
DataBases & Data Mining: Project
A Tiny SQL-Based Data Exchange Engine

March 11, 2016

Abstract
This project will let you delve into the details of the implementation of a (tiny) SQL-based data

exchange engine. The project consists of two main parts.
The first part (about 14 points) concerns a data exchange setting with only s-t tgds (without

target constraints): a universal solution can be computed via a set of SQL queries.
The second part (about 6 points) focuses on some extensions of the main program. We propose

2 different extensions. You need to answer at least 1 of them to obtain the maximal grade. Apart
from that, you can also conceive your own extra features and, depending on their nature, they may
let you earn extra points.

This project is to be performed by one or two students. The programming language is to be
selected in the following restricted list of authorized languages, at the students’ convenience: C/C++,
Java, Haskell, OCaml or Python3. Evaluation criteria (not exhaustively) include: code clarity,
elegance, robustness and testing. A small companion report (at most 2 pages, not including annexes)
may be included in your project.

As a part of the evaluation will be automatized, it is mandatory to stick precisely to the input
file format given in Annex A.1.

The project is due on March 29, 2016 at 1am. You can submit it by mail to
angela. bonifati@ univ-lyon1. fr .

1 The Data Exchange Problem
A schema mapping M is a triple M = 〈S, T,Σ〉 with S a source schema, T a target schema and Σ a
set of source-to-target tuple-generating dependencies (s-t tgds), i.e., a set of first-order formulas of the
following form :

∀x .∀y .(φ(x , y)→ ∃z .ψ(y , z))

In the remainder, quantifiers will be omitted, namely s-t tgds are encoded as follows:

φ(x , y)→ ψ(y , z)

A s-t tgd whose body φ(x , y) consists of a single atom is LAV (Local-as-View) tgd. A s-t tgd whose
head ψ(y , z) consists of a single atom is a GAV (Global-as-View) tgd. A s-t tgd with conjunctions of
atoms in the body and in the head is a GLAV (Global-Local-as-View) tgd.

In Section 2, the formula φ(x , y) (resp. ψ(y , z)) is a first-order formula built from conjunction and
relational atoms having x and y (resp. y and z) as free variables. These expressions are also known as
Conjunctive Queries (CQ).

Example 1.1. Consider the following target (a.k.a. global) schema T made of the following relations:

• works(Person, Project)

• area(Project, Field)

And the following sources relations of S:

• hasjob(Person, Field) supposedly from some source 1;

• teaches(Professor , Course) and in(Course, Field) supposedly from some source 2;
1

angela.bonifati@univ-lyon1.fr

• get(Researcher , Grant) and for(Grant, Project) supposedly from some source 3.

Schemas S and T consitute a schema mappingM = 〈S, T,Σ〉 with Σ the following set of s-t tgds :

• m1 : hasjob(i , f)→ works(i , p) ∧ area(p, f), a LAV mapping;

• m2 : teaches(i , c) ∧ in(c, f)→ works(i , p) ∧ area(p, f), a GLAV mapping;

• m3 : get(i , g) ∧ for(g , p)→ works(i , p), a GAV mapping.

2 Tiny SQL-Based Data Exchange Engine

mi : φ(x, y) → ∃zψ(y, z)

s-t tgds
skolemize

Skolemized s-t tgds

m′

i : φ(x, y) → ψ(y, fmi,zi(x, y))
to SQL

SQL Script

INSERT INTO...

execute

CSV file

insert

sqlite3

Figure 1: Evaluation pipeline

The whole integration process is divided into several steps. The overall workflow is graphically
depicted by Figure 2. The goal of the project is to implement this sequence of steps via a Linux
command-line program that:

• takes a .txt text file describing a mappingM = 〈S, T,Σ〉 on the standard input stream (stdin);

• outputs a .sql script file executable by SQLite3 on the standard output stream (stdout).

Additional messages have to by printed exclusively on the standard error stream (stderr).

2.1 Input File Format
In the first part, we assume an input file containing in textual form the s-t tgds, whose syntax is specified
in BNF in Annex A.1. We have to first build a parser for this file that checks the syntactic correctness
of the s-t tgds and store them in adequate structures in memory.

Example 2.1. Example 1.1 is written according to the BNF grammar as follows:

SOURCE
hasjob(Person, Field)
teaches(Professor, Course)
in(Course, Field)
get(Researcher, Grant)
for(Grant, Project)

TARGET
works(Person, Project)
area(Project, Field)

MAPPING
hasjob($i, $f) -> works($i, $p), area($p, $f).
teaches($i, $c), in($c, $f) -> works($i, $p), area($p, $f).
get($i, $g), for($g, $p) -> works($i, $p).

2.2 Skolemization
Then, we need to take the set of s-t tgds and transform them in their Skolemized form. The goal of
Skolemization is to ensure that existentially quantified shared between different atoms in the head are
kept linked and unique once inserted as (labeled null) values into the DBMS. Precisely, given a infinite
enumerable supply of function symbols F , for each s-t tgds mi and for each existential variable zi ∈ z ,
we replace zi with a term fmi ,zi (y) with f ∈ F .

Example 2.2. Continuing Example 1.1, we obtain the following set of Skolemized s-t tgds:

• m′
1 : hasjob(i , f)→ works(i , fm1,p(i , f)) ∧ area(fm1,p(i , f), f)

• m′
2 : teaches(i , c) ∧ in(c, f)→ works(i , fm2,p(i , f)) ∧ area(fm2,p(i , f), f)

• m′
3 : get(i , g) ∧ for(g , p)→ works(i , p)

2.3 SQL Generation
Finally, we need to generate an SQL statement of the type INSERT for each fact in the conjunction of
atoms in the head of mi , i.e. ψ(y , z). If n is the number of conjuncts in ψ(y , z), we will get n SQL INSERT
statements for the s-t tgd mi .

As the BNF grammar in Annex A.1 does not include identifiers for s-t tgds, some synthetic fresh
ones has to be generated. In the DBMS, Skolemized terms are represented by strings, where subscripts
are written into brackets, as in the following example.

Example 2.3. Assuming the existence of all relations in S and in T in the DBMS, the mapping m′
2 in

Example 2.2 is translated into the following SQL INSERT statements:

INSERT INTO Works(Person, Project)
SELECT Teaches.Person, ’f[m2,Works.Project](’ || Teaches.Person || ’,’ || In.Field || ’)’
FROM Teaches INNER JOIN In ON Teaches.Course = In.Course;

INSERT INTO Area(Project, Field)
SELECT ’f[m2,Works.Project](’ || Teaches.Person || ’,’ || In.Field || ’)’, In.Field
FROM Teaches INNER JOIN In ON Teaches.Course = In.Course;

Note that ’f[m2,Works.Project](’ || Teaches.Person || ’,’ || In.Field ||’)’ (the double
pipe || operator is string concatenation) represents the formal term fm2,p(i , f) with variables i and f
replaced by their concrete values from the instance.

3 Optional extensions
Integration with SQLite3 The main program generates a .sql script file to be run manually. An
optional extension will add an optional –sqlite3 file.db command-line option. When this option is
used, the program establishes a connection to the SQLite3 database named file.db, creates the target
schema and runs the integration script.

Integration Scenarios Another optional extension concerns the datasets. The goal is to provide an
illustrative integration scenario inspired by those included in existing tools1 or benchmarks2 to highlight
the benefits and capabilities of your project, (ideally) on real-life datasets.

1E.g., http://www.db.unibas.it/projects/llunatic/
2E.g., http://www.cs.iit.edu/~dbgroup/research/ibench.php

http://www.db.unibas.it/projects/llunatic/
http://www.cs.iit.edu/~dbgroup/research/ibench.php

A Formal Grammars
A.1 BNF for s-t tgds
The BNF for input files is given below. Note that, for sake of simplicity, usual skippable characters
(spaces, tabulations, carriage returns) have been omitted. Comments (also omitted and to be skipped)
start with two dashes (--) and finish at the end of the line.
START : := "SOURCE" SCHEMA "TARGET" SCHEMA "MAPPING" TGDS

SCHEMA ::= RELATION SCHEMA
| RELATION

RELATION : := NAME " (" ATTS ") "

ATTS : := NAME " , " ATTS
| NAME

TGDS : := TGD
| TGDS TGD

TGD ::= QUERY "−>" QUERY " . "

QUERY ::= ATOM " , " QUERY
| ATOM

ATOM ::= NAME " (" ARGS ") "

ARGS : := VALUE " , " ARGS
| VALUE

VALUE : := VARIABLE
| CONSTANT

VARIABLE : := " $ " NAME

NAME ::= LETTER
| LETTER NAME2

NAME2 : := LETTER_OR_DIGIT
| LETTER_OR_DIGIT NAME2

CONSTANT ::= DIGITS

DIGITS : := DIGIT DIGITS
| DIGIT

LETTER_OR_DIGIT : := LETTER
| DIGIT

LETTER : := " a " | "b " | " c " | "d " | " e " | " f " | " g " | "h " | " i " | " j "
| " k " | " l " | "m" | "n " | " o " | "p " | " q " | " r " | " s " | " t "
| "u " | " v " | "w" | " x " | " y " | " z "
| "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | " I " | " J "
| "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S " | "T"
| "U" | "V" | "W" | "X" | "Y" | "Z"
| "_"

DIGIT : := " 0 " | " 1 " | " 2 " | " 3 " | " 4 " | " 5 " | " 6 " | " 7 " | " 8 " | " 9 "

	1 The Data Exchange Problem
	2 Tiny SQL-Based Data Exchange Engine
	2.1 Input File Format
	2.2 Skolemization
	2.3 SQL Generation

	3 Optional extensions
	A Formal Grammars
	A.1 BNF for s-t tgds

