
A Constraint Programming Approach for Enumerating
Motifs in a Sequence

Emmanuel Coquery1

1Université Claude Bernard Lyon 1
LIRIS - CNRS UMR 5205

F-69622 Villeurbanne Cedex, France
Email: emmanuel.coquery@liris.cnrs.fr

Saı̈d Jabbour2 and Lakhdar Saı̈s2

2Université Lille-Nord de France
CRIL - CNRS UMR 8188

Rue Jean Souvraz, SP-18 F-62300, Lens
Email: {jabbour,sais}@cril.fr

Abstract—In this paper we propose a con-
straint programming approach for enumer-
ating all frequent patterns with wildcards
in a given sequence. To reduce the search
space, we show that the anti-monotonicity
property of frequent patterns can be dynam-
ically encoded using nogood recording based
approach. Finally, the constraints network
is encoded as a Boolean formula. This last
step allows us to exploit the efficiency of
modern SAT solvers and particularly their
clauses learning component. Preliminary ex-
periments on real world data show the
feasibility of our approach in practice.

Keywords-Datamining; Constraint Pro-
gramming; Boolean satisfiability

I. INTRODUCTION

Frequent sequence-based data mining is
the problem of discovering frequent pat-
terns shared across time among an input
data-sequence. Pattern discovery in data
is widely used in bioinformatics as a
way to extract meaningful ”knowledge”
in large volume of data such as protein
motif discovery, gene prediction and se-
quence alignment. This problem is central
to many other applications domains such
as database and text mining.

In this paper we consider the pattern
discovery problem for a specific class of
patterns in a sequence. The data could
be represented as a string (a sequence
of ”solid” characters), while the pattern
can be seen as a subsequence with an
additional special character called wild-
card or joker that match any character [9],
[12], [1]. We are particularly interested in
enumerating all motifs in a sequence i.e.
patterns that occurs at least λ times. The
enumeration problem for maximal motifs

with wildcards has been investigated re-
cently by several authors [10], [12], [1].
One of the major problem is that the num-
ber of motifs can be of exponential size.
This combinatorial explosion is tackled
using different approaches. For example,
in Parida et al [9], the number of patterns
is reduced by introducing the maximal non
redundant q-patterns (patterns occurring at
least q times in a sequence). Harimura
and Uno [1] proposed a polynomial delay
and polynomial algorithm MaxMotif for
maximal pattern discovery of the class of
motifs with wildcards.

Our approach for enumerating all fre-
quent patterns with wildcards in a se-
quence differs from all the previous spe-
cialized approaches. It follows the con-
straint programming (CP) based data min-
ing framework proposed recently by Luc
De Raedt et al. in [6] for itemset mining.
This new framework offers a declarative
and flexible representation model. New
constraints often require new implemen-
tations in specialized approaches, while
they can be easily integrated in such a CP
framework. It allows data mining prob-
lems to benefit from several generic and
efficient CP solving techniques. The au-
thors show, how some typical constraints
(e.g. frequency, maximality, monotonicity)
used in pattern mining can be formulated
for use in CP. This first study leads to
the first CP approach for itemset min-
ing displaying nice declarative opportuni-
ties without neglecting efficiency. Encour-
aged by these promising results our first
goal is to heavily exploit these declar-
ative languages (constraint programming
and Boolean satisfiability (SAT)) and

their associated efficient and generic solv-
ing techniques. Our contributions are two
folds. First, we propose a CP model to
our problem. This model includes different
type of constraints. The first one, called
support constraint, expresses the inclusion
of a candidate pattern at every position
of the sequence. The second one, called
frequency constraint, encodes that a pat-
tern must appears at least λ times in the
sequence. Finally, we propose a Boolean
formulation of the obtained constraints
network. To this end, we use both the
classical encoding of constraint satisfac-
tion problems to a boolean formula in
conjunctive normal form and an additional
and efficient transformation of the 0/1 lin-
ear inequality representing the frequency
constraint [2]. This second Boolean for-
mulation offers the possibility to benefit
from the recent progress in satisfiability
testing. Another important motivation of
the Boolean model rises in the ability of
modern SAT solvers to efficiently han-
dle nogoods thanks to their clauses learn-
ing component. Indeed, to encode anti-
monotonicity, we need to maintain dynam-
ically a set of nogoods. Each time a pattern
p is shown non frequent, all patterns p′

such that p ⊆ p′ are eliminated thanks to
additional nogoods.

The rest of the this paper is organized
as follows. After some preliminaries on
the problem of enumerating frequent pat-
terns in a sequence (Section II-A), con-
straint programming and Boolean satisfia-
bility (Section II-B), we introduce our CP
formulation in Section III. In Section IV,
we propose a transformation to a Boolean
formula and show how to encode the anti-
monotonicity property. Preliminary exper-
iments are given before concluding.

II. PRELIMINARIES

A. Frequent patterns mining: preliminary
definitions

In this section, we give a formal descrip-
tion of the problem of enumerating fre-
quent patterns, possibly interspersed with
wildcards symbols, in a sequence. To this
end we first introduce some basic defini-
tions and notations according to [9], [12],
[1]. Let Σ be an alphabet, which is a finite
set of symbols (called solid characters). A

string (or simply a sequence) s is a succes-
sive sequence of characters s1 . . . sn ∈ Σ∗

where si ∈ Σ,∀i ∈ {1 . . . n} represents
the character at position i in s. The length
of the string s is denoted by |s| = n. We
denote O = {1 . . . n} as the set of posi-
tions of the characters in s. A wildcard (or
don’t care) is an additional symbol ◦ not
belonging to Σ (◦ /∈ Σ) that matchs any
symbol of the alphabet including itself.

Definition 1 (Pattern): A pattern over
Σ is a string p = p1 . . . pm ∈ Σ ∪ Σ.(Σ ∪
{◦})∗.Σ, where ∪ and . are the classical
regular expression operators of union and
concatenation respectively. The first and
the last position of a pattern contains a
solid character i.e. p1 6= ◦ et pm 6= ◦

Definition 2 (Inclusion): A pattern p
appears in a sequence s at the location
l ∈ O denoted p ⊆l s, if ∀i ∈ {1 . . .m},
pi = sl+i−1 or pi = ◦. We note Ls(p) =
{l ∈ O|p ⊆l s} the support of p in s. We
say that p ⊆ s iff ∃l ∈ O such that p ⊆l s.

Definition 3 (Motif/Frequent pattern):
Let s be a sequence and p a pattern.
Given a positive number λ ≥ 1, called
quorum, we say that p is a motif (or
frequent pattern) in s when |Ls(p)| ≥ λ.
The set of all motifs of s for the quorum
λ is denoted by Mλ

s .
Example 1: Let s = aababcabcba be a

sequence, p = ab ◦ b a pattern. As p ⊆2 s,
and p ⊆7 s, we have Ls(p) = {2, 7}. If
we set the quorum λ to the value 2, then
the pattern p is also a motif of s.

Definition 4 (EMS): The problem of
Enumerating all Motifs in a Sequence
(EMS) can be defined as follows. Given
a sequence s and a quorum λ ≥ 1,
enumerates all motifs p ∈Mλ

s .
The following anti-monotonic property
can play an important role in reducing the
search space. Indeed, if a pattern is shown
to be not frequent, all patterns containing
it are also not frequent.

Property 1 (Anti-monotonicity): Let p1

and p2 be two patterns such that p1 ⊆ p2.
If |Ls(p2)| ≥ λ then |Ls(p1)| ≥ λ.

B. Constraint programming and Boolean
satisfiability

In this section, we briefly overview con-
straint programming and Boolean satisfia-

bility, the two most important representa-
tion models of problems with constraints.

1) Constraint programming: Constraint
programming is a declarative representa-
tion model with associated effective solv-
ing techniques. CP draws on methods from
artificial intelligence, logic programming,
and operations research. It has been suc-
cessfully applied in a number of fields
such as scheduling, planning, and compu-
tational biology. This paradigm is based
on a central notion called a constraint
which can be seen as a relation between
variables stating the allowed combination
of values. A constraint can be expressed
extensionally, but usually it is expressed in
some chosen language (for example a sub-
set of first order logic, linear inequalities,
etc.). A problem can then be modeled as
a constraint network N = (X , C) made of
a finite set of constraints C = {c1 . . . ce},
where each constraint ci ∈ C is defined
on a subset Xci

= {xi1 . . . xiri
} of a set

of variables X = {x1 . . . xn}. To each
variable xi of X is associated a finite set
of values dom(xi) = {v1 . . . vd}, called
domain of xi. A solution I to a constraint
network is the assignment of a value vi to
each variable xi (noted I(xi) = vi) such
that all the constraints are satisfied.

Given a constraint network N , the con-
straint satisfaction problem (CSP) consists
in deciding if N admits an assignment
of values to its variables satisfying all
the constraints. To solve such problem,
and depending on the chosen representa-
tion of constraints, one can use domain
specific methods, general methods or a
combination of both. The first one in-
clude for example a program that solve
systems of linear inequalities, while the
second category generally refer to back-
track search methods. These last and brute
force methods are usually coupled with
useful search space reduction techniques
usually called constraint propagation, and
powerful variable ordering heuristics. See
[5], for a detailed review on CP.

2) Boolean Satisfiability: Let P be a
propositional language of formulas FP
built in the standard way, using usual
connectives (∨, ∧, ¬, ⇒, ⇔) and a set
of propositional variables. Using linear
Tseitin encoding, any Boolean formula

f ∈ FP can be translated to CNF (f)
a formula in conjonctive normal form. A
CNF formula Σ is a set (interpreted as
a conjunction) of clauses, where a clause
is a set (interpreted as a disjunction) of
literals. A literal is a positive or negated
propositional variable. A unit clause is a
clause containing only one literal (called
unit literal). An empty clause, noted ⊥, is
interpreted as false (unsatisfiable), whereas
an empty CNF formula, noted >, is in-
terpreted as true (satisfiable). Σ|x will
denotes the formula obtained from Σ by
assigning x the value true. Σ∗ denotes the
formula Σ closed under unit propagation,
defined recursively as follows: (1) Σ∗ = Σ
if Σ does not contain any unit clause, (2)
Σ∗ =⊥ if Σ contains two unit-clauses {x}
and {¬x}, (3) otherwise, Σ∗ = (Σ|x)∗

where x is the literal of a unit clause of Σ.
An assignment I of Σ is a function which
associates a value I(x) ∈ {false, true}
to some of the variables of Σ. I is com-
plete if it assigns a value to every variable
of Σ, and partial otherwise. A model of
a formula Σ is an assignment that makes
the formula true. The SAT problem con-
sists in determining if a Boolean formula
expressed in CNF admits a model or not?

Let us informally describe the most
important components of the modern SAT
solvers. They are based on a reincarnation
of the historical Davis, Putnam, Loge-
mann, and Loveland procedure, commonly
called DPLL [4]. It performs a backtrack
search; selecting at each level of the search
tree, a decision variable which is set to
a Boolean value. This assignment is fol-
lowed by an inference step that deduces
and propagates some forced unit literal as-
signments. This is recorded in the implica-
tion graph, a central data-structure, which
encodes the decision literals together with
there implications. This branching process
is repeated until finding a model, or a
conflict. In the first case, the formula
is answered satisfiable, and the model is
reported, whereas in the second case, a
conflict clause (called learnt clause) is gen-
erated by resolution following a bottom-up
traversal of the implication graph [8], [14].
The learning or conflict analysis process
stops when a conflict clause containing
only one literal from the current decision

level is generated. Such a conflict clause
asserts that the unique literal with the
current level (called asserting literal) is
implied at a previous level, called assertion
level, identified as the maximum level of
the other literals of the clause. The solver
backtracks to the assertion level and as-
signs that asserting literal to true. When
an empty conflict clause is generated, the
literal is implied at level 0, and the original
formula can be reported unsatisfiable. In
addition to this basic scheme, modern SAT
solvers use other components such as ac-
tivity based heuristics, and restart policies.
An extensive overview can be found in [3].

III. A CONSTRAINT PROGRAMMING
MODEL FOR EMS

In this section, we present a CP model
for EMS. We recall that n and m represent
the size of the sequence and the maximal
size of motifs respectively.

To enumerate all motifs of arbitrary
length, we first need to set the length of the
motif to the upper bound m = n− λ+ 1.
Secondly, we suppose that the sequence
is completed on the right hand side with
m− 1 wildcards.

Let us take again the example 1. The
maximum length of the motifs is set to
m = 9. Indeed, as λ = 3 and the size
of the sequence is n = 11, then the
patterns of size greater than 9 are not
frequent. The number of wildcards added
at the end of the sequence is m − 1 = 8.
This completion allows us to search for
all motifs of different size. Indeed, the
string a◦◦◦◦◦◦◦◦ of size 9 representing
the pattern a of size 1 (a pattern starts
and ends with a solid character) appears
5 times in s, if s is completed with 8
wildcards; 2 times otherwise.

We now introduce our CP model for
enumerating all motifs in a sequence s
given a quorum λ. The problem is defined
as a constraint network N co

s (λ) = (X , C).

Variables and domains: To match a
candidate pattern to a subsequence of s,
we introduce two types of variables:
• P = {p1 . . . pm} where pi for 1 ≤
i ≤ m represents the ith symbol of
the candidate pattern p. The set of

variables P represents the candidate
pattern p. Each pi ∈ P can be either
instantiated with a ∈ Σ or ◦ i.e.
dom(pi) = Σ ∪ {◦}.

• B = {b1 . . . bn} where bk for 1 ≤
k ≤ n is a Boolean variable. bk =
true if the pattern p is located at
the position k in s; false otherwise.
The set of variables B represents the
support Ls(p).

An instantiation of the variables P of a
candidate pattern p to a1 . . . am represents
a pattern a1 . . . al such that al 6= ◦ and
for all l < i ≤ m, ai = ◦ i.e. l is the last
position of a solid character in a1 . . . am.

Constraints: We define the location
constraint (1) to express that p is located
in s at position k:

loc(k, p, s) =
m∧
i=1

(pi = ◦ ∨ sk+i−1 = pi)

(1)
The support contraint (2) expressing the

location of p at each position k in s:

supp(p, s) =
n∧
k=1

(bk ⇔ loc(k, p, s)) (2)

The support constraint (2) is sufficient for
the enumeration all the patterns. To search
only for frequent patterns, we introduce
the frequency constraint (3) which express
that p must occurs at least λ times in s.

freq(p, s) =
n∑
k=1

bk ≥ λ (3)

The last unary constraint expresses that
the first symbol of p is a solid character:

p1 6= ◦ (4)

The constraint (4) can be omitted by
eliminating ◦ from dom(p1).

Constraints network: The EMS CP
model, can be represented as constraint
network Ns(λ) = (X , C) where:
• X = P ∪ B
• C = supp(p, s)∧ freq(p, s)∧ p1 6= ◦
Definition 5: Let I be a solution

of Ns(λ). We define pattern(I) =
I[p1] . . . I[pl] such that I[pl] 6= ◦ and
∀i ∈ {l + 1 . . .m}, I[pi] = ◦.

Property 2: I is a solution of Ns(λ) iff
pattern(I) is a motif of s.

Proof: consequence of the encoding.

A. Anti-monotonicity: a nogood-based ap-
proach

To exploit the anti-monotonic property,
one need to prove that a given pattern p
is not frequent. Consequently, each time a
pattern is proven non frequent, we dynam-
ically add new constraints called nogoods
to the constraints database.

Let Ns(λ) be the constraint
network obtained by our EMS CP
model. We assume that I is the
current instantiation such that the
frequency constraint is violated and
p′ = {p′1, . . . , p′k} = pattern(I).
Let i1, . . . il be the ordered sequence
of positions in p′ such that
∀1 ≤ j ≤ l, p′ij 6= ◦. The following
nogoods are added dynamically to the
constraints database in order to avoid
future patterns p such that p′ ⊆ p.

antiMon(p′, p) =

m−il+1∧
x=1

l∨
y=1

(p′iy 6= piy+x−1) (5)

These nogoods state for each position x
in p s.t. p′ 6⊆x p, at least one of the solid
characters in p′ is not matched in p at the
expected position iy + x− 1.

IV. BOOLEAN SATISFIABILITY MODEL

In this section, we show how the EMS
CP model (Section III) can be encoded as
a Boolean formula in CNF. This Boolean
model is motivated by several important
features of SAT solvers. Our goal is to
benefit from the (1) impressive progress
in Boolean Satisfiability checking [3]. The
scalability of modern SAT solvers can be
related to both algorithmic improvements
and to (2) their ability to exploit the hidden
structures of the problem instance. By
structure, we understand the dependencies
between variables, which can often appear
through Boolean functions. One particular
example being the well known notion of
strong backdoors [13] that can be infor-
mally defined as subset of variables such

that any assignments of these variables
leads to a tractable sub-formula.

Another important motivation of this
Boolean model rises in the ability of mod-
ern SAT solvers to (3) efficiently handle
nogoods thanks to their clauses learning
component.

The features (2) and (3) are of par-
ticular interest in our context. Indeed, if
we take a closer look to the EMS CP
model, we can see that the set of variables
representing the patterns P is clearly a
strong backdoor set. Indeed, when such
variables are assigned, the values of the
other Boolean variables are trivially de-
duced. The constraint (2) expresses such
dependencies (the value of the variable
bk depends on the value of loc(k, p, s)).
Consequently, one can enumerate only on
P . Hence, the complexity is exponentially
bounded by the size of P . This is clearly
an interesting information that we provide
to the SAT solver. It is important to note
that the exploitation of the anti-monotone
property in our approach requires the use
of the strong backdoors (pattern variables).
By branching on these pattern variables,
the extraction of the non frequent pattern
can be done in a simple way as the pattern
variables are the first assigned in the cur-
rent branch. Another reason, is that when
a conflict occurs we can also determine if
such a conflict is encountered because of
the frequency constraint.

To encode our EMS CP model into
a Boolean formula, we use both the
direct encoding of constraint satisfaction
problems to a CNF formula and an
additional and efficient transformation
to CNF of the 0/1 linear inequality
representing the frequency constraint (3).
Suppose that Σ = {a1 . . . a|Σ|}. The
Boolean formula is defined as follows:

Variables: for each pi ∈ P we
associate |Σ| + 1 boolean variables
{pi1 . . . pij . . . pi|Σ|+1}, where
pij , 1 ≤ j ≤ |Σ| expresses that pi = aj
and pi|Σ|+1 expresses that pi = ◦.
The number of boolean variables is
|B|+ |P| × (|Σ|+ 1).

Clauses : are obtained as follows:
• Domains encoding: expresses that a

given variable must be assigned to
exactly one value. For each vari-
able pi ∈ P with dom(pi) =
Σ ∪ {◦} we introduce two kind
of constraints. The atLeastOne
(pi1 ∨ · · · ∨ pi|Σ|+1) expresses that
each pi must be assigned to at
least one value, while atMostOne∧
1≤j<k≤|Σ|+1

(¬pij ∨ ¬pik) encodes

that each pi must be assigned to at
most one value.

• Constraints encoding : support con-
straint (2) is a boolean formula that
can be translated in usual way to
CNF. For the 0/1 linear inequality
encoding the frequency constraint (3),
there exists several efficient trans-
formation to CNF (e.g. [2]). In
our implementation, we exploit the
BoolVar/PB java library 1 dedicated
to the translation of pseudo-Boolean
constraints into CNF.

V. IMPLEMENTATION AND
PRELIMINARY EXPERIMENTS

A. Implementation details

In this section we describe our SAT
based solver for EMS (Algorithm 1). It
is based on a model of CDCL SAT al-
gorithm proposed in [11]. Algorithm 1
(SatEms+AM) includes all the basic com-
ponents of modern SAT solvers and inte-
grates the anti-monotone property (AM)
with strong backdoors (P). It takes as
input a CNF formula Σ and a set P of
pattern variables and returns the set M of
motifs. The algorithm is based on variable
assignments called decisions (D) followed
by unit propagation. SatEms+AM starts
with the following four empty sets (lines
1-4): decision literals (D), motifs (M),
learnt clauses database (∆) and the anti-
monotone nogoods database (Γ). Then, it
iterates until finding all the motifs. In each
iteration, the conjunction of Σ, D, ∆, and
Γ are checked for inconsistency using unit
propagation (line 7). If unit propagation
finds an inconsistency (S∗==⊥, line 8), the
algorithm does one of the two things:
(1) The decision sequence D is empty, the
algorithm terminates by returning the set

1BoolVAR/PB : http://boolvar.sourceforge.net/

of all motifs M (line 8).
(2) The decision sequence D is not empty,
a clause α is generated by classical conflict
analysis (line 9) and added to the learnt
clauses database ∆ (line 10). As a conflict
occurs, a non frequent pattern p is then
generated (line 11) and the set of asso-
ciated anti-monotone nogoods Θ are built
(line 12). From the nogood representing
the non frequent pattern p we apply the
classical conflict analysis and generate an
additional learnt clause β (line 13). This
last learnt clause together with the set of
nogoods Θ are added to the anti-monotone
nogoods database Γ (line 14). Then a
level n is computed based on α and β
by taking the minimum of their assertion
levels (line 15). The algorithm then erases
all decisions made after level n, and moves
on to the next iteration.

If unit propagation detects no incon-
sistency, the solver makes a decision by
selecting a literal l from the backdoor
set (line 18), and adds it to the decision
sequence (line 24). If no such literal is
found, a motif p is then extracted from
the set of decisions and added to the set of
motifsM (line 19). To avoid enumerating
the same models several times, in line 20,
a nogood σ is generated from the found
motif and added to the original formula Σ
(line 21). Search restarts by setting the set
of decision to an empty set (line 22).

Some of the basic SAT functions of Al-
gorithm 1 such us analyzeConflict() and
level() are informally described in Section
II-B. We will now provide some missing
details of the other specific functions :
• extractPattern(D,P): given a set

of decisions D and a set of pattern
variables P , a pattern is extracted
according to Definition 5.

• antiMonotone(p): generates a set of
anti-monotone nogoods (Equation 5).

• extractNogood(p): let p = d ◦ c be
a motif of s, the extracted nogood is
(¬p1d

∨ ¬p2◦ ∨ ¬p3c).

B. Preliminary experiments

In this section, preliminary results of
our approach on some real world data are
given. We consider sequences from two
application domains:
Bioinformatics: proteinic data encoded as

Algorithm 1: SatEms+AM
Input: a CNF formula Σ, and a set P of pattern

variables
Output: a set of all motifs M
D ← ∅; /* Decision literals */1
M← ∅; /* Set of all motifs */2
∆← ∅; /* Learnt clauses */3
Γ← ∅; /* Anti monotone nogoods */4
while (true) do5
S ← (Σ ∧ D ∧∆ ∧ Γ);6
if (S∗ = ⊥) then7

if (D = ∅) then return M;8
α← analyzeConflict(S,D)9
∆← ∆ ∪ {α};
p← extractPattern(D,P)10
Θ← antiMonotone(p)
β ← analyzeConflict(p,S,D);
Γ← Γ ∪Θ ∪ {β};11
n← min{level(α), level(β)};12
D ← Dn; /* n first decisions */13

else14
if ((l ← decide(P))= null) then15
p← extractPattern(D,P),
M←M∪ {p};
σ ← extractNogood(p);16
Σ← Σ ∪ {σ};17
D ← ∅;18
else19
D ← D ∪ {l};20

a sequence of amino-acid of arbitrary
length2.
Computer security: user data drawn from
the command histories of UNIX computer
users3 [7].

These experiments aim to show the (1)
feasibility of our approach, and to analyze
the (2) power and weakness of our im-
plementation. We compare two versions of
Algorithm 1 based on MiniSAT 2.2 4:

1) SatEms+AM: a full version of the
Algorithm 1. It integrates the anti-
monotone property together with
strong backdoors set P .

2) SatEms: a basic version of Algo-
rithm 1. It can be obtained from
SatEms+AM by eliminating P from
the function decide(P), thus making
the solver branch on any variables
in Σ, and by deleting the lines 11-
14, and substituting the line 15 with
n← level(α).

We conducted two kind of experiments.
In the first one, we illustrate the evolution
of computation time while varying the
length of the input sequence. The different
sequences are build from the User data

2http://www.biomedcentral.com/1471-
2105/11/175/additional/

3http://kdd.ics.uci.edu/databases/UNIX user data/
4MiniSAT: http://minisat.se/

by taking the first k characters, where k
is varied from 200 to 1600 by a step of
200. As in [1], to get approximately the
same number of motifs, for each sequence
i (dot in the figure), we use a quorum
proportional to its length (λi = lengthi

10).
A comparison between SatEms and

SatEms+AM is depicted in Figure 1. The
results clearly show that applying the anti-
monotone property with additional do-
main knowledge leads to dramatic im-
provements. SatEms+AM outperform the
black-box version of SatEms. This exper-
iment demonstrates the feasibility of our
approach even if the number of added anti-
monotone nogoods is huge. Similar results
are obtained on all the available sequences.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 200 400 600 800 1000 1200 1400 1600

tim
e

(s
ec

on
ds

)

length

SatEms
SatEms+AM

Figure 1. User data : time Vs length

In the second experiment, we consider
proteinic data of fixed length and we mea-
sure the evolution of computation time
with respect to the quorum. The quorum
evolves linearly (λ0 = 10 and λi =
λi−1 + 10). The results are depicted in
Figure 2. The considered sequence is of
length 675 characters. Again SatEms+AM
outperform SatEms by several order of
magnitude. The hardest instances are ob-
tained for small values of the quorum. Ob-
viously smaller is the value of the quorum,
greater is the number of motifs.

To analyze the behavior of our approach
with respect to the number of motifs, we
show in Figure 3 (in log scale) the evo-
lution of the ratio between CPU time and
the number of models while varying the
quorum. We used the same sequence as in
Figure 2. The good news is that the ratio
time/#motifs do not evolves significantly
with SatEms+AM. Its performance seems
to be less sensitive with respect to the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100

tim
e

(s
ec

on
ds

)

quorum

SatEms
SatEms+AM

Figure 2. Bioinfo: time Vs quorum

 1

 10

 100

 1000

 10 100

tim
e

(s
ec

on
ds

) /
 #

 m
ot

ifs

quorum

SatEms
SatEms+AM

Figure 3. Bioinformatics: time/#motifs Vs quorum

number of motifs.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a first
constraint programming and Satisfiability
based approach for enumerating motifs
with wildcards in a sequence. We have
shown how such CP model can be trans-
lated to Boolean Satisfiability. The experi-
ments on real data sequences show the fea-
sibility of our approach in practice. This
preliminary work opens several perspec-
tives. We plan to extend our framework
to the problem of enumerating maximal
motifs. This issue is under investigation.
Nogoods will play again a central role.
Finally, the next step is to compare with
specialized datamining approaches.

REFERENCES

[1] Hiroki Arimura and Takeaki Uno. An
efficient polynomial space and polyno-
mial delay algorithm for enumeration of
maximal motifs in a sequence. Journal of
Combinatorial Optimization, 13, 2007.

[2] Olivier Bailleux, Yacine Boufkhad, and
Olivier Roussel. New encodings of
pseudo-boolean constraints into cnf. In
SAT’2009, pages 181–194, 2009.

[3] Armin Biere, Marijn J. H. Heule, Hans
van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185
of Frontiers in AI and Applications. IOS
Press, 2009.

[4] M. Davis, G. Logemann, and D. W. Love-
land. A machine program for theorem-
proving. Communications of the ACM,
5(7):394–397, 1962.

[5] Rina Dechter. Constraint Processing.
Morgan Kaufmann publishers, 2003.

[6] T. Guns L. De Raedt and S. Nijssen. Con-
straint programming for itemset mining.
In ACM SIGKDD, pages 204–212, 2008.

[7] Terran Lane. Filtering techniques
for rapid user classification. In
AAAI-98/ICML-98 Joint Workshop
on AI Approaches to Time-series
Analysis, pages 58–63, 1998.

[8] Joao P. Marques-Silva and Karem A.
Sakallah. GRASP - A New Search Algo-
rithm for Satisfiability. In Proceedings of
IEEE/ACM CAD, pages 220–227, 1996.

[9] Laxmi Parida, Isidore Rigoutsos, Aris
Floratos, Dan Platt, and Yuan Gao. Pat-
tern discovery on character sets and real-
valued data: Linear bound on irredundant
motifs and an efficient polynomial time
algorithm. In ACM-SIAM Symposium
on Discrete Algorithms, pages 297–308,
2000.

[10] Laxmi Parida, Isidore Rigoutsos, and Dan
Platt. An output-sensitive flexible pattern
discovery algorithm. In CPM’2001, pages
131–142, 2001.

[11] Knot Pipatsrisawat and Adnan Darwiche.
On the power of clause-learning sat
solvers with restarts. In CP’2009, pages
654–668, 2009.

[12] Nadia Pisanti, Maxime Crochemore,
Roberto Grossi, and Marie france Sagot.
Bases of motifs for generating repeated
patterns with wild cards. IEEE/ACM
TCBB’2003, 2:2005, 2003.

[13] R. Williams, C. P. Gomes, and B. Selman.
Backdoors to typical case complexity. In
IJCAI’2003, pages 1173–1178, 2003.

[14] Lintao Zhang, Conor F. Madigan,
Matthew W. Moskewicz, and Sharad
Malik. Efficient conflict driven learning
in Boolean satisfiability solver. In
IEEE/ACM CAD’2001, pages 279–285,
2001.

