DBDM

Relational calculus, Algebra

E.Coquery, R.Thion, A. Bonifati, M. Plantevit, M. Kaytoue, C. Robardet

emmanuel.coquery@liris.cnrs.fr

http://liris.cnrs.fr/~ecoquery/dbdm/

DBDM-Relational calculus, algebra Relational Calculus

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relational calculus

- First-order Logic based theoretical language to represent queries
 - Declarative: Allow for expressing what to get, not how to do it
 - 2 flavors: domain or tuple
 - Example (tuple):
 - $\begin{array}{l} \{t \mid \exists u \; Employe(u) \\ \land t.Nom = u.Nom \land t.Fonction = u.Fonction \\ \land u.NumDept = 3 \end{array}$
- No function symbols
- Predicate symbols can be
 - Comparison predicates with fixed interpretation
 - Relations from the database

Variables in Tuple Relational Calculus (TRC)

Variables represent tuples

- t.A allow for accessing attribute A in tuple t
- *"named"* perspective: tuple = function: attributes → atomic value
 - As opposed to the usual *positional* perspective: $t = (v_1, \ldots, v_n)$
- When needed a tuple variable can be annotated with its attributes:
 - ex: t^{Nom,Fonction}: the domain of t (seen as a function) is the set of attributes {*Nom*, *Fonction*}

Predicates in TRC

Database relations

- Relations are unary
- Argument: a single tuple
- Meaning: given an instance of a relation *R*, *R*(*t*) is true if *t* is in the instance of *R*.

Comparisons

- Can be (depending on the domain) $</2,\,=/2,\,\geq/2,\,\ldots$
- ex: *t*.*Salaire* > 30000
- ex: t.Num = u.NumSup
- Technically possible to extend to incorporate any expression built from constants and attribute values

TRC formulas

Build from:

- Atoms (relations applied to predicates, comparisons)
- Usual logical connectors: \land,\lor,\neg
- Quantifier: \exists

TRC query:

 $\{t\mid \phi\}$

t is a tuple variable, ϕ is a TRC formula with exactly t as free variable

DBDM-Relational calculus, algebra Relational Calculus SQL & TRC

Example SQL vs TRC

- SELECT Nom, Fonction FROM Employe
 - $\{t \mid \exists u \; Employe(u) \\ \land t.Nom = u.Nom \land t.Fonction = u.Fonction \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• SELECT Nom FROM Employe WHERE Embauche < '1999-01-01' AND Salaire >= 30000; $\{t \mid \exists u \ Employe(u)$ $\land t.Nom = u.Nom$ $\land u.Embauche < 1/1/1999$ $\land u.Salaire \ge 30000\}$ DBDM-Relational calculus, algebra Relational Calculus SQL & TRC

Example SQL vs TRC - renaming and variables

- SELECT u.Nom, u.Fonction FROM Employe u
 - { $t \mid \exists u \; Employe(u)$ $\land t.Nom = u.Nom \land t.Fonction = u.Fonction$ }

DBDM-Relational calculus, algebra Relational Calculus

SQL & TRC

Example SQL vs TRC - Join

```
SELECT d.Nomdept, b.Nombat
FROM Departement d, Batiment b
WHERE d.Numbat = b.Numbat
```

```
\{t \mid \exists d \exists b \ Departement(d) \land Batiment(b) \land t.Nomdept = d.Nomdept \land t.Nombat = b.Nombat \land d.Numbat = b.Numbat \}
```

DBDM-Relational calculus, algebra Relational Calculus

SQL & TRC

Example SQL vs TRC - Negation & Subquery

```
SELECT d.Nomdept
FROM Departement d
WHERE NOT EXISTS (SELECT b.Numbat
FROM Batiment b
WHERE b.Numbat = d.Numbat)
```

```
{t \mid \exists d \text{ Departement}(d)
 \land t.Nomdept = d.Nomdept
 \land \neg (\exists b \text{ Batiment}(b) \land b.Numbat = d.Numbat)}
```

DBDM-Relational calculus, algebra Relational Calculus TRC Semantics

TRC semantics

Given a database *d* over **R** and a tuple assignment σ , the satisfaction of a TRC formula ϕ is inductively defined as follows:

•
$$\langle d, \sigma \rangle \models R(t)$$
 if $\sigma(t) \in d(R), R \in \mathbf{R}$

•
$$\langle d, \sigma \rangle \models t_1.A = t_2.B$$
 if $\sigma(t_1)(A) = \sigma(t_2)(B)$

•
$$\langle d, \sigma \rangle \models t.A = c$$
 if $\sigma(t)(A) = c$

•
$$\langle d, \sigma \rangle \models \neg \phi$$
 if $\langle d, \sigma \rangle \not\models \phi$

•
$$\langle d, \sigma \rangle \models \phi_1 \land \phi_2$$
 if $\langle d, \sigma \rangle \models \phi_1$ and $\langle d, \sigma \rangle \models \phi_2$

• $\langle d, \sigma \rangle \models \exists t \ \phi \text{ if there exists a tuple } \mathbf{u} \text{ such that } \langle d, \sigma_{t \mapsto \mathbf{u}} \rangle \models \phi$

$$\begin{split} &\sigma: \text{tuple variable} \rightarrow \text{tuple } (\textit{i.e. function attribute} \rightarrow \text{atomic value}) \\ &d: \text{relation name} \rightarrow \text{relation (instance)} \\ &\sigma_{t\mapsto \mathbf{u}}(t) = \mathbf{u} \text{ and if } t' \neq t, \ \sigma_{t\mapsto \mathbf{u}}(t') = \sigma(t') \end{split}$$

DBDM-Relational calculus, algebra Relational Calculus TRC Semantics

Answers to TRC Queries

Answers given by the tuple assignments satisfying the TRC formula:

$$ans(\{t \mid \phi\}, d) = \{\sigma(t) \mid \langle d, \sigma \rangle \models \phi\}$$

Not always computable:

$$\{t \mid \neg \exists u \; Employe(u) \land u.Nom = t.Nom\}$$

- \Rightarrow authorized TRC ensures possibility to compute answers
 - principle: values should not be defined only in negations ([AVH, Chap.5])

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relational Algebra

Operations on relations (instances) to compute answers to queries

- Alternate query language
- Equivalent algebraic expressions may have different computing cost
 - \Rightarrow Algebraic optimization
- Same expressive power as the authorized TRC [AVH, Chap.5]

- 5 base operators: selection, projection, union, difference and cartesian product.
- 1 syntactic operator, renaming, that only changes relation schema, not the values.
- Some other operators that can be obtained by composing the previous ones (syntactic sugar):
 - intersection, natural joins and θ joins.
- Operators can be grouped in 2 categories
 - set operators: union, intersection, difference, product
 - database specific operators: selection, projection, joins, renaming

Semantics

Semantics can be given with an eval function eval(e, d)

- e is a relational algebra expression
- *d* a database instance (as for TRC semantics)

If e is a relation (name) R then eval(R, d) = d(R).

R∪S: usual set union (relations seen as sets of tuples).
eval(e₁ ∪ e₂, d) = eval(e₁, d) ∪ eval(e₂, d)

• The 2 relations must have the same schema.

DBDM-Relational calculus, algebra

Relational Algebra

Operators

Example

Students

FName	LName
Susan	Yao
Ramesh	Shah
Barbara	Jones
Amy	Ford
Jimmy	Wang

Teachers

FName	LName	
John	Smith	
Ricardo	Brown	
Susan	Yao	
Francis	Johnson	
Ramesh	Shah	

$\mathsf{Students} \, \cup \, \mathsf{Teachers}$

IJ

FName	LName
Susan	Yao
Ramesh	Shah
Barbara	Jones
Amy	Ford
Jimmy	Wang
John	Smith
Ricardo	Brown
Francis	Johnson

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Intersection

R∪S: usual set intersection (relations seen as sets of tuples).
eval(e₁ ∩ e₂, d) = eval(e₁, d) ∩ eval(e₂, d)

()

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The 2 relations must have the same schema.

DBDM-Relational calculus, algebra

Relational Algebra

Operators

Example

Students

FName	LName	
Susan	Yao	
Ramesh	Shah	
Barbara	Jones	
Amy	Ford	
Jimmy	Wang	

Teachers

FName	LName	
John	Smith	
Ricardo	Brown	
Susan	Yao	
Francis	Johnson	
Ramesh	Shah	

$\mathsf{Students}\,\cap\,\mathsf{Teachers}$

FName	LName
Susan	Yao
Ramesh	Shah

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

– or
$$\setminus$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- R ∪ S: usual set difference (relations seen as sets of tuples).
 eval(e₁ \ e₂, d) = eval(e₁, d) \ eval(e₂, d)
- The 2 relations must have the same schema.

DBDM-Relational calculus, algebra

Relational Algebra

Operators

Example

Students

FName	LName	
Susan	Yao	
Ramesh	Shah	
Barbara	Jones	
Amy	Ford	
Jimmy	Wang	

Teachers

FName	LName	
John	Smith	
Ricardo	Brown	
Susan	Yao	
Francis	Johnson	
Ramesh	Shah	

${\sf Students}-{\sf Teachers}$

- or

FName	LName
Barbara	Jones
Amy	Ford
Jimmy	Wang

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Operators

Cartesian product

• $R \times S$: new relation resulting from the combination of all tuples from R on one side and S on the other side

• let
$$r_1 = eval(e_1, d)$$
 and $r_2 = eval(e_2, d)$

•
$$eval(e_1 \times e_2, d) = \{t_1 \times t_2 \mid t_1 \in r_1, t_2 \in r_2\}$$

• $(t_1 \times t_2)(A) = t_1(A)$ if A is an attribute of t_1

•
$$(t_1 \times t_2)(A) = t_2(A)$$
 if A is an attribute of t_2

- Schemas of R and S should be disjoint
- Not that useful as is, but used for representing joins

Operators

Exemple

\times

Students

FName	LName
Susan	Yao
Ramesh	Shah

Teachers

FNameP	LNameP	
John	Smith	
Ricardo	Brown	
Susan	Yao	

$\mathsf{Students}\,\times\,\mathsf{Teachers}$

FName	LName	FNameP	LNameP
Susan	Yao	John	Smith
Susan	Yao	Ricardo	Brown
Susan	Yao	Susan	Yao
Ramesh	Shah	John	Smith
Ramesh	Shah	Ricardo	Brown
Ramesh	Shah	Susan	Yao

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Renaming

*ρ*_{A1/A1},...,A_k/A_k(R)

 Renaming of attributes in a relation R: A1 becomes A1, ..., Ak becomes A'k

 eval(ρ_{A1/A1},...,A_k/A'_k(e), d) = {ρ_{A1/A1},...,A_k/A'_k(e), d) = {ρ_{A1/A1},...,A_k/A'_k(t) | t ∈ eval(e, d)}

 *ρ*_{A1/A1},...,A_k/A'_k(t)(A'_i) = t(A_i) *ρ*_{A1/A1},...,A_k/A'_k(t)(B) = t(B) if B ∉ {A1,...,A_k, A1,...,A'_k}

 Useful to (dis)align schemas before using set operators

Operators

Example

	Employe		$ ho_{\sf FName/F}$;; irst,LName/L	_{ast} (Employe)
FName	LName	NoDept	First	Last	NoDept
John	Smith	5	John	Smith	5
Ricardo	Brown	3	Ricardo	Brown	3
Susan	Yao	5	Susan	Yao	5
Daniel	Johnson	2	Daniel	Johnson	2
Francis	Johnson	2	Francis	Johnson	2
Ramesh	Shah	4	Ramesh	Shah	4
Ramesh	Shah	2	Ramesh	Shah	2

Selection

- $\sigma_C(R)$ selects tuples in R using condition C
- Conditions: combination of comparaisons (=, <, >, ≤, ≥)
 - between attributes
 - between an attribute and a constant
 - Example: σ_{NoDept=5}(Employe)
- Can be combined using \wedge,\vee

• $eval(\sigma_C(e), d) = \{t \mid t \in eval(e, d) and eval_{cond}(C, t) = true\}$

- $eval_{cond}(A \Box B, t) = t(A) \Box t(B)$
- $eval_{cond}(A \Box c, t) = t(A) \Box c$
- $eval_{cond}(c_1 \land c_2, t) = eval_{cond}(c_1, t) \land eval_{cond}(c_2, t)$
- $eval_{cond}(c_1 \lor c_2, t) = eval_{cond}(c_1, t) \lor eval_{cond}(c_2, t)$

Operators

Example

Em	plo	oye
-	Piv	Jyc

FName	LName	NoDept
John	Smith	5
Ricardo	Brown	3
Susan	Yao	5
Daniel	Johnson	2
Francis	Johnson	2
Ramesh	Shah	4
Ramesh	Shah	2

$\sigma_{\mathit{NoDept}=5}(Employe)$			
FName	LName	NoDept	
John	Smith	5	
Susan	Yao	5	

(ロ)、(型)、(E)、(E)、 E) の(の)

Projection

• $\pi_{A_1,\ldots,A_k}(R)$ keeps only attributes A_1,\ldots,A_k in relation R. • $eval(\pi_{A_1,\ldots,A_k}(e),d) = \{t_{|A_1,\ldots,A_k} \mid t \in eval(e,d)\}$

- Does not delete lines
 - except when two lines match on A_1, \ldots, A_k

Operators

Exemple

	Em	plo	ye
--	----	-----	----

FName	FName LName	
John	Smith	5
Ricardo	Brown	3
Susan	Yao	5
Daniel	Johnson	2
Francis	Johnson	2
Ramesh	Shah	4
Ramesh	Shah	2

$\pi_{LName,NoDept}(Employe)$

LName	NoDept
Smith	5
Brown	3
Yao	5
Johnson	2
Shah	4
Shah	2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Natural join: $R \bowtie S$

- R and S have common attributes A_1, \ldots, A_k
- The result is the set of tuples obtained by combining tuples t_1 from R and t_2 from S having the same value of attributes A_1, \ldots, A_k .
 - Attributes A_1, \ldots, A_n are not duplicated.

 θ -join: $R \bowtie_C S$

- Equality condition of natural join is replaced by a custom condition *C*
- R and S must not share attributes

DBDM-Relational calculus, algebra

Relational Algebra

Operators

Exemple

Employe

FName	LName	NoDept
John	Smith	5
Ricardo	Brown	3
Susan	Yao	5
Francis	Johnson	2
Ramesh	Shah	4

Emplacement

NoDept	Building
1	centre
3	sud
4	est
5	ouest

Employe \bowtie Emplacement

FName	LName	NoDept	Building
John	Smith	5	ouest
Ricardo	Brown	3	sud
Susan	Yao	5	ouest
Ramesh	Shah	4	est

Join as a Composed Operator

Assume *R* and *S* have exactly A_1, \ldots, A_n as shared attributes, B_1, \ldots, B_m as attributes appearing only in *R* and C_1, \ldots, C_P as attributes appearing only in *S*.

$$R \bowtie S \equiv \pi_{A_1,\dots,A_n,B_1,\dots,B_m,C_1,\dots,C_P}(\sigma_{A_1=A'_1 \land \dots \land A_n=A'_n}(R \times \rho_{A_1/A'_1,\dots,A_n/A'_n}(S)))$$

DBDM-Relational calculus, algebra

Relational Algebra

Operators

Expessive power of TRC and Relational Algebra

Theorem

Authorized TRC and Relational Algebra have the same expressive power:

- let {t | φ} be an authorized TRC query and d a database instance. There exists a relational algebra expression e using relations in d, such that eval(e, d) = ans({t | φ})
- let e be a relational algebra expression e over a database d. There exists an authorized TRC query {t | φ} such that eval(e, d) = ans({t | φ})

Operators

[AVH] Abiteboul, Hull, Vianu: Foundations of Databases, http://webdam.inria.fr/Alice/

・ロト・日本・モート モー うへぐ