
Data Bases Data Mining
Functional dependencies exercise sheet

We recall the following inference rules, where reflexivity, augmentation and transitivity constitute the so
called Armstrong’s system.

Y ⊆ X
σR (reflexivity)X → Y

X → Y σA (augmentation)WX →WY

X → Y Y → Z σT (transitivity)X → Z

X → Y X → Z σC (composition)X → YZ

X → YZ σD (decomposition)X → Y

X → Y WY → Z σP (pseudo-transitivity)WX → Z

A proof of X → Y from Σ written Σ ` X → Y is a sequence 〈f0, ... , fp〉 of FDs s.t. fp = X → Y
and ∀i ∈ [0..p] either fi ∈ Σ, or fi is the conclusion of a rule from the Armstrong’s system of which all its
antecedents f0 ... fp appear before fi in the sequence.

Exercice 1 : Proof of Functional Dependencies (FD)
Let Σ be the following set of FDs:

BC → A
AC → B
AE → C

D → BE
B → DE
C → E

1. Prove using Armstrong’s system that the following dependencies are entailed by Σ

1. AD → C
2. AB → C
3. AE → BD
4. AC → D
5. CD → A

Exercice 2 : Inference rules for FDs
1. Is the following inference rule correct? If true, prove it, otherwise, exhibit a counter-example.

XW → Y XY → Z
X → (Z \W)

2. Show that any proof F ` X → Y using the σP rule can be transformed into a proof that uses solely
σA et σT .

3. Show that any proof F ` X → Y using the σR , σA and σT rules can be transformed into a proof that
uses solely σR et σP .

4. Conclude that the set of rules {σR ,σP} is sound and complete for the inference problem of FDs.

Exercice 3 : The syntatic closure is a closure
The syntactic closure of X w.r.t. Σ is defined as X? = {A | Σ ` X → A}. In the usual (algebraic) sense

a closure is a mapping φ : ℘(E)→ ℘(E)1 that satisfies the three following properties:

Extensive X ⊆ φ(X)

Increasing X ⊆ Y ⇒ φ(X) ⊆ φ(Y)

Idempotent φ(φ(X)) = φ(X)

1. Show that X? is a closure in the algebraic sense using the Armstrong’s system. For idempotency, you
may prove first that Σ ` X → X?.

2. Show that for all set of attributes Y , if X ⊆ Y ⊆ X? then Y ? = X?

3. Use the previous property to compute the set of closed sets Cl(Σ) = {X? | X ⊆ R} for Σ as defined
in exercise 1.

Exercice 4 : Functional dependencies and propositional logic ([1])
The goal of this exercise is to relate functional dependencies and (classical) propositional logic, to highlight

the point that the syntactic resemblance between a FD and logical implication is not a sheer one.
Let P be an infinite enumerable set of propositional variables and let Σ be a set of FD over R. For each

attribute A ∈ R we associate a corresponding propositional variable A ∈ P. This mapping is extended to FD:
for each FD A1 ...Ap → B1 ...Bq ∈ Σ we associate the propositional formula A1∧ ...∧Ap ⇒ B1∧ ...∧Bq with
variables in P. Finally, we write Σ for the set of propositional formulas associated to Σ. Let α = A1 ...Ap →
B1 ...Bq be a FD, we want to show that the following are equivalent:

Σ |= α (1)
Σ |=2 α (2)
Σ |=P α (3)

We write Σ |= α for the usual logical entailment between a set of FD Σ and a single FD α. We write
Σ |=2 α for the logical entailment restricted to the case where relations have at most two tuples. In other
words, Σ |=2 α is defined as ∀r .(|r | = 2 ∧ r |= Σ) ⇒ r |= α. Finally, Σ |=P α is the classical propositional
logical entailment, i.e., for all assignment of propositional variables ν : P → {0, 1} such that ν |= Σ it is the
case that ν |= α as well.

Lemma 1. Let ν : P → {0, 1} be an assignment of propositional variables, and let r = {t1, t2} be the instance
with two tuples t1 and t2 such that t1[A] = 1 and t2[A] = ν(A) for all A ∈ R. Let α = A1 ...Ap → B1 ...Bq
be a FD. Then ν |=P α if and only if r |= α.

1. Show that proposition (1) is equivalent to proposition (2). For the (2) ⇒ (1) direction, use proof by
contradiction (show that Σ |=2 α and Σ 6|= α is inconsistent).

2. Show lemma 1 by constructing a two tuples instance “à la Armstrong” from ν and vice-versa.
3. Show that proposition (3) is equivlente to proposition (2) using lemma 1. Use proof by contradiction

for each direction.
4. Conclude the main theorem.

References
[1] R. Fagin. Functional dependencies in a relational database and propositional logic. IBM J. Res. Dev.,

21(6):534–544, Nov. 1977.

1℘(E) is the set of all subsets of E , formally ℘(E) = {X | X ⊆ E}

