1 = \{Data\} \text{ with } schema(Data) = \mathcal{U}^1.$
- ► R2 = {Student, Course, Enrollment} avec
 - schema(Student) = {id, name, address}
 - schema(Course) = {cnum, desc}
 - schema(Enrollment) = {id, cnum, grade}

How to compare these schemas?

- ▶ Which one is the "best"?
- ► Why?

¹Similar to a spreadsheet.

Exemple

Data	id	name	address	cnum	desc	grade
	124	Jean	Paris	F234	Philo I	Α
	456	Emma	Lyon	F234	Philo I	В
	789	Paul	Marseille	M321	Analyse I	C
	124	Jean	Paris	M321	Analyse I	Α
	789	Paul	Marseille	CS24	BD I	В

Is there any problem here?

Exemple

Data	id	name	address	cnum	desc	grade
	124	Jean	Paris	F234	Philo I	Α
	456	Emma	Lyon	F234	Philo I	В
	789	Paul	Marseille	M321	Analyse I	C
	124	Jean	Paris	M321	Analyse I	Α
	789	Paul	Marseille	CS24	BD I	В

Is there any problem here?

Redundancies!

Redundancies

Data	id	name	address	cnum	desc	grade
	124	Jean	Paris	F234	Philo I	А
	456	Emma	Lyon	F234	Philo I	В
	789	Paul	Marseille	M321	Analyse I	C
	124	Jean	Paris	M321	Analyse I	Α
	789	Paul	Marseille	CS24	BD I	В

Intuition on functional dependencies

- ► A student' *id* gives her/his name and address, so for each new enrollment, his/her name and address are duplicated!
- ▶ $\pi_{id,name,address}(Data)$ is the graph of a (partial) function $f:id \rightarrow name \times address$, similarly for $\pi_{cnum,desc}(Data)$
- ▶ R2 = {Student, Course, Enrollment} is better than R1 = {Data} because it avoids redundancies by keeping unrelated information (e.g., a student's name and a course' description) unrelated...

Functional is a theoretical tool to capture and reason on this phenomenon.

Functional Dependencies

Inference

Closure algorithm

Normalization

Functional dependencies: definition

Syntax

A Functional Dependency (FD) over a relation schema R is a formal expression of the form², with $X, Y \subseteq R$:

$$R: X \rightarrow Y$$

- ightharpoonup X o Y is read "X functionally determines Y" or "X gives Y"
- ▶ A FD $X \rightarrow Y$ is trivial when $Y \subseteq X$
- ▶ A FD is standard when $X \neq \emptyset$.
- ▶ A set of attributes X is a key when $R: X \rightarrow R$

Semantics

Let r be a relation (a.k.a. *instance*) over R. The FD $R: X \to Y$ is satisfied by r, written $r \models R: X \to Y$, iff

$$\forall t_1, t_2 \in r.t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$$

²We write $X \to Y$ when R is clear from the context.

What constraint is implied by a *non-standard* FD? Why a *trivial* FD is said to be *trivial*?

Example

r	Α	В	С	D
t_1	a_1	b_1	c_1	d_1
t_2	a_1	b_1	c_1	d_2
t_3	a_1	b_2	<i>c</i> ₂	d_3
t_4	a_2	b_2	<i>c</i> ₃	d_4

- ▶ $r \models AB \rightarrow C$ (no counter-example)
- $r \models D \rightarrow ABCD$ (no counter-example)
- ▶ $r \nvDash AB \rightarrow D$ (e.g., $t_1[AB] = t_2[AB]$ but $t_1[D] \neq t_2[D]$)
- ▶ $r \nvDash A \rightarrow C$ (e.g., $t_2[A] = t_3[A]$ but $t_2[C] \neq t_3[C]$)

Functional Dependencies

Inference

Closure algorithm

Normalization

Logical implication

Definition

Let F be a set of FDs on a relation schema R and let f be a single FD on R. We overload \models for a set of FDs:

$$r \models F \text{ iff } \forall f \in F.r \models f$$

F logical (semantically) implies f, written

$$F \models f \text{ iff } \forall r.r \models F \Rightarrow r \models f$$

Example

With $F = \{A \rightarrow BCD, BC \rightarrow E\}$ and $r \models F$, the following hold as well:

- $ightharpoonup r \models A \rightarrow CD$
- $ightharpoonup r \models A \rightarrow E$

It can be proved using the definition of \models and basic reasoning on projection of tuples.

Armstrong's System for FD

Armstrong's System

The following rules constitute the so call *Armstrong's system* for FDs:

► Reflexivity

$$\frac{Y\subseteq X}{X\to Y}$$

Augmentation

$$\frac{X \to Y}{WX \to WY}$$

► Transitivity

$$\frac{X \to Y \qquad Y \to Z}{X \to Z}$$

Proof using Armstrong's system

Example

Let $\Sigma = \{A \to B, B \to C, CD \to E\}$ be a set of FDs on $\{A, B, C, D, E\}$. We show that $\Sigma \vdash AD \to E$

$$\begin{array}{c|c} A \rightarrow B & B \rightarrow C \\ \hline A \rightarrow C & CD \rightarrow E \\ \hline AD \rightarrow CD & CD \rightarrow E \\ \hline AD \rightarrow E & \end{array}$$

Properties

Soundness and completeness

- ► The system is sound if $F \vdash f \Rightarrow F \models f$ if there is a proof, the proof is valid
- ► The system is complete if $F \models f \Rightarrow F \vdash f$ if it's valid, there is a proof

$$F \models \alpha \Leftrightarrow F \vdash \alpha$$

Soundness

Prove for every rule that, if its hypothesis are valid then its conclusion is valid as well.

Example: la transitivity

Let r be ans instance on R s.t. $r \models X \to Y$ et $r \models Y \to Z$. Let $t_1, t_2 \in r$ be two tuples in r s.t. $t_1[X] = t_2[X]$, we have to show that $t_1[Z] = t_2[Z]$. Using $r \models X \to Y$ we deduce that $t_1[Y] = t_2[Y]$, then using $r \models Y \to Z$ we deduce that $t_1[Z] = t_2[Z]$. So the transitivity of FDs amounts to the transitivity of equality. . .

Additional rules

Decomposition

$$\frac{X \to YZ}{X \to Y}$$

Composition

$$\frac{X \to Y \qquad X \to Z}{X \to YZ}$$

Pseudo-transitivity

$$\frac{X \to Y \qquad WY \to Z}{WX \to Z}$$

This rules are sound and can be (safely) added to Armstrong's system

Completeness

Preuve formelle

A (formal) proof of f from Σ using Armstrong' system written $\Sigma \vdash f$ is a sequence $\langle f_0, \ldots, f_n \rangle$ of FDs s.t. $f_n = f$ et $\forall i \in [0..n]$:

- ▶ either $f_i \in \Sigma$;
- ▶ or f_i is the *conclusion* of a rule of which all its *antecedents* $f_0 \dots f_p$ appear before f_i in the sequence.

Completeness: $\Sigma \models X \rightarrow Y \Rightarrow \Sigma \vdash X \rightarrow Y$

We need a clear distinction between

- ▶ the semantic closure of X: $X^+ = \{A \mid \Sigma \models X \rightarrow A\}$
- ▶ the syntactic closure of X: $X^* = \{A \mid \Sigma \vdash X \rightarrow A\}$

Lemma:
$$\Sigma \vdash X \rightarrow Y \Leftrightarrow Y \subseteq X^*$$

Completeness

$$\Sigma \models X \to Y \Rightarrow \Sigma \vdash X \to Y$$

$$\equiv \Sigma \not\vdash X \to Y \Rightarrow \Sigma \not\models X \to Y$$

$$\equiv \Sigma \not\vdash X \to Y \Rightarrow \exists r. (r \models \Sigma \land r \not\models X \to Y)$$
The crux is to find an instance r , with $X^* = X_1 \dots X_n$ et $Z_1 \dots Z_p = R \setminus X^*$

$$\frac{r \quad X_1 \quad \dots \quad X_n \quad Z_1 \quad \dots \quad Z_p}{s \quad x_1 \quad \dots \quad x_n \quad z_1 \quad \dots \quad z_p}$$

$$\frac{r \quad X_1 \quad \dots \quad X_n \quad Z_1 \quad \dots \quad Z_p}{t \quad x_1 \quad \dots \quad x_n \quad y_1 \quad \dots \quad y_p}$$

$$r \models \Sigma \text{ but } r \not\models X \to Y$$

Functional Dependencies

Inference

Closure algorithm

Normalization

Inference problem for FDs

Armstrong's system leads to a (inefficient) decision procedure for the *inference problem*.

Inference problem for FDs

Let F be a set of FDs and f a single FD, does $F \models f$ hold true?

Lemma:
$$F \models X \rightarrow Y \text{ iff } Y \subseteq X^+$$

Thus, if we have an (efficient) algorithm to compute X^+ , we can (efficiently) solve the inference problem:

- 1. Given Σ and $X \to Y$, compute X^+ w.r.t. Σ
- 2. Return $Y \subseteq X^+$

Closure algorithm: Closure (Σ, X)

```
Data: \Sigma a set of FDs, X a set of d'attributes.
  Result: X^+ the closure of X w.r.t. \Sigma
1 CI := X
2 done := false
3 while (¬done) do
      done := true
      for all the W \rightarrow Z \in \Sigma do
          if W \subseteq CI \land Z \not\subseteq CI then
9 return Cl
```

5

6

How many times³ do we compute $W \subseteq Cl \land Z \not\subseteq Cl$ w.r.t. $|\Sigma| = n$?

³at worst, using a bad strategy at line 5.

Second algorithm

```
Data: \Sigma a set of FDs. X a set of d'attributes.
    Result: X^+, the closure of X w.r.t. \Sigma
10 for W \rightarrow Z \in F do
        count[W \rightarrow Z] := |W|
11
     for A \in W do
     | \quad | \quad \textit{list}[A] := \textit{list}[A] \cup W \rightarrow Z
13
14 closure := X, update := X
15 while update \neq \emptyset do
        Choose A \in update
16
       update := update \setminus \{A\}
17
        for W \to Z \in list[A] do
18
             count[W \rightarrow Z] := count[W \rightarrow Z] - 1
19
            if count[W \rightarrow Z] = 0 then
20
                 update := update \cup (Z \setminus closure)
21
                 closure := closure \cup Z
22
```

23 return closure

Example : AE^+

$$\Sigma = \{ A \rightarrow \textit{I}; AB \rightarrow \textit{E}; B\textit{I} \rightarrow \textit{E}; \textit{CD} \rightarrow \textit{I}; \textit{E} \rightarrow \textit{C} \}$$

Initialization

$$\begin{array}{ll} \textit{List}[A] = \{A \rightarrow D; AB \rightarrow E\} & \textit{count}[A \rightarrow D] = 1 \\ \textit{List}[B] = \{AB \rightarrow E; BI \rightarrow E\} & \textit{count}[AB \rightarrow E] = 2 \\ \textit{List}[C] = \{CD \rightarrow I\} & \textit{count}[BI \rightarrow E] = 2 \\ \textit{List}[D] = \{CD \rightarrow I\} & \textit{count}[CD \rightarrow I] = 2 \\ \textit{List}[E] = \{E \rightarrow C\} & \textit{count}[E \rightarrow C] = 1 \\ \textit{List}[I] = \{BI \rightarrow E\} \\ \end{array}$$

Cover

Cover of a set of FDs

With
$$F^+ = \{f \mid F \models f\}$$
, let Σ et Γ be two sets of FDs, Γ is a cover of Σ iff $\Gamma^+ = \Sigma^+$

```
Data: F a set of FDs

Result: G a minimal cover of F

24 G := \emptyset

25 for X \to Y \in F do

26 \bigcup G := G \cup \{X \to X^+\}

27 for X \to X^+ \in G do

28 \bigcup G := G - \{X \to X^+\} then

29 \bigcup G := G - \{X \to X^+\}
```

30 return G

Functional Dependencies

Inference

Closure algorithm

Normalization

Application of FD: Normalization

We write $\langle R, \Sigma \rangle$ with R a relation schema and Σ a set of FDs on R. A set of attribute X is a *minimal key* of $\langle R, \Sigma \rangle$ iff:

- ▶ X is a key of R (i.e., $X \rightarrow R$ holds)
- ▶ X is minimal w.r.t. set inclusion: $\forall .X' \subsetneq X \Rightarrow X' \not\rightarrow R$

Third Normal Form (3NF)

 $\langle R, \Sigma \rangle$ is in 3NF iff, for all *non-trivial* FD $X \to A$ of Σ^+ , one of the following conditions holds:

- ▶ X is a key of R
- ightharpoonup A is a member of at least one minimal key of R^4

Boyce-Codd Normal Form (BCNF)

 $\langle R, \Sigma \rangle$ is in BCNF iff, for all *non-trivial* $X \to A$ of Σ^+ , X is a key of R.

Informally, $\langle R, \Sigma \rangle$ is good when Σ is nothing but the key!

⁴An attribute that appears in *at least* one minimal key is said to be a *prime* attribute.

4 □ → 4 ⑤ → 4 毫 → 4 意 → 3 € → 4 ② → 4 ③ → 4 ② → 4 ② → 4 ② → 4 ② → 4 ② → 4 ② → 4 ② → 4 ② → 4 ② → 4 ② → 4 ② → 4 ② → 4 ② → 4 ③ → 4 ② → 4 ② → 4 ③ → 4 ③ → 4 ② → 4 ③ → 4 ③ → 4 ② → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ② → 4 ③ → 4 ④ →

Example

3NF captures most of redundancies

- ▶ $\langle ABC, \{A \rightarrow B, B \rightarrow C\} \rangle$ is not in 3NF A is the unique minimal key. Considering $B \rightarrow C$, C is not prime and B is not a key. Clearly, ABC should be divided into AB and BC
- ▶ $\langle ABC, \{AB \rightarrow C, C \rightarrow B\} \rangle$ is in 3NF There are two *minimal* keys: AB and AC. Every attribute is prime so the 3NF condition holds. Unfortunately, some redundancies still hold but there is no way to decompose ABC into smaller relation without loss of FD!

BCNF captures all redundancies (expressed by FD)

▶ $\langle ABC, \{AB \rightarrow C, C \rightarrow B\} \rangle$ is *not* in BCNF Considering $C \rightarrow B$, C alone is not a key.

Example

Back to the introductory example

With $U = \{id, name, address, cnum, desc, grade\}$:

- ▶ the natura FDs are $f_1 = id \rightarrow name$, address, $f_2 = cnum \rightarrow desc$ and $f_3 = id$, $cnum \rightarrow grade$.
- ▶ The minimal key of \mathcal{U} is $\{id, cnum\}$.
- ▶ Without refinement, \mathcal{U} is not in 3NF, e.g., f_1 holds but id is not a key.
- lacktriangle The decomposition of ${\cal U}$ into
 - $\blacktriangleright \langle \{id, name, address\}, \{f_1\} \rangle$
 - \blacktriangleright $\langle \{cnum, desc\}, \{f_2\} \rangle$
 - \blacktriangleright $\langle \{id, cnum, grade\}, \{f_3\} \rangle$

is good because the BCNF condition holds for each relation.

 $^{^5}$ Those which hold from the user's perspective, or alternatively, those that are true in the existing dataset.

End.