Contrôle Terminal de LIF11 - Logique Classique

Date: 10 janvier 2012 - Durée: 1h Le barème est donné à titre indicatif Documents papier autorisés

I. Problème de logique propositionnelle (10 pts)

On souhaite démontrer le théorème suivant (on note V(A) l'ensemble des variables qui apparaissent dans la formule A) :

Théorème 1 Soit A et B deux formules. Si $A \models B$, alors il existe une formule C telle que $A \models C$, $C \models B$ et $V(C) \subseteq V(A) \cap V(B)$.

Pour cela, on procédera comme suit :

- 1. Soit I un modèle d'une formule D quelconque $(I \models D)$. Soit I' une interprétation telle que pour toutes les variables $p \in V(D)$, I(p) = I'(p). Montrer que $I' \models D$ en utilisant une induction sur D (indice: l'hypothèse d'induction n'est pas $I' \models D$).
- 2. Utiliser le résultat précédent sur A et B pour montrer que si $I \models A$ alors :
 - pour tout I', si pour toutes les variables $p \in V(A)$, I(p) = I'(p), alors $I' \models A$;
 - pour tout I'', si pour toutes les variables $p \in V(B)$, I(p) = I''(p), alors $I'' \models B$.
- 3. En déduire que si $I \models A$, alors pour tout I', si pour toutes les variables $p \in V(A) \cap V(B)$, I(p) = I'(p), alors $I' \models B$.
- 4. On pose $\{p_1,\ldots,p_n\}=V(A)\cap V(B)$. Soit f la fonction booléenne à n arguments définie par :
 - $-f(b_1,\ldots,b_n)=v$ si il existe une interprétation I telle que $I\models A$ et pour tout $k\in\{1,\ldots,n\},\ I(p_k)=b_k$
 - $-f(b_1,\ldots,b_n)=f$ sinon

Soit C une formule qui réalise f telle que p_i correspond à l'argument i. Montrer que $A \models C$ et $C \models B$.

II. Sémantique du calcul de prédicat (4 pts)

On considère l'alphabet suivant : symbole constante : $\{a\}$; symbole de fonction : $\{f/1, g/2\}$; symbole de prédicat : $\{p/2\}$. Soit t un terme et σ une substitution. Soit SI = (E, I) une structure d'interprétation. Soit ζ une valuation (ou affectation de valeur aux variable) telle que pour toute variable x dans $dom(\sigma)$, $\zeta(x) = [\sigma(x)]_{SI,\zeta}$. Montrer par induction sur t que $[t]_{SI,\zeta} = [t\sigma]_{SI,\zeta}$

III. Du français à la formule (6 pts)

On considère l'alphabet suivant : symboles de constantes : $\{mark, phil, guitare, batterie\}$; symboles de fonctions : $\{favori/1\}$; symboles de prédicats : $\{joue/2, personne/1\}$.

On considère l'interprétation intuitive suivante : les constantes sont des personnes ou des instruments de musique; la fonction favori/1 associe à chaque personne son instrument favori et une valeur spéciale aux autres objets; le prédicat joue/2 est vrai si son premier argument est une personne qui joue du deuxième argument; le prédicat personne/1 est vrai si l'objet est une personne.

Donner des formules logiques basées sur cet alphabet pour traduire les phrases suivantes en s'appuyant sur cette interprétation intuitive :

- 1. mark joue de la batterie, mais ce n'est pas son instrument favori.
- 2. toute personne joue de son instrument favori.
- 3. tous les objets qui ne sont pas des personnes ont le même objet comme favori.
- 4. mark et phil joue exactement des mêmes instruments, mais leur instrument favori est différent.
- 5. il y a une persone qui a, à la fois, la batterie et la guitare comme instruments préférés.

La dernière formule est-elle satisfiable? Justifier brièvement.