
Master 1 IF DBDM
ENS Lyon, A.Y. 2015-2016

Angela Bonifati
Foundations of Databases: Data Integration

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Introduction
• Data is inherently heterogeneous

• Due to the explosion of online data repositories
• Due to the variety of users, who develop a wealth of

applications
• At different time
• With disparate requirements in their mind

• A fundamental requirement is to translate data across
different formats and to ensure data interoperability

• Data Integration, Data Exchange are two facets of the
same problem

• Schema Integration and Schema Evolution are also
important

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Data Integration
• Data integration [Lenzerini 2002]

• Query heterogeneous data in different sources via a
virtual global schema

S1

S2

S3

Global
Schema T

I1

I2

I3

Sources

query Q

mappings

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Data exchange
• Data exchange [Fagin et al. 2005]

• Transform data structured under a source schema into
data structured under a different target schema.

S T

mappings

Source schema Target Schema

II J

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Schema Integration
• Schema integration [Batini et al. 1986]

• A set of source schemas need to be
integrated into one mediated schema

S1

S2

S3

Integrated
Schema

Input Schemas

mappings

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Schema Evolution
• Schema evolution [Lerner 2000]

• An original schema S1 evolves into
subsequent versions S1’, S1’’ etc.

S1 S1’ S1’’

Evolving Schema S1

mappings

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Data Exchange
• Data Exchange is an old, but recurrent, database

problem

• Phil Bernstein, Microsoft – 2003 “Data exchange is the
oldest database problem”

• EXPRESS: IBM San Jose Research Lab – 1977
EXtraction, Processing, and REStructuring System for
transforming data between hierarchical databases.

• Data Exchange underlies: Data Warehousing, ETL
(Extract-Transform-Load) tasks; XML Publishing, XML
Storage; more recently, exporting relational data to
RDF.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Schema mappings
• Schema mappings: high-level, declarative assertions that

specify the relationship between two schemas.

• Ideally, schema mappings should be

• expressive enough to specify data interoperability tasks;
simple enough to be efficiently manipulated by tools.

• Schema mappings constitute the essential building blocks in
formalizing data integration and data exchange.

• Schema mappings help with the development of tools: are
easier to generate and manage (semi)-automatically; can
be compiled into SQL/XSLT scripts automatically.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

• Schema Mapping M = (S, T, Σ)

• Source schema S, Target schema T

• High-level, declarative assertions Σ that specify the
relationship between S and T.

• Data Exchange via the schema mapping M = (S, T, Σ)

• Transform a given source instance I to a target
instance J, so that <I, J> satisfy the specifications Σ
of M.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Solutions in schema mappings

• Definition: Schema Mapping M = (S, T, Σ) If I is a
source instance, then a solution for I is a target instance
J such that (I, J) satisfy Σ.

• Fact: In general, for a given source instance I,

• No solution for I may exist or

• Multiple solutions for I may exist; in fact, infinitely many
solutions for I may exist.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Schema mapping specification
languages

• Question: How are schema mappings specified?

• Answer: Use logic. In particular, it is natural to try to
use first-order logic as a specification language for
schema mappings.

• Fact: There is a fixed first-order sentence specifying a
schema mapping M* such that Sol(M*) is undecidable.

• Reason: undecidability of validity in FOL

• Hence, we need to restrict ourselves to well-behaved
fragments of first-order logic.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Embedded dependencies

• Dependency Theory: extensive study of constraints in
relational databases in the 1970s and 1980s.

• Embedded Implicational Dependencies: R. Fagin, C.
Beeri and M. Vardi, ...

• Class of constraints with a balance between high
expressive power and good algorithmic properties:

• Tuple-generating dependencies (tgds) Inclusion
and multi-valued dependencies are a special case.

• Equality-generating dependencies (egds)
Functional dependencies are a special case.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Schema mapping
specification language

• The relationship between source and target is given by
formulas of first-order logic, called Source-to-Target
Tuple Generating Dependencies (s-t tgds)

• φ(x) → ∃y ψ(x, y), where

• φ(x) is a conjunction of atoms over the source; ψ(x, y)
is a conjunction of atoms over the target.

• Example:

• (Student(s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧
Grade(s,c,g))

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Schema mapping
specification language

• s-t tgds assert that: some SPJ source query is
contained in some other SPJ target query

• (Student (s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧
Grade(s,c,g))

• s-t tgds generalize the main specifications used in
data integration:

• They generalize LAV (local-as-view) specifications:

• P(x) → ∃y ψ(x, y), where P is a source schema.

• They generalize GAV (global-as-view) specifications:

• φ(x) → R(x), where R is a target schema

• They are equivalent full tgds: φ(x) → ψ(x), where φ(x)
and ψ(x) are conjunctions of atoms

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Examples of simple mapping tasks
• Let us consider some simple tasks that a schema mapping specification

language should support:

• Copy (Nicknaming): Copy each source table to a target table and
rename it.

• Projection: Form a target table by projecting on one or more
columns of a source table.

• Decomposition: Decompose a source table into two or more
target tables.

• Column Augmentation: Form a target table by adding one or more
columns to a source table.

• Join: Form a target table by joining two or more source tables.

• Combinations of the above (e.g., “join + column augmentation”)

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Examples of simple mapping tasks

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Target dependencies
• In addition to source-to-target dependencies, we

also consider target dependencies:

• Target Tgds : φT(x) → ∃y ψT(x, y)

• Dept (did, dname, mgr_id, mgr_name) → Mgr
(mgr_id, did) (a target inclusion dependency
constraint)

• Target Egds (Equality Generating
Dependencies): φT(x) → (x1=x2)

• (Mgr(e,d1)∧Mgr(e,d2))→ (d1 =d2) (a target key
constraint)

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Data exchange framework

• Schema Mapping M = (S, T, Σst , Σt), where

• Σst is a set of source-to-target tgds

• Σt is a set of target tgds and target egds

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Multiple solutions

• Fact: Given a source instance, multiple solutions may
exist.

• Example: Source relation E(A,B), target relation H(A,B)

• Σ: E(x,y) → ∃z (H(x,z) ∧ H(z,y))

• Source instance I = {E(a,b)}

• Solutions: Infinitely many solutions exist

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Example

• Consider a set of source-to-target dependencies Σst :

• (d1) EmpCity(e, c) → ∃H Home(e, H),

• (d2) EmpCity(e, c) → ∃D (EmpDept(e, D) ∧ DeptCity(D, c)),

• (d3) LivesIn(e, h) → Home(e, h),

• (d4) LivesIn(e, h) → ∃D∃C(EmpDept(e, D) ∧ DeptCity(D, C)),

• and a source instance I such that:

• I = {EmpCity(Alice, SJ), EmpCity(Bob, SD), LivesIn(Alice, SF),
LivesIn(Bob, LA)}.

• Which possible solutions J do exist?

Possible solutions J0,J,J0’
• J0	= {Home(Alice, SF),

Home(Bob, LA),
EmpDept(Alice, D1),
EmpDept(Bob, D2),
DeptCity(D1, SJ),
DeptCity(D2, SD)},

• J = {Home(Alice, SF),
Home(Bob, LA),
Home(Alice, H1),
Home(Bob, H2),
EmpDept(Alice, D1),
EmpDept(Bob, D2),
DeptCity(D1, SJ),
DeptCity(D2, SD)},

• J0′= {Home(Alice, SF),
Home(Bob, LA),
EmpDept(Alice, D),
EmpDept(Bob, D),
DeptCity(D, SJ),
DeptCity(D, SD)}.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Exercise1

• Say whether/why the next J is a solution for the
schema mapping Σ: E(x,y) → ∃z (H(x,z) ∧ H(z,y))
with source instance I = {E(a,b)}

• Q1.1: J1 = {H(a,b), H(b,b)}

• Q1.2: J2 = {H(a,a), H(a,b)}

• Q1.3: J3 = {H(a,X), H(X,b)}

• Q1.4: J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)}

• Q1.5: J5 = {H(a,X), H(X,b), H(Y,Y)}

Main issues in data exchange
• For a given source

instance, there may be
multiple target instances
satisfying the
specifications of the
schema mapping.

• When more than one
solution exist, which
solutions are “better”
than others?

• How do we compute a
“best” solution?

• In other words, what is
the “right” semantics of
data exchange?

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Universal solutions in data exchange

• We introduce the notion of universal solutions as the “best”
solutions in data exchange.

• By definition, a solution is universal if it has homomorphisms to all
other solutions (thus, it is a “most general” solution).

• Constants: entries in source instances;

• Variables (labeled nulls): invented entries in target instances

• Homomorphism h: J1 → J2 between target instances:

• h(c) = c, for every constant c in J1

• For every fact P(a1,...,am) in J1, then we have that
P(h(a1),...,h(am)) is a fact in J2

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Universal solutions in data exchange

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Exercise1 (cont’d)

• Say whether/why the next J is a ‘universal’
solution

• Q1.6: J1 = {H(a,b), H(b,b)}

• Q1.7: J2 = {H(a,a), H(a,b)}

• Q1.8: J3 = {H(a,X), H(X,b)}

• Q1.9: J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)}

• Q1.10: J5 = {H(a,X), H(X,b), H(Y,Y)}

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Structural Properties of Universal
Solutions

• Universal solutions are analogous to most general
unifiers in logic programming.

• Uniqueness up to homomorphic equivalence: If J
and J’ are universal for I, then they are
homomorphically equivalent.

• Representation of the entire space of solutions:
Assume that J is universal for I, and J’ is universal
for I’. Then the following are equivalent:

• I and I’ have the same space of solutions.

• J and J’ are homomorphically equivalent.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Existence-of-solutions problem

• Question: What can we say about the existence-of-
solutions problem Sol(M) for a fixed schema
mapping M = (S, T, Σst,Σt) specified by s-t tgds and
target tgds and egds?

• Answer: Depending on the target constraints in Σt:

• Sol(M) can be trivial (solutions always exist).

• Sol(M) can be in PTIME

• Sol(M) can be undecidable.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Existence-of-solutions problem

• Proposition: If M = (S, T, Σst, Σt) is a schema mapping such that Σt is a set
of full target tgds, then:

• Solutions always exist; hence, Sol(M) is trivial.

• There is a Datalog program π over the target T that can be used to
compute universal solutions as follows: Given a source instance I,

• Compute a universal solution J* for I w.r.t. the schema mapping
M* = (S, T, Σst) using the naïve chase algorithm.

• Run the Datalog program π on J* to obtain a universal solution J
for I w.r.t. M.

• Consequently, universal solutions can be computed in polynomial
time.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

The Chase Algorithm
• Naïve Chase Algorithm for M* = (S, T, Σst) : given a source instance I,

build a target instance J* that satisfies each s-t tgd in Σst by
introducing new facts in J as dictated by the RHS of the s-t tgd and by
introducing new values (variables) in J each time existential
quantifiers need witnesses.

• Example: M = (S, T, Σst, Σt)

• Σst: E(x,y) → ∃ z(F(x,z) ∧ F(z,y))

• Σt: F(u,w) ∧ F(w,v) → F(u,v)

• The naïve chase returns a relation F* obtained from E by adding a
new node between every edge of E.

• The Datalog program π computes the transitive closure of F*.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Algorithmic properties of universal solutions

• Theorem (FKMP 2003): Schema mapping M= (S, T, Σst, Σt)
such that:

• Σst is a set of source-to-target tgds;

• Σt	 is the union of a weakly acyclic set of target tgds
with a set of target egds.

• Then: Universal solutions exist if and only if solutions
exist.

• Sol(M) is in PTIME.

• If a solution exists, then a universal solution can be
produced in polynomial time using the chase procedure.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Weakly acyclic sets of tgds

• Position graph of a set Σ of target tgds:

• Nodes: R.A, with R relation symbol, A attribute of R

• Edges: for every φ(x)→∃yψ(x,y) in Σ, for every x in x occurring in ψ, for
every occurrence of x in φ in position R.A:

• For every occurrence of x in ψ in position S.B, add an edge	R.A S.B

• In addition, for every existentially quantified y that occurs in ψ in
position T.C, add a special edge	R.A T.C

• Σ is weakly acyclic if the position graph has no cycle containing a special
edge.

• A tgd θ is weakly acyclic if so is the singleton set {θ} .

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Weakly acyclic sets of tgds: examples

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Exercise 2
• Homework I

• (Q2.1) Build the dependency graph for the following
schema mapping and say whether/why the set of tgds is
weakly acyclic.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Exercise 2
• Homework I

• (Q2.2) Build the dependency graph for the following
schema mapping and say whether/why the set of tgds is
weakly acyclic

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Data Exchange with weakly acyclic sets of tgds

• Theorem: Schema mapping M= (S, T, Σst, Σt) such that:

• Σst is a set of source-to-target tgds;

• Σt is the union of a weakly acyclic set of target tgds with a set
of target egds.

• There is an algorithm, based on the chase procedure, so that:

• Given a source instance I, the algorithm determines if a solution
for I exists; if so, it produces a universal solution for I.

• The running time of the algorithm is polynomial in the size of I.

• Hence, the existence-of-solutions problem Sol(M) for M, is in
PTIME.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Chase Procedure for Tgds and Egds
• Given a source instance I,

• 1. Use the naïve chase to chase I with Σst and obtain a target instance J*.

• 2. Chase J * with the target tgds and the target egds in Σt to obtain a target
instance J as follows:

• 2.1. For target tgds introduce new facts in J as dictated by the RHS of the
s-t tgd and introduce new values (variables) in J each time existential
quantifiers need witnesses.

• 2.2. For target egds φ(x) → x1 = x2

• 2.2.1. If a variable is equated to a constant, replace the variable by
that constant;

• 2.2.2. If one variable is equated to another variable, replace one
variable by the other variable.

• 2.2.3 If one constant is equated to a different constant, stop and
report “failure”.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

The existence-of-solutions problem

• Summary: The existence-of-solutions problem

• is undecidable for schema mappings in which
the target dependencies are arbitrary tgds
and egds;

• is in PTIME for schema mappings in which the
set of the target dependencies is the union of
a weakly acyclic set of tgds and a set of egds.

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Exercise 3- homework
• Assume you have the following S, T

schemas:

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Exercise 3
• and the corresponding tgds:

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Exercise 3
• Assume you have the following source

instance I:

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Homework I - Exo 3
• Q3.1: Say whether the following solution is

• a universal solution? a non-universal
solution? other?

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Homework I - Exo 3
• Q3.2: Say whether the following solution is

• a universal solution? a non-universal
solution? other?

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Homework I - Exo 3
• Q3.3: Say whether the following solution is

• a universal solution? a non-universal
solution? other?

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Exercise 3
• Q3.4: Say whether the following solution is

• a universal solution? a non-universal
solution? other?

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Books

[Arenas et al. 2014] M. Arenas et al., "Foundations of Data
Exchange", Cambridge University Press, 2014

[Bellahsene et al. 2011] Z. Bellahsene, A. Bonifati and E. Rahm,
"Schema Matching and Mapping", Springer-Verlag, 2011

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

List of References
• [Batini et al. 1986] Batini C, Lenzerini M, Navathe SB (1986) A

Comparative Analysis of Methodologies for Database Schema
Integration. ACM Comp. Surv. 18(4):323-364

• [Lenzerini 2002] Lenzerini Maurizio “Data Integration: A Theoretical
Perspective”. In: PODS, pp 233-246

• [Fagin et al. 2005] Fagin R, Kolaitis PG, Miller RJ, Popa L (2005) Data
exchange: semantics and query answering. Theoretical Computer
Science 336(1):89-124

• [Lerner 2000] Lerner BS (2000) A Model for Compound Type Changes
Encountered in Schema Evolution. TPCTC 25(1):83–127

• Extra slides:
• A. Bonifati and Y. Velegrakis tutorial at EDBT 2011 http://

www.lifl.fr/~bonifati/pubs/EDBT11MappingBenchmarkTutorial.pdf

Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

List of References
• [Batini et al. 1986] Batini C, Lenzerini M, Navathe SB (1986) A

Comparative Analysis of Methodologies for Database Schema
Integration. ACM Comp. Surv. 18(4):323-364

• [Lenzerini 2002] Lenzerini Maurizio “Data Integration: A Theoretical
Perspective”. In: PODS, pp 233-246

• [Fagin et al. 2005] Fagin R, Kolaitis PG, Miller RJ, Popa L (2005) Data
exchange: semantics and query answering. Theoretical Computer
Science 336(1):89-124

• [Lerner 2000] Lerner BS (2000) A Model for Compound Type Changes
Encountered in Schema Evolution. TPCTC 25(1):83–127

• Slides:
• P. Kolaitis talk at PODS 2005 http://users.soe.ucsc.edu/

~kolaitis/talks/datexch-pods05.pdf
• A. Bonifati and Y. Velegrakis tutorial at EDBT 2011 http://

www.lifl.fr/~bonifati/pubs/EDBT11MappingBenchmarkTutorial.pdf

