
Data Bases Data Mining
Foundations of databases: from functional dependencies to normal

forms

Database Group

http://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:
dbdm:start

March 1, 2017

http://fst-informatique.univ-lyon1.fr/
http://liris.cnrs.Fr
http://www.cnrs.fr
http://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:dbdm:start
http://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:dbdm:start

Exemple

Let U = {id , name, address, cnum, desc, grade} a set of attributes to
model students and courses. We consider the following database schemas
:

I R1 = {Data} with schema(Data) = U1.
I R2 = {Student,Course,Enrollment} avec

I schema(Student) = {id , name, address}
I schema(Course) = {cnum, desc}
I schema(Enrollment) = {id , cnum, grade}

How to compare these schemas?
I Which one is the “best”?
I Why?

1Similar to a spreadsheet.

Exemple

Data id name address cnum desc grade
124 Jean Paris F234 Philo I A
456 Emma Lyon F234 Philo I B
789 Paul Marseille M321 Analyse I C
124 Jean Paris M321 Analyse I A
789 Paul Marseille CS24 BD I B

Is there any problem here?

Redundancies!

Exemple

Data id name address cnum desc grade
124 Jean Paris F234 Philo I A
456 Emma Lyon F234 Philo I B
789 Paul Marseille M321 Analyse I C
124 Jean Paris M321 Analyse I A
789 Paul Marseille CS24 BD I B

Is there any problem here?

Redundancies!

Redundancies
Data id name address cnum desc grade

124 Jean Paris F234 Philo I A
456 Emma Lyon F234 Philo I B
789 Paul Marseille M321 Analyse I C
124 Jean Paris M321 Analyse I A
789 Paul Marseille CS24 BD I B

Intuition on functional dependencies
I A student’ id gives her/his name and address, so for each new

enrollment, his/her name and address are duplicated!
I πid,name,address(Data) is the graph of a (partial) function

f : id → name × address, similarly for πcnum,desc(Data)
I R2 = {Student,Course,Enrollment} is better than R1 = {Data}

because it avoids redundancies by keeping unrelated information
(e.g., a student’s name and a course’ description) unrelated. . .

Functional is a theoretical tool to capture and reason on this
phenomenon.

Functional Dependencies

Inference

Closure algorithm

Normalization

Functional dependencies: definition
Syntax
A Functional Dependency (FD) over a relation schema R is a formal
expression of the form2, with X ,Y ⊆ R :

R : X → Y

I X → Y is read “X functionally determines Y ” or “X gives Y ”
I A FD X → Y is trivial when Y ⊆ X
I A FD is standard when X 6= ∅.
I A set of attributes X is a key when R : X → R

Semantics
Let r be a relation (a.k.a. instance) over R. The FD R : X → Y is
satisfied by r , written r |= R : X → Y , iff

∀t1, t2 ∈ r .t1[X] = t2[X]⇒ t1[Y] = t2[Y]

2We write X → Y when R is clear from the context.

What constraint is implied by a non-standard FD?

Why a trivial FD is said to be trivial?

What constraint is implied by a non-standard FD?

Why a trivial FD is said to be trivial?

Example

r A B C D
t1 a1 b1 c1 d1
t2 a1 b1 c1 d2
t3 a1 b2 c2 d3
t4 a2 b2 c3 d4

I r |= AB → C (no counter-example)
I r |= D → ABCD (no counter-example)
I r 2 AB → D (e.g., t1[AB] = t2[AB] but t1[D] 6= t2[D])
I r 2 A→ C (e.g., t2[A] = t3[A] but t2[C] 6= t3[C])

Checking if a FD R : X → A holds in an instance

Using SQL (of course), with X = {A1, . . . ,An}
SELECT A1 , . . . , An COUNT(DISTINCT A) AS NB
FROM R
GROUP BY A1 , . . . , An
HAVING COUNT(DISTINCT A) > 1 ;

Functional Dependencies

Inference

Closure algorithm

Normalization

Logical implication

Definition
Let F be a set of FDs on a relation schema R and let f be a single FD
on R. We overload |= for a set of FDs:

r |= F iff ∀f ∈ F .r |= f

F logical (semantically) implies f , written

F |= f iff ∀r .r |= F ⇒ r |= f

Example
With F = {A→ BCD,BC → E} and r |= F , the following hold as well:

I r |= A→ CD
I r |= A→ E

It can be proved using the definition of |= and basic reasoning on
projection of tuples.

Armstrong’s System for FD

Armstrong’s System
The following rules constitute the so call Armstrong’s system for FDs:

I Reflexivity
Y ⊆ X
X → Y

I Augmentation
X → Y

WX →WY
I Transitivity

X → Y Y → Z
X → Z

Proof using Armstrong’s system

Example
Let Σ = {A→ B,B → C ,CD → E} be a set of FDs on {A,B,C ,D,E}.
We show that Σ ` AD → E

A→ B B → C
A→ C

AD → CD CD → E
AD → E

Properties
Soundness and completeness

I The system is sound if F ` f ⇒ F |= f
if there is a proof, the proof is valid

I The system is complete if F |= f ⇒ F ` f
if it’s valid, there is a proof

F |= α⇔ F ` α

Soundness
Prove for every rule that, if its hypothesis are valid then its conclusion is
valid as well.

Example: transitivity
Let r be ans instance on R s.t. r |= X → Y et r |= Y → Z . Let
t1, t2 ∈ r be two tuples in r s.t. t1[X] = t2[X], we have to show that
t1[Z] = t2[Z]. Using r |= X → Y we deduce that t1[Y] = t2[Y], then
using r |= Y → Z we deduce that t1[Z] = t2[Z]. So the transitivity of
FDs amounts to the transitivity of equality. . .

Additional rules

I Decomposition
X → YZ
X → Y

I Composition
X → Y X → Z

X → YZ
I Pseudo-transitivity

X → Y WY → Z
WX → Z

This rules are sound and can be (safely) added to Armstrong’s system

Completeness

Formal proofs
A (formal) proof of f from Σ using Armstrong’ system written Σ ` f is a
sequence 〈f0, . . . , fn〉 of FDs s.t. fn = f et ∀i ∈ [0..n] :

I either fi ∈ Σ ;
I or fi is the conclusion of a rule of which all its antecedents f0 . . . fp

appear before fi in the sequence.

Completeness: Σ |= X → Y ⇒ Σ ` X → Y
We need a clear distinction between

I the semantic closure of X : X+ = {A | Σ |= X → A}
I the syntactic closure of X : X? = {A | Σ ` X → A}

Lemma: Σ ` X → Y ⇔ Y ⊆ X ?

Completeness

Σ |= X → Y ⇒ Σ ` X → Y
≡ Σ 6` X → Y ⇒ Σ 6|= X → Y
≡ Σ 6` X → Y ⇒ ∃r .(r |= Σ ∧ r 6|= X → Y)

The crux is to find an instance r ,
with X? = X1 . . .Xn et Z1 . . .Zp = R \ X?

r X1 . . . Xn Z1 . . . Zp

s x1 . . . xn z1 . . . zp
t x1 . . . xn y1 . . . yp

r |= Σ but r 6|= X → Y

Functional Dependencies

Inference

Closure algorithm

Normalization

Inference problem for FDs

Armstrong’s system leads to a (inefficient) decision procedure for the
inference problem.

Inference problem for FDs

Let F be a set of FDs and f a single FD, does F |= f hold true?

Lemma:F |= X → Y iff Y ⊆ X +

Thus, if we have an (efficient) algorithm to compute X+, we can
(efficiently) solve the inference problem:
1. Given Σ and X → Y , compute X+ w.r.t. Σ
2. Return Y ⊆ X+

Closure algorithm: Closure(Σ, X)

Data: Σ a set of FDs, X a set of d’attributes.
Result: X+, the closure of X w.r.t. Σ

1 Cl := X
2 done := false
3 while (¬done) do
4 done := true
5 forall W → Z ∈ Σ do
6 if W ⊆ Cl ∧ Z 6⊆ Cl then
7 Cl := Cl ∪ Z
8 done := false

9 return Cl
Algorithm 1: Closure(Σ,X)

How many times3 do we compute W ⊆ Cl ∧ Z 6⊆ Cl w.r.t. |Σ| = n ?

3at worst, using a bad strategy at line 5.

Second algorithm
Data: Σ a set of FDs, X a set of d’attributes.
Result: X+, the closure of X w.r.t. Σ

1 for W → Z ∈ F do
2 count[W → Z] := |W |
3 for A ∈W do
4 list[A] := list[A] ∪W → Z

5 closure := X , update := X
6 while update 6= ∅ do
7 Choose A ∈ update
8 update := update \ {A}
9 for W → Z ∈ list[A] do

10 count[W → Z] := count[W → Z]− 1
11 if count[W → Z] = 0 then
12 update := update ∪ (Z \ closure)
13 closure := closure ∪ Z

14 return closure
Algorithm 2: Closure′(Σ,X)

Example : AE +

Σ = {A → I; AB → E ; BI → E ; CD → I; E → C}

Initialization
List[A] = {A → D; AB → E} count[A → D] = 1
List[B] = {AB → E ; BI → E} count[AB → E] = 2
List[C] = {CD → I} count[BI → E] = 2
List[D] = {CD → I} count[CD → I] = 2
List[E] = {E → C} count[E → C] = 1
List[I] = {BI → E}

Cover

Cover of a set of FDs

With F+ = {f | F |= f }, let Σ et Γ be two sets of FDs,
Γ is a cover of Σ iff Γ+ = Σ+

Data: F a set of FDs
Result: G a minimal (in cardinality) cover of F

1 G := ∅
2 for X → Y ∈ F do
3 G := G ∪ {X → X+};
4 for X → X+ ∈ G do
5 if G \ {X → X+} ` X → X+ then
6 G := G \ {X → X+};

7 return G;
Algorithm 3: Minimize(F)

Functional Dependencies

Inference

Closure algorithm

Normalization

Normal forms

Application of FD: Normalization
We write 〈R,Σ〉 with R a relation schema and Σ a set of FDs on R.
A set of attribute X is a minimal key of 〈R,Σ〉 iff:

I X is a key of R (i.e., X → R holds)
I X is minimal w.r.t. set inclusion: ∀.X ′ (X ⇒ X ′ 6→ R

Third Normal Form (3NF)
〈R,Σ〉 is in 3NF iff, for all non-trivial FD X → A of Σ+, one of the
following conditions holds:

I X is a key of R
I A is a member of at least one minimal key of R4

Boyce-Codd Normal Form (BCNF)
〈R,Σ〉 is in BCNF iff, for all non-trivial X → A of Σ+, X is a key of R.

Informally, 〈R,Σ〉 is good when Σ is nothing but the key!

4An attribute that appears in at least one minimal key is said to be a prime
attribute.

Example

3NF captures most of redundancies
I 〈ABC , {A→ B,B → C}〉 is not in 3NF

A is the unique minimal key. Considering B → C , C is not prime
and B is not a key. Clearly, ABC should be divided into AB and BC

I 〈ABC , {AB → C ,C → B}〉 is in 3NF
There are two minimal keys: AB and AC . Every attribute is prime
so the 3NF condition holds. Unfortunately, some redundancies still
hold but there is no way to decompose ABC into smaller relation
without loss of FD!

BCNF captures all redundancies (expressed by FD)
I 〈ABC , {AB → C ,C → B}〉 is not in BCNF

Considering C → B, C alone is not a key.

Synthesis algorithm

Data: R the set of all attributes
Data: Σ a set of FDs on R
Result: A decomposition R of R according to Σ

1 F := Reduce(Minimize(Σ))
2 for X → Y ∈ F do
3 R := R ∪ {XY }
4 for R ∈ R do
5 if ∃R ′.R (R ′ then R := R \ {R};
6 Keys := {X | X → U ∧ ∀Z .Z (X ⇒ Z 6→ U}
7 if ∀R ∈ R. 6 ∃K ∈ Cle.K ⊆ R then
8 pick K ∈ Cle
9 R := R ∪ {K}

10 return R
Algorithm 4: Synthesis(Σ,U)

End.

	Functional Dependencies
	Inference
	Closure algorithm
	Normalization

