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Introduction
• Data is inherently heterogeneous

• Due to the explosion of online data repositories
• Due to the variety of users, who develop a wealth of 

applications 
• At different time
• With disparate requirements in their mind

• A fundamental requirement is to translate data across 
different formats and to ensure data interoperability

• Data Integration, Data Exchange are two facets of the 
same problem

• Schema Integration and Schema Evolution are also 
important
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Data Integration
• Data integration [Lenzerini 2002]

• Query heterogeneous data in different sources via a 
virtual global schema
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Data exchange
• Data exchange [Fagin et al. 2005]

• Transform data structured under a source schema into 
data structured under a different target schema.

S T

mappings

Source schema Target Schema

II J



Angela Bonifati (UCBL) Angela.Bonifati@univ-lyon1.fr

Schema Integration
• Schema integration  [Batini et al. 1986]

• A set of source schemas need to be 
integrated into one mediated schema
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Schema Evolution
• Schema evolution [Lerner 2000]

• An original schema S1 evolves into 
subsequent versions S1’, S1’’ etc.
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Data Exchange
• Data Exchange is an old, but recurrent, database 

problem 

• Phil Bernstein, Microsoft – 2003 “Data exchange is the 
oldest database problem”

• EXPRESS: IBM San Jose Research Lab – 1977 
EXtraction, Processing, and REStructuring System for 
transforming data between hierarchical databases.

• Data Exchange underlies:  Data Warehousing, ETL 
(Extract-Transform-Load) tasks; XML Publishing, XML 
Storage; more recently, exporting relational data to 
RDF.
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Schema mappings
• Schema mappings: high-level, declarative assertions that 

specify the relationship between two schemas.

• Ideally, schema mappings should be 

• expressive enough to specify data interoperability tasks; 
simple enough to be efficiently manipulated by tools.

• Schema mappings constitute the essential building blocks in 
formalizing data integration and data exchange.

• Schema mappings help with the development of tools: are 
easier to generate and manage (semi)-automatically; can 
be compiled into SQL/XSLT scripts automatically.
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• Schema Mapping M = (S, T, Σ) 

• Source schema S, Target schema T

• High-level, declarative assertions Σ that specify the 
relationship between S and T.

• Data Exchange via the schema mapping M = (S, T, Σ)

• Transform a given source instance I to a target 
instance J, so that <I, J> satisfy the specifications Σ 
of M.
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Solutions in schema mappings

• Definition: Schema Mapping M = (S, T, Σ) If I is a 
source instance, then a solution for I is a target instance 
J such that (I, J) satisfy Σ.

• Fact: In general, for a given source instance I,  

• No solution for I may exist or

• Multiple solutions for I may exist; in fact, infinitely many 
solutions for I may exist.
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Schema mapping specification 
languages

• Question: How are schema mappings specified?

• Answer: Use logic. In particular, it is natural to try to 
use first-order logic as a specification language for 
schema mappings.

• Fact: There is a fixed first-order sentence specifying a 
schema mapping M* such that Sol(M*) is undecidable.

• Reason: undecidability of validity in FOL

• Hence, we need to restrict ourselves to well-behaved 
fragments of first-order logic.
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Embedded dependencies

• Dependency Theory: extensive study of constraints in 
relational databases in the 1970s and 1980s.

• Embedded Implicational Dependencies: R. Fagin, C. 
Beeri and M. Vardi, ... 

• Class of constraints with a balance between high 
expressive power and good algorithmic properties: 

• Tuple-generating dependencies (tgds) Inclusion 
and multi-valued dependencies are a special case.

• Equality-generating dependencies (egds) 
Functional dependencies are a special case.
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Schema mapping
specification language

• The relationship between source and target is given by 
formulas of first-order logic, called Source-to-Target 
Tuple Generating Dependencies (s-t tgds) 

• φ(x) → ∃y ψ(x, y), where

• φ(x) is a conjunction of atoms over the source; ψ(x, y) 
is a conjunction of atoms over the target.

• Example: 

• (Student(s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ 
Grade(s,c,g))
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Schema mapping
specification language

• s-t tgds assert that: some SPJ source query is 
contained in some other SPJ target query

• (Student (s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ 
Grade(s,c,g))

• s-t tgds generalize the main specifications used in 
data integration: 

• They generalize LAV (local-as-view) specifications:

• P(x) → ∃y ψ(x, y), where P is a source schema. 

•  They generalize GAV (global-as-view) specifications:

• φ(x) → R(x), where R is a target schema

• They are equivalent full tgds: φ(x) → ψ(x), where φ(x) 
and ψ(x) are conjunctions of atoms
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Examples of simple mapping tasks  
• Let us consider some simple tasks that a schema mapping specification  

language should support:

•  Copy (Nicknaming): Copy each source table to a target table and 
rename it.

•  Projection: Form a target table by projecting on one or more 
columns of a source table.

•  Decomposition:  Decompose a source table into two or more 
target tables.

•  Column Augmentation: Form a target table by adding one or more 
columns to a source table.

•  Join: Form a target table by joining two or more source tables.

•  Combinations of the above (e.g., “join + column augmentation”)
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Examples of simple mapping tasks  
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Target dependencies
• In addition to source-to-target dependencies, we 

also consider target dependencies: 

• Target Tgds : φT(x) → ∃y ψT(x, y)

• Dept (did, dname, mgr_id, mgr_name) → Mgr 
(mgr_id, did) (a target inclusion dependency 
constraint)

• Target Egds (Equality Generating 
Dependencies): φT(x) → (x1=x2)

• (Mgr(e,d1)∧Mgr(e,d2))→ (d1 =d2) (a target key 
constraint)
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Data exchange framework

• Schema Mapping M = (S, T, Σst , Σt ), where

• Σst is a set of source-to-target tgds 

• Σt is a set of target tgds and target egds
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Multiple solutions

• Fact: Given a source instance, multiple solutions may 
exist.

• Example: Source relation E(A,B), target relation H(A,B)

• Σ: E(x,y) → ∃z (H(x,z) ∧ H(z,y)) 

• Source instance I = {E(a,b)} 

• Solutions: Infinitely many solutions exist 
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Example

• Consider a set of source-to-target dependencies Σst : 

• (d1) EmpCity(e, c) → ∃H Home(e, H), 

• (d2) EmpCity(e, c) → ∃D (EmpDept(e, D) ∧ DeptCity(D, c)), 

• (d3) LivesIn(e, h) → Home(e, h),

• (d4) LivesIn(e, h) → ∃D∃C(EmpDept(e, D) ∧ DeptCity(D, C)),

• and a source instance I such that: 

• I = {EmpCity(Alice, SJ), EmpCity(Bob, SD), LivesIn(Alice, SF), 
LivesIn(Bob, LA)}.

• Which possible solutions J do exist?



Possible solutions J0,J,J0’
• J0	= {Home(Alice, SF), 

Home(Bob, LA), 
EmpDept(Alice, D1), 
EmpDept(Bob, D2), 
DeptCity(D1, SJ), 
DeptCity(D2, SD)},

• J = {Home(Alice, SF), 
Home(Bob, LA), 
Home(Alice, H1), 
Home(Bob, H2), 
EmpDept(Alice, D1), 
EmpDept(Bob, D2), 
DeptCity(D1, SJ), 
DeptCity(D2, SD)},

• J0′= {Home(Alice, SF), 
Home(Bob, LA), 
EmpDept(Alice, D), 
EmpDept(Bob, D), 
DeptCity(D, SJ), 
DeptCity(D, SD)}.
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Exercise1

• Say whether/why the next J is a solution for the 
schema mapping Σ: E(x,y) → ∃z (H(x,z) ∧ H(z,y))  
with source instance I = {E(a,b)}

• Q1.1: J1 = {H(a,b), H(b,b)} 

• Q1.2: J2 = {H(a,a), H(a,b)} 

• Q1.3: J3 = {H(a,X), H(X,b)}  

• Q1.4: J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} 

• Q1.5: J5 = {H(a,X), H(X,b), H(Y,Y)}



Main issues in data exchange
• For a given source 

instance, there may be 
multiple target instances 
satisfying the 
specifications of the 
schema mapping. 

• When more than one 
solution exist, which 
solutions are “better” 
than others?

• How do we compute a 
“best” solution?

• In other words, what is 
the “right” semantics of 
data exchange?
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Universal solutions in data exchange

• We introduce the notion of universal solutions as the “best” 
solutions in data exchange. 

• By definition, a solution is universal if it has homomorphisms to all 
other solutions (thus, it is a “most general” solution).

• Constants: entries in source instances; 

• Variables (labeled nulls): invented entries in target instances  

• Homomorphism h: J1 → J2 between target instances:

• h(c) = c, for every constant c in J1

• For every fact P(a1,...,am) in J1, then we have that 
P(h(a1),...,h(am)) is a fact in J2
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Universal solutions in data exchange
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Exercise1 (cont’d)

• Say whether/why the next J is a ‘universal’ 
solution

• Q1.6: J1 = {H(a,b), H(b,b)} 

• Q1.7: J2 = {H(a,a), H(a,b)} 

• Q1.8: J3 = {H(a,X), H(X,b)}  

• Q1.9: J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} 

• Q1.10: J5 = {H(a,X), H(X,b), H(Y,Y)}
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Structural Properties of Universal 
Solutions

• Universal solutions are analogous to most general 
unifiers in logic programming.

• Uniqueness up to homomorphic equivalence: If J 
and J’ are universal for I, then they are 
homomorphically equivalent.

• Representation of the entire space of solutions: 
Assume that J is universal for I, and J’ is universal 
for I’. Then the following are equivalent:

• I and I’ have the same space of solutions. 

• J and J’ are homomorphically equivalent.
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Existence-of-solutions problem

• Question: What can we say about the existence-of-
solutions problem Sol(M) for a fixed schema 
mapping M = (S, T, Σst,Σt) specified by s-t tgds and 
target tgds and egds?

• Answer: Depending on the target constraints in Σt: 

• Sol(M) can be trivial (solutions always exist).

• Sol(M) can be in PTIME

• Sol(M) can be undecidable.
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Existence-of-solutions problem

• Proposition: If M = (S, T, Σst, Σt) is a schema mapping such that Σt is a set 
of full target tgds, then:

• Solutions always exist; hence, Sol(M) is trivial.

• There is a Datalog program π over the target T that can be used to 
compute universal solutions as follows: Given a source instance I,

• Compute a universal solution J* for I w.r.t. the schema mapping 
M* = (S, T, Σst) using the naïve chase algorithm.

• Run the Datalog program π on J* to obtain a universal solution J 
for I w.r.t. M.

• Consequently, universal solutions can be computed in polynomial 
time.
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The Chase Algorithm
• Naïve Chase Algorithm for M* = (S, T, Σst) : given a source instance I, 

build a target instance J* that satisfies each s-t tgd in Σst by 
introducing new facts in J as dictated by the RHS of the s-t tgd and by 
introducing new values (variables) in J each time existential 
quantifiers need witnesses.

• Example: M = (S, T, Σst, Σt) 

• Σst: E(x,y) → ∃ z(F(x,z) ∧ F(z,y)) 

• Σt: F(u,w) ∧ F(w,v) → F(u,v) 

• The naïve chase returns a relation F* obtained from E by adding a 
new node between every edge of E. 

• The Datalog program π computes the transitive closure of F*.
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Algorithmic properties of universal solutions

• Theorem (FKMP 2003): Schema mapping M= (S, T, Σst, Σt) 
such that:

• Σst is a set of source-to-target tgds;

• Σt	 is the union of a weakly acyclic set of target tgds 
with a set of target egds.

• Then: Universal solutions exist if and only if solutions 
exist.

• Sol(M) is in PTIME.

• If a solution exists, then a universal solution can be 
produced in polynomial time using the chase procedure.
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Weakly acyclic sets of tgds

• Position graph of a set Σ of target tgds:

• Nodes: R.A, with R relation symbol, A attribute of R

• Edges: for every φ(x)→∃yψ(x,y) in Σ, for every x in x occurring in ψ, for 
every occurrence of x in φ in position R.A:

• For every occurrence of x in ψ in position S.B, add an edge	R.A       S.B

• In addition, for every existentially quantified y that occurs in ψ in 
position T.C, add a special edge	R.A               T.C

• Σ is weakly acyclic if the position graph has no cycle containing a special 
edge.

• A tgd θ is weakly acyclic if so is the singleton set {θ} .
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Weakly acyclic sets of tgds: examples
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Exercise 2
• Homework I

• (Q2.1) Build the dependency graph for the following 
schema mapping and say whether/why the set of tgds is 
weakly acyclic.
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Exercise 2
• Homework I

• (Q2.2) Build the dependency graph for the following 
schema mapping and say whether/why the set of tgds is 
weakly acyclic
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Data Exchange with weakly acyclic sets of tgds

• Theorem: Schema mapping M= (S, T, Σst, Σt) such that:

• Σst is a set of source-to-target tgds;

• Σt is the union of a weakly acyclic set of target tgds with a set 
of target egds.

• There is an algorithm, based on the chase procedure, so that:

• Given a source instance I, the algorithm determines if a solution 
for I exists; if so, it produces a universal solution for I.

• The running time of the algorithm is polynomial in the size of I.

• Hence, the existence-of-solutions problem Sol(M) for M, is in 
PTIME.
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Chase Procedure for Tgds and Egds
• Given a source instance I, 

• 1. Use the naïve chase to chase I with Σst and obtain a target instance J*.

• 2. Chase J * with the target tgds and the target egds in Σt to obtain a target 
instance J as follows:

• 2.1. For target tgds introduce new facts in J as dictated by the RHS of the 
s-t tgd and introduce new values (variables) in J each time existential 
quantifiers need witnesses.

• 2.2. For target egds φ(x) → x1 = x2 

• 2.2.1. If a variable is equated to a constant, replace the variable by 
that constant; 

• 2.2.2. If one variable is equated to another variable, replace one 
variable by the other variable.

• 2.2.3 If one constant is equated to a different constant, stop and 
report “failure”.
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The existence-of-solutions problem

• Summary: The existence-of-solutions problem 

• is undecidable for schema mappings in which 
the target dependencies are arbitrary tgds 
and egds;

• is in PTIME for schema mappings in which the 
set of the target dependencies is the union of 
a weakly acyclic set of tgds and a set of egds.
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Exercise 3- homework
• Assume you have the following S, T 

schemas:
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Exercise 3
• and the corresponding tgds:
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Exercise 3
• Assume you have the following source 

instance I:
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Homework I - Exo 3
• Q3.1: Say whether the following solution is 

• a universal solution? a non-universal 
solution? other?
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Homework I - Exo 3
• Q3.2: Say whether the following solution is 

• a universal solution? a non-universal 
solution? other?
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Homework I - Exo 3
• Q3.3: Say whether the following solution is 

• a universal solution? a non-universal 
solution? other?
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Exercise 3
• Q3.4: Say whether the following solution is 

• a universal solution? a non-universal 
solution? other?
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