$\begin{array}{c} DATA \ BASES \ DATA \ MINING \\ \mbox{Foundations of databases: from functional dependencies to normal} \\ forms \end{array}$

Database Group

http://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:

dbdm:start March 1, 2017

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Exemple

Let $U = \{id, name, address, cnum, desc, grade\}$ a set of attributes to model students and courses. We consider the following database schemas :

- $R1 = \{Data\}$ with schema(Data) = U^1 .
- ► R2 = {Student, Course, Enrollment} avec
 - schema(Student) = {id, name, address}
 - schema(Course) = {cnum, desc}
 - schema(Enrollment) = {id, cnum, grade}

How to compare these schemas?

- Which one is the "best"?
- Why?

Exemple

Data	id	name	address	cnum	desc	grade
	124	Jean	Paris	F234	Philo I	А
	456	Emma	Lyon	F234	Philo I	В
	789	Paul	Marseille	M321	Analyse I	С
	124	Jean	Paris	M321	Analyse I	А
	789	Paul	Marseille	CS24	BD I	В

Is there any problem here?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exemple

Data	id	name	address	cnum	desc	grade
	124	Jean	Paris	F234	Philo I	А
	456	Emma	Lyon	F234	Philo I	В
	789	Paul	Marseille	M321	Analyse I	С
	124	Jean	Paris	M321	Analyse I	А
	789	Paul	Marseille	CS24	BD I	В

Is there any problem here?

Redundancies!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Redundancies

Data	id	name	address	cnum	desc	grade
	124	Jean	Paris	F234	Philo I	А
	456	Emma	Lyon	F234	Philo I	В
	789	Paul	Marseille	M321	Analyse I	С
	124	Jean	Paris	M321	Analyse I	А
	789	Paul	Marseille	CS24	BD I	В

Intuition on functional dependencies

- ► A student' *id* gives her/his name and address, so for each new enrollment, his/her name and address are duplicated!
- ► $\pi_{id,name,address}(Data)$ is the graph of a (partial) function $f: id \rightarrow name \times address$, similarly for $\pi_{cnum,desc}(Data)$
- R2 = {Student, Course, Enrollment} is better than R1 = {Data} because it avoids redundancies by keeping unrelated information (e.g., a student's name and a course' description) unrelated...

Functional is a theoretical tool to capture and reason on this phenomenon.

Functional Dependencies

Inference

Closure algorithm

Normalization

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Functional dependencies: definition

Syntax

A Functional Dependency (FD) over a relation schema R is a formal expression of the form², with $X, Y \subseteq R$:

$$R:X \to Y$$

- $X \to Y$ is read "X functionally determines Y" or "X gives Y"
- A FD $X \to Y$ is trivial when $Y \subseteq X$
- A FD is standard when $X \neq \emptyset$.
- A set of attributes X is a key when $R: X \rightarrow R$

Semantics

Let r be a relation (a.k.a. *instance*) over R. The FD $R: X \to Y$ is *satisfied* by r, written $r \models R: X \to Y$, *iff*

$$\forall t_1, t_2 \in r.t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$$

²We write $X \to Y$ when R is clear from the context. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

What constraint is implied by a *non-standard* FD?

What constraint is implied by a non-standard FD?

Why a trivial FD is said to be trivial?

Example

r	Α	В	С	D
t_1	a_1	b_1	c_1	d_1
t_2	a_1	b_1	c_1	d_2
t_3	a_1	b_2	<i>c</i> ₂	d ₃
t_4	a ₂	b_2	<i>C</i> 3	d_4

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $r \models AB \rightarrow C$ (no counter-example)
- $r \models D \rightarrow ABCD$ (no counter-example)
- ▶ $r \nvDash AB \rightarrow D$ (e.g., $t_1[AB] = t_2[AB]$ but $t_1[D] \neq t_2[D]$)
- ▶ $r \nvDash A \rightarrow C$ (e.g., $t_2[A] = t_3[A]$ but $t_2[C] \neq t_3[C]$)

```
Using SQL (of course), with X = \{A_1, \ldots, A_n\}
SELECT A1, ..., An COUNT(DISTINCT A) AS NB
FROM R
GROUP BY A1, ..., An
HAVING COUNT(DISTINCT A) > 1;
```

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Functional Dependencies

Inference

Closure algorithm

Normalization

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Logical implication

Definition

Let F be a set of FDs on a relation schema R and let f be a single FD on R. We overload \models for a set of FDs:

$$r \models F$$
 iff $\forall f \in F.r \models f$

F logical (semantically) implies f, written

$$F \models f \text{ iff } \forall r.r \models F \Rightarrow r \models f$$

Example

With $F = \{A \rightarrow BCD, BC \rightarrow E\}$ and $r \models F$, the following hold as well:

• $r \models A \rightarrow CD$

•
$$r \models A \rightarrow E$$

It can be proved using the definition of \models and basic reasoning on projection of tuples.

Armstrong's System for FD

Armstrong's System

The following rules constitute the so call Armstrong's system for FDs:

Reflexivity

$$\frac{Y \subseteq X}{X \to Y}$$

Augmentation

$$\frac{X \to Y}{WX \to WY}$$

► Transitivity

$$\frac{X \to Y \qquad Y \to Z}{X \to Z}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof using Armstrong's system

Example

Let $\Sigma = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\}$ be a set of FDs on $\{A, B, C, D, E\}$. We show that $\Sigma \vdash AD \rightarrow E$

$$\frac{A \to B \qquad B \to C}{\frac{A \to C}{AD \to CD}} \qquad CD \to E$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Properties

Soundness and completeness

- ► The system is sound if F ⊢ f ⇒ F ⊨ f if there is a proof, the proof is valid
- The system is complete if F ⊨ f ⇒ F ⊢ f if it's valid, there is a proof

 $F \models \alpha \Leftrightarrow F \vdash \alpha$

Soundness

Prove for every rule that, if its hypothesis are valid then its conclusion is valid as well.

Example: transitivity

Let *r* be ans instance on *R* s.t. $r \models X \rightarrow Y$ et $r \models Y \rightarrow Z$. Let $t_1, t_2 \in r$ be two tuples in *r* s.t. $t_1[X] = t_2[X]$, we have to show that $t_1[Z] = t_2[Z]$. Using $r \models X \rightarrow Y$ we deduce that $t_1[Y] = t_2[Y]$, then using $r \models Y \rightarrow Z$ we deduce that $t_1[Z] = t_2[Z]$. So the transitivity of FDs amounts to the transitivity of equality...

Additional rules

Decomposition

$$\frac{X \to YZ}{X \to Y}$$

► Composition

$$\frac{X \to Y \quad X \to Z}{X \to YZ}$$

Pseudo-transitivity

$$\frac{X \to Y \quad WY \to Z}{WX \to Z}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This rules are sound and can be (safely) added to Armstrong's system

Completeness

Formal proofs

A (formal) proof of f from Σ using Armstrong' system written $\Sigma \vdash f$ is a sequence $\langle f_0, \ldots, f_n \rangle$ of FDs s.t. $f_n = f$ et $\forall i \in [0..n]$:

- either $f_i \in \Sigma$;
- ▶ or f_i is the conclusion of a rule of which all its antecedents f₀...f_p appear before f_i in the sequence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Completeness: $\Sigma \models X \rightarrow Y \Rightarrow \Sigma \vdash X \rightarrow Y$

We need a clear distinction between

- the semantic closure of X: $X^+ = \{A \mid \Sigma \models X \rightarrow A\}$
- the syntactic closure of X: $X^* = \{A \mid \Sigma \vdash X \to A\}$

Lemma: $\Sigma \vdash X \rightarrow Y \Leftrightarrow Y \subseteq X^*$

Completeness

$$\begin{split} \Sigma &\models X \to Y \Rightarrow \Sigma \vdash X \to Y \\ \equiv \Sigma &\nvDash X \to Y \Rightarrow \Sigma \not\models X \to Y \\ \equiv \Sigma &\nvDash X \to Y \Rightarrow \exists r. (r \models \Sigma \land r \not\models X \to Y) \end{split}$$

The crux is to find an instance r, with $X^* = X_1 \dots X_n$ et $Z_1 \dots Z_p = R \setminus X^*$

r	X_1	 X_n	Z_1	 Zp
5	x_1	 x _n	z_1	 z _p
t	x_1	 x _n	y_1	 Уp

 $r \models \Sigma$ but $r \not\models X \rightarrow Y$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Functional Dependencies

Inference

Closure algorithm

Normalization

Inference problem for FDs

Armstrong's system leads to a (inefficient) decision procedure for the *inference problem*.

Inference problem for FDs

Let F be a set of FDs and f a single FD, does $F \models f$ hold true?

Lemma: $F \models X \rightarrow Y$ iff $Y \subseteq X^+$

Thus, if we have an (efficient) algorithm to compute X^+ , we can (efficiently) solve the inference problem:

- 1. Given Σ and $X \to Y$, compute X^+ w.r.t. Σ
- 2. Return $Y \subseteq X^+$

Closure algorithm: $Closure(\Sigma, X)$

```
Data: \Sigma a set of FDs, X a set of d'attributes.
  Result: X^+, the closure of X w.r.t. \Sigma
1 Cl := X
2 done := false
3 while (\neg done) do
       done := true
4
       forall W \rightarrow Z \in \Sigma do
5
           if W \subseteq C \land Z \not\subseteq C \land then
6
              CI := CI \cup Z
done := false
7
8
9 return Cl
```

Algorithm 1: $Closure(\Sigma, X)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How many times³ do we compute $W \subseteq CI \land Z \nsubseteq CI$ w.r.t. $|\Sigma| = n$?

 $^{^{3}\}mbox{at}$ worst, using a bad strategy at line 5.

Second algorithm

```
Data: \Sigma a set of FDs, X a set of d'attributes.
   Result: X^+. the closure of X w.r.t. \Sigma
 1 for W \rightarrow Z \in F do
        count[W \rightarrow Z] := |W|
 2
 3
     for A \in W do
    | \quad | \quad list[A] := list[A] \cup W \rightarrow Z
 4
 5 closure := X, update := X
 6 while update \neq \emptyset do
 7
        Choose A \in update
       update := update \setminus \{A\}
 8
        for W \to Z \in list[A] do
 9
            count[W \rightarrow Z] := count[W \rightarrow Z] - 1
10
            if count[W \rightarrow Z] = 0 then
11
                 update := update \cup (Z \setminus closure)
12
                closure := closure \cup Z
13
```

14 return closure

```
Algorithm 2: Closure'(\Sigma, X)
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Example : AE^+

$$\Sigma = \{A \rightarrow I; AB \rightarrow E; BI \rightarrow E; CD \rightarrow I; E \rightarrow C\}$$

Initialization

$$\begin{array}{ll} List[A] = \{A \rightarrow D; AB \rightarrow E\} & count[A \rightarrow D] = 1 \\ List[B] = \{AB \rightarrow E; BI \rightarrow E\} & count[AB \rightarrow E] = 2 \\ List[C] = \{CD \rightarrow I\} & count[BI \rightarrow E] = 2 \\ List[D] = \{CD \rightarrow I\} & count[CD \rightarrow I] = 2 \\ List[E] = \{E \rightarrow C\} & count[E \rightarrow C] = 1 \\ List[I] = \{BI \rightarrow E\} \end{array}$$

Cover

Cover of a set of FDs

```
With F^+ = \{f \mid F \models f\}, let \Sigma et \Gamma be two sets of FDs,
\Gamma is a cover of \Sigma iff \Gamma^+ = \Sigma^+
```

```
Data: F a set of FDs

Result: G a minimal (in cardinality) cover of F

1 G := \emptyset

2 for X \to Y \in F do

3 \lfloor G := G \cup \{X \to X^+\};

4 for X \to X^+ \in G do

5 \lfloor \text{ if } G \setminus \{X \to X^+\} \vdash X \to X^+ \text{ then}

6 \lfloor G := G \setminus \{X \to X^+\};
```

7 return G;

Algorithm 3: *Minimize*(*F*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Functional Dependencies

Inference

Closure algorithm

Normalization

Normal forms

Figure 13.7

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Diagrammatic illustration of the relationship between the normal forms.

Application of FD: Normalization

We write $\langle R, \Sigma \rangle$ with R a relation schema and Σ a set of FDs on R. A set of attribute X is a *minimal key* of $\langle R, \Sigma \rangle$ iff:

- X is a key of R (i.e., $X \rightarrow R$ holds)
- ▶ X is minimal w.r.t. set inclusion: $\forall X' \subsetneq X \Rightarrow X' \not\rightarrow R$

Third Normal Form (3NF)

 $\langle R, \Sigma \rangle$ is in 3NF iff, for all *non-trivial* FD $X \to A$ of Σ^+ , one of the following conditions holds:

- X is a key of R
- A is a member of at least one minimal key of R^4

Boyce-Codd Normal Form (BCNF)

 $\langle R, \Sigma \rangle$ is in BCNF iff, for all *non-trivial* $X \to A$ of Σ^+ , X is a key of R.

Informally, $\langle R, \Sigma \rangle$ is good when Σ is nothing but the key!

Example

3NF captures most of redundancies

- ⟨ABC, {A → B, B → C}⟩ is not in 3NF
 A is the unique minimal key. Considering B → C, C is not prime and B is not a key. Clearly, ABC should be divided into AB and BC
- ► (ABC, {AB → C, C → B}) is in 3NF There are two minimal keys: AB and AC. Every attribute is prime so the 3NF condition holds. Unfortunately, some redundancies still hold but there is no way to decompose ABC into smaller relation without loss of FD!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BCNF captures all redundancies (expressed by FD)

 ⟨ABC, {AB → C, C → B}⟩ is not in BCNF Considering C → B, C alone is not a key.

Synthesis algorithm

Data: *R* the set of all attributes **Data:** Σ a set of FDs on R **Result:** A decomposition **R** of *R* according to Σ 1 $F := Reduce(Minimize(\Sigma))$ 2 for $X \to Y \in F$ do $\mathbf{3} \quad | \quad \mathbf{R} := \mathbf{R} \cup \{XY\}$ 4 for $R \in \mathbf{R}$ do 5 | if $\exists R'. R \subsetneq R'$ then $\mathbf{R} := \mathbf{R} \setminus \{R\}$; 6 Keys := { $X \mid X \to U \land \forall Z.Z \subsetneq X \Rightarrow Z \not\to U$ } 7 if $\forall R \in \mathbf{R}$. $\exists K \in Cle. K \subseteq R$ then 8 | pick $K \in Cle$ 9 $\mathbf{R} := \mathbf{R} \cup \{K\}$ 10 return R

Algorithm 4: Synthesis(Σ , U)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

End.