DATA BASES DATA MINING
Functional dependencies exercise sheet

We recall the following inference rules, where reflexivity, augmentation and transitivity constitute the so
called Armstrong’s system.

X=Y X—=>Z "
7;5); or (reflexivity) X > YZ oc (composition)
_X=Y . X2 YZ op (decomposition)
WX WY o (augmentation) XY

XoY Yo7 XY Wy —7Z
t tivit
Ny o (transitivity) K 7

op (pseudo-transitivity)

A proof of X — Y from X written X - X — Y is a sequence (fy,...,f,) of FDs st. f, = X = Y
and Vi € [0..p] either f; € &, or f; is the conclusion of a rule from the Armstrong's system of which all its
antecedents fq ... f, appear before f; in the sequence.

Exercice 1 : Proof of Functional Dependencies (FD)
Let X be the following set of FDs:

BC — A D — BE
AC —- B B — DE
AE — C C—E

1. Prove using Armstrong's system that the following dependencies are entailed by ¥
1. AD—= C
2.AB— C
3. AE — BD
4. AC— D
5.CD— A

Exercice 2 : Inference rules for FDs

1. Is the following inference rule correct? If true, prove it, otherwise, exhibit a counter-example.
XW —Y XY -7
X = (Z\ W)

2. Show that any proof F - X — Y using the op rule can be transformed into a proof that uses solely
opetor.

3. Show that any proof F - X — Y using the og, 04 and o7 rules can be transformed into a proof that
uses solely o et op.

4. Conclude that the set of rules {og, op} is sound and complete for the inference problem of FDs.

Exercice 3 : The syntatic closure is a closure

The syntactic closure of X w.r.t. X is defined as X* = {A| £+ X — A}. In the usual (algebraic) sense
a closure is a mapping ¢ : p(E) — p(EE that satisfies the three following properties:

Extensive X C ¢(X)
Increasing X C Y = ¢(X) C ¢(Y)
Idempotent ¢(¢(X)) = ¢(X)

1. Show that X* is a closure in the algebraic sense using the Armstrong's system. For idempotency, you
may prove first that ¥ - X — X*.

2. Show that for all set of attributes Y, if X C Y C X* then Y* = X*

3. Use the previous property to compute the set of closed sets CI/(X) = {X* | X C R} for ¥ as defined
in exercise [I1

Exercice 4 : Functional dependencies and propositional logic (/1))

The goal of this exercise is to relate functional dependencies and (classical) propositional logic, to highlight
the point that the syntactic resemblance between a FD and logical implication is not a sheer one.

Let P be an infinite enumerable set of propositional variables and let ¥ be a set of FD over R. For each
attribute A € R we associate a corresponding propositional variable A € P. This mapping is extended to FD:
for each FD A; ... A, — B; ... B; € ¥ we associate the propositional formula A; A ... /\Ap = B; A .../\Qq with
variables in P. Finally, we write ¥ for the set of propositional formulas associated to .. Let a = A; ... A, —
Bi ... B4 be a FD, we want to show that the following are equivalent:

Y E o« (1)
Y o« (2)
X Fr a (3)

We write X | « for the usual logical entailment between a set of FD ¥ and a single FD «. We write
¥ =2 « for the logical entailment restricted to the case where relations have at most two tuples. In other
words, ¥ |=, « is defined as Vr.(Jr| =2 A r EX) = r E «. Finally, £ =p a is the classical propositional
logical entailment, i.e., for all assignment of propositional variables v : P — {0, 1} such that v = X it is the
case that v = « as well.

Lemmal. Letv: P — {0,1} be an assignment of propositional variables, and let r = {t1, t,} be the instance
with two tuples t; and ty such that t;[A] = 1 and t,[A] = v(A) for all Ac R. Let oo = A;...Ap — By ... B
be a FD. Then v |=p a if and only if r = .

1. Show that proposition is equivalent to proposition (2). For the (2) = (I]) direction, use proof by
contradiction (show that ¥ =5 o and ¥ [~ « is inconsistent).

2. Show lemma [I] by constructing a two tuples instance “a la Armstrong” from v and vice-versa.

3. Show that proposition is equivlente to proposition using lemma |1} Use proof by contradiction
for each direction.

4. Conclude the main theorem.

References

[1] R. Fagin. Functional dependencies in a relational database and propositional logic. IBM J. Res. Dev.,
21(6):534-544, Nov. 1977.

Lo(E) is the set of all subsets of E, formally p(E) = {X | X C E}

