LIF11 - TD1

Correction

Exercice 1:

Pour chacune des formules suivantes, dessiner son arbre de syntaxe abstraite.

• $(p \lor q) \Rightarrow (r \land q)$

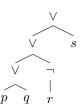
Correction:

• $(p \Rightarrow q) \Rightarrow (q \Rightarrow p)$

Correction:

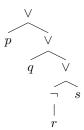
• $(((p \lor q) \lor (\neg r)) \lor s)$

Correction:



 $\bullet \ (p \lor (q \lor ((\neg r) \lor s)))$

Correction:



Exercice 2:

• Donner une définition de "l'ensemble des variables d'une formule".

Correction: On définit cet ensemble par la fonction Var(A) définie inductivement par:

$$-Var(\top) = Var(\bot) = \emptyset$$

 $-\ Var(p) = \{p\}$ si p est une variable propositionnelle

$$- Var(\neg A) = Var(A)$$

- $Var(A□B) = Var(A) \cup Var(B)$ où □ peut-être \lor , \land , \Rightarrow ou \Leftrightarrow

- Montrer que si, pour toutes les variables p d'une formule A, $I_1(p) = I_2(p)$ alors $[A]_{I_1} = [A]_{I_2}$. Correction: Par induction sur A.
- Soit A et B deux formules. Soit P_A et P_B leurs ensembles de variables respectifs. Si P_A et P_B sont disjoints, que peut-on dire sur la satisfiabilité de $A \wedge B$ par rapport à celle de A et de B et pourquoi?

Correction: $A \wedge B$ est satisfiable si et seulement si A et B sont satisfiables:

- Si $A \wedge B$ est satisfiable, alors il existe une interprétation I telle que $[A \wedge B]_I = V$. Par ailleurs $[A \wedge B]_I = f_{\wedge}([A]_I, [B]_I)$. D'après la table de vérité de f_{\wedge} cela signifie que $[A]_I = V$ et $[B]_I = V$. Donc A et B sont satisfiables.
- Si A et B sont satisfiables, il existe I_A telle que $[A]_{I_A} = V$ et il existe I_B telle que $[B]_{I_B} = V$. Soit l'interprétation I_{AB} définie comme suit:
 - * $I_{AB}(p) = I_A(p)$ si p est une variable de A
 - * $I_{AB}(p) = I_B(p)$ si p n'est pas une variable de A (en particulier pour les variables de B car $Var(A) \cap Var(B) = \emptyset$).

D'après la question précédente $[A]_{I_{AB}}=[A]_{I_A}=V$ et $[B]_{I_{AB}}=[B]_{I_B}=V$. Donc $[A\wedge B]_{I_{AB}}=f_{\wedge}([A]_{I_{AB}},[B]_{I_{AB}})=V$. Donc $A\wedge B$ est satisfiable.

 $\bullet\,$ Peut-on faire la même déduction si P_A et P_B ne sont pas disjoints? Donner un exemple.

Correction: Si A et B sont satisfiables mais n'ont pas un ensemble de variables disjoints, on a pas forcément $A \wedge B$ satisfiable: prendre A = p et $B = \neg p$.

Exercice 3:

• Etant donné deux interprétations différentes définies sur le même ensemble de variables, dire s'il est possible de trouver une formule qui permet de les distinguer.

Correction: Si I_1 et I_2 sont différentes, mais définies sur le même domaine, il existe une variable p telle que $I_1(p) \neq I_2(p)$. La formule est tout simplement p.

• Soit deux interprétations I_1 et I_2 pour un ensemble de variables P. Si $I_1 \neq I_2$, est-il possible de trouver une formule A telle que $[A]_{I_1} = [A]_{I_2}$?

Correction: Prendre par exemple $A = \top$

• Etant donnée une formule A ayant pour ensemble de variables V_A et V un ensemble de variables tel que $V_A \subset V$. Soit deux interprétations différentes I_1 et I_2 définies pour V. Donner une condition suffisante pour que $[A]_{I_1} = [A]_{I_2}$.

Correction: Il suffit que pour toutes les variables $p \in Var(A)$, $I_1(p) = I_2(p)$.

• En déduire le nombre maximal d'interprétations à examiner pour déterminer si une formule A est satisfiable.

Correction: D'après ce qui précède, il n'est pas nécessaire d'examiner une interprétation si on a déjà examiné une autre interprétation dont la valeur pour les variables de A est la même. Le nombre d'interprétations à examiner correspond au nombre de combinaisons de valeurs possibles pour les variables soit $2^{|Var(A)|}$

Exercice 4:

Considérons les formules suivantes:

•
$$(p \land \neg q) \lor (\neg p \land q)$$

•
$$((p \Rightarrow q) \Rightarrow p) \Rightarrow p$$

•
$$(p \Rightarrow q) \land (\neg p \Rightarrow r)$$

Pour chacune de ces formules:

- 1. Donner l'ensemble de ses sous-formules.
- 2. Donner la table de vérité de la formule.
- 3. Dire si la formule est satisfiable et/ou valide.

Correction: Les sous-formules sont entêtes des colonnes du tableau.

• $(p \land \neg q) \lor (\neg p \land q)$:

_								
	p	q	$\neg p$	$\neg q$	$p \land \neg q$	$\neg p \land q$	$(p \land \neg q) \lor (\neg p \land q)$	
	1	1	0	0	0	0	0	\leftarrow non valide
	1	0	0	1	1	0	1	\leftarrow satisfiable
	0	1	1	0	0	1	1	
	0	0	1	1	0	0	0	

• $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$:

p	q	$p \Rightarrow q$	$(p \Rightarrow q) \Rightarrow p$	$((p \Rightarrow q) \Rightarrow p) \Rightarrow p$
1	1	1	1	1
1	0	0	1	1
0	1	1	0	1
0	0	1	0	1

La formule s'évalue toutjours à vrai (1), donc elle est satisfiable et valide.

• $(p \Rightarrow q) \land (\neg p \Rightarrow r)$:

							1
p	q	r	$p \Rightarrow q$	$\neg p$	$\neg p \Rightarrow r$	$(p \Rightarrow q) \land (\neg p \Rightarrow r)$	
1	1	1	1	0	1	1	
1	1	0	1	0	1	1	
1	0	1	0	0	1	0	\leftarrow non valide
1	0	0	0	0	1	0	
0	1	1	1	1	1	1	\leftarrow satisfiable
0	1	0	1	1	0	0	
0	0	1	1	1	1	1	
0	0	0	1	1	0	0	

Exercice 5:

Montrer les équivalences suivantes en comparant la valeur des formules par rapport aux différentes interprétations possibles:

•
$$(p \lor q) \land (\neg(p \land q)) \equiv (\neg p \land q) \lor (p \land \neg q) (\equiv p \text{ xor } q)$$

Correction:

p	q	$\neg p$	$\neg q$	$p \lor q$	$p \wedge q$	$\neg p \wedge q$	$p \land \neg q$	$\neg(p \land q)$	$(p \lor q) \land (\neg(p \land q))$	$(\neg p \land q) \lor (p \land \neg q)$
1	1	0	0	1	1	0	0	0	0	0
1	0	0	1	1	0	0	1	1	1	1
0	1	1	0	1	0	1	0	1	1	1
0	0	1	1	0	0	0	0	1	0	0

Les deux dernières colonnes ont mêmes valeurs dont l'équivalence est vérifiée.

• $(p \Rightarrow q) \Rightarrow p \equiv p$

Correction:

p	q	$p \Rightarrow q$	$(p \Rightarrow q) \Rightarrow p$
1	1	1	1
1	0	0	1
0	1	1	0
0	0	1	0

La première et la dernière colonne ont mêmes valeurs donc l'équivalence est vérifiée.

• $p \Rightarrow (q \land r) \equiv (p \Rightarrow q) \land (p \Rightarrow r)$

Correction:

p	q	r	$q \wedge r$	$p \Rightarrow (q \wedge r)$	$p \Rightarrow q$	$p \Rightarrow r$	$(p \Rightarrow q) \land (p \Rightarrow r)$
1	1	1	1	1	1	1	1
1	1	0	0	0	1	0	0
1	0	1	0	0	0	1	0
1	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	0	0	0	1	1	1	1

La cinquième et la dernière colonnes ont mêmes valeurs donc l'équivalence est vérifiée.

Exercice 6: Principe de substitution

Montrer que si $A \equiv B$ et si A est une sous-formule de C, alors la formule C', obtenue en remplaçant une occurrence de A par B dans C, est équivalente à C. On pourra utiliser la remarque suivante: $A_1 \equiv A_2$ si et seulement si, pour toute interprétation I, $[A_1]_I = [A_2]_I$.

Correction:

On veut montrer que si $A \equiv B$ et si A est une sous-formule de C, alors la formule C' obtenue en remplaçant une occurrence de A par B dans C est équivalente à C.

La démonstration se fait par induction sur C.

- Si A = C, alors C' = B, et comme $A \equiv B$, on en déduit $C \equiv C'$. On peut remarquer que si C est atomique, alors $sf(C) = \{C\}$ et donc que l'on a nécessairement A = C.
- Si $A \neq C$ alors, d'après ce qui précède, C est de la forme $\neg E$ ou $E_1 \boxdot E_2$, avec $\boxdot \in \{ \lor, \land, \Rightarrow, \Leftrightarrow \}$.
 - Si $C = \neg E$, alors $C' = \neg E'$, avec E' obtenu en remplaçant une occurrence de A par B dans E. Soit I une interprétation. Par hypothèse d'induction, $E \equiv E'$, donc $[E]_I \equiv [E']_I$. On en déduit $[C']_I = f_{\neg}([E']_I) = f_{\neg}([E]_I) = [C]_I$. Comme I est quelconque, on en déduit que c'est vrai pour toute interprétation, et donc que $C \equiv C'$.
 - Si $C = E_1 \boxdot E_2$ alors soit l'occurrence de A est remplacée dans E_1 , soit elle l'est dans E_2 . Supposons qu'elle le soit dans E_1 (la démonstration est similaire dans le cas où elle est remplacée dans E_2). On a alors $C' = E'_1 \boxdot E_2$, avec E'_1 obtenu à partir de E_1 en remplaçant une occurrence de A par B. Soit I une interprétation. Par hypothèse d'induction, $E_1 \equiv E'_1$, donc $[E_1]_I = [E'_1]_I$. On en déduit $[C']_I = f_{\square}([E'_1]_I, [E_2]_I) = f_{\square}([E_1]_I, [E_2]_I) = [C]_I$. Comme I est quelconque, on en déduit que c'est vrai pour toute interprétation, et donc que $C \equiv C'$.

Exercice 7:

En utilisant les équivalences remarquables, réécrire les formules suivantes en n'utilisant que les connecteurs \neg et \land :

• $p \Leftrightarrow (q \vee r)$

Correction: On utilise $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A), A \Rightarrow B \equiv \neg(A \land \neg B), \neg \neg A \equiv A$ et $A \lor B \equiv \neg(\neg A \land \neg B)$.

$$p \Leftrightarrow (q \lor r) \equiv (p \Rightarrow (q \lor r)) \land ((q \lor r) \Rightarrow p)$$
$$\equiv \neg (p \land \neg (q \lor r)) \land \neg ((q \lor r) \land \neg p)$$
$$\equiv \neg (p \land \neg q \land \neg r) \land \neg (\neg (\neg q \land \neg r) \land \neg p)$$

• $p \lor (q \Rightarrow p)$

Correction:

$$\begin{array}{rcl} p \vee (q \Rightarrow p) & \equiv & p \vee \neg (q \wedge \neg p) \\ & \equiv & \neg (\neg p \wedge q \wedge \neg p) \end{array}$$

Exercice 8:

Quel est le nombre des différentes fonctions booléennes à deux arguments, à trois arguments, à n arguments?

Correction: Le nombre de fonctions booléennes à n arguments est 2^{2^n} . On le montre par récurrence sur n:

- cas n=0: c'est le cas des constantes, il y en a 2 (0 et 1). On a bien $2^{2^0}=2^1=2$.
- cas 1 n=1: Il y a 4 fonctions booléennes à 1 argument, qui sont énumérées dans le tableau suivant:

• Supposons que le nombre de fonctions booléennes à n arguments soit bien 2^{2^n} et montrons que le nombre de fonctions booléennes à n+1 arguments est $2^{2^{n+1}}$. On peut remarquer qu'étant donner une fonction booléenne f à n+1 arguments, on peut définir deux fonctions f_a et f_b à n arguments comme suit:

$$- f_a(b_1, \dots, b_n) = f(b_1, \dots, b_n, 0)$$

- $f_b(b_1, \dots, b_n) = f(b_1, \dots, b_n, 1)$

De même f peut être redéfinie en utilisant f_a et f_b :

$$f(b_1, \dots, b_n, b_{n+1}) = \begin{cases} f_a(b_1, \dots, b_n) & \text{si } b_{n+1} = 0\\ f_b(b_1, \dots, b_n) & \text{si } b_{n+1} = 1 \end{cases}$$

Pour énumérer les fonctions à n+1 arguments, il suffit d'énumérer les combinaisons de deux fonctions booléennes à n arguments, soit $2^{2^n} \times 2^{2^n} = 2^{2^n+2^n} = 2^{2^{n+1}}$.

¹Ce cas peut être démontré directement en utilisant le cas récurrent.

Exercice 9:

Montrer que:

1. Une formule A est valide si et seulement si $\neg A$ n'est pas satisfiable.

Correction: Si A est valide, alors pour toute interprétation I, $[A]_I = V$. Regardons $[\neg A]_I$: $[\neg A]_I = f_{\neg}([A]_I) = f_{\neg}(V) = F$. Donc pour toute interprétation I, $[\neg A]_I = F$. Donc il n'y a aucune interprétation I telle que $[\neg A]_I = V$. Donc $\neg A$ n'est pas satisfiable.

Si $\neg A$ n'est pas satisfiable, alors pour toute interprétation I, $[\neg A]_I = F$. Or $[\neg A]_I = f_{\neg}([A]_I)$. Donc on a forcément $[A]_I = V$. Donc A est valide.

2. $A_1, \ldots, A_n \models B$ si et seulement si $A_1 \wedge \cdots \wedge A_n \Rightarrow B$ est valide (noté $\models A_1 \wedge \cdots \wedge A_n \Rightarrow B$).

Correction:

Si $A_1, \ldots, A_n \models B$ alors pour toute interprétation I: si $[A_1]_I = V$ et ... et $[A_n]_I = V$ alors $[B]_I = V$. En regardant la table de vérité de f_{\wedge} , on peut remarquer que $[A_1]_I = V$ et ... et $[A_n]_I = V$ si et seulement si $[A_1 \wedge \cdots \wedge A_n]_I = V$. Posons $A = A_1 \wedge \cdots \wedge A_n$. D'après la table de vérité de f_{\Rightarrow} , la seule possibilité pour que $[A \Rightarrow B]_I = F$ est que $[A]_I = V$ et $[B]_I = F$. Or cette possibilité est contradictoire avec le fait que si $[A]_I = V$ alors $[B]_I = V$. On en déduit que $[A \Rightarrow B]_I = V$. Comme ce raisonnement est valable quelque soit I, on obtient que $A_1 \wedge \cdots \wedge A_n \Rightarrow B$ est valide.

Si $A_1 \wedge \cdots \wedge A_n \Rightarrow B$ est valide, alors pour toute interprétation I, $[A_1 \wedge \cdots \wedge A_n \Rightarrow B]_I = V$. D'après la table de vérité de f_{\Rightarrow} , on en déduit que si $[A_1 \wedge \cdots \wedge A_n]_I = V$, alors $[B]_I = V$. En regardant la table de vérité de f_{\wedge} , on peut remarquer que $[A_1]_I = V$ et ... et $[A_n]_I = V$ si et seulement si $[A_1 \wedge \cdots \wedge A_n]_I = V$. On en déduit donc que si $[A_1]_I = V$ et ... et $[A_n]_I = V$ alors $[B]_I = V$. Comme ce raisonnement est valable pour toute interprétation I, on en déduit que $A_1, \ldots, A_n \models B$.

3. $\{A_1, \ldots, A_n\} \models B$ si et seulement si $\{A_1, \ldots, A_n, \neg B\}$ n'est pas satisfiable.

Correction:

D'après ce qui précède, $A_1, \ldots, A_n \models B$ si et seulement si $A_1 \wedge \cdots \wedge A_n \Rightarrow B$ est valide. Réécrivons la formule $A_1 \wedge \cdots \wedge A_n \Rightarrow B$:

$$A_1 \wedge \dots \wedge A_n \Rightarrow B \equiv \neg (A_1 \wedge \dots \wedge A_n) \vee B$$
$$\equiv \neg A_1 \vee \dots \vee \neg A_n \vee B$$
$$\equiv \neg (A_1 \wedge \dots \wedge A_n \wedge \neg B)$$

Donc $\neg (A_1 \land \cdots \land A_n \Rightarrow B) \equiv A_1 \land \cdots \land A_n \land \neg B$.

D'après le premier point, on déduit que $A_1 \wedge \cdots \wedge A_n \Rightarrow B$ est valide si et seulement si $A_1 \wedge \cdots \wedge A_n \wedge \neg B$ n'est pas satisfiable, c'est-à-dire si et seulement si $\{A_1, \ldots, A_n, \neg B\}$ est insatisfiable.