
DBDM – Data Bases and Data Mining
Closure Algorithm for Functional Dependencies

http://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:dbdm:start

March 20, 2017

Abstract
The objective of this lab session is to implement two closure algorithms for functional dependencies

given in pseudo-code and to experimentally compare their performances. The programming language
may be Java, C++, OCaml, Haskell or Python. Up to two students, but no more, may collaborate
together on this project.

1 Introduction
1.1 Delivery
An email addressed to Emmanuel Coquery with a zip file including all your source files, the readme.txt
file, your experimental figures in a tsv or csv file, the image depicting the later as well as relevant
supplementary material has to be sent by:

Monday, April 3rd, 2017, 23:59, Paris time.

The readme.txt report, written in French or in English, must include the full names of students
involved and will contain your answers to the open questions (justification for the data structures you
selected, a discussion on the experimental results etc.).

1.2 Main Program
A set of sample files is provided in the examples folder. Each file contains a set of Functional Depen-
dencies (FDs). Your main program closure has three options, where input is either a file containing
FDs. or - (the hyphen character) if the FDs are to be read on the standard input (cin):

• closure -naive input atts: with Σ the set of FDs read on input and X the set of attributes
in atts, computes Closure(Σ, X) with the naive algorithm, see Algorithm 1, and prints it on the
standard output (cout);

• closure -improved input atts: with Σ the set of FDs read on input and X the set of attributes
in atts, computes Closure′(Σ, X) with the improved algorithm, see Algorithm 2, and prints it on
the standard output (cout);

• closure -generate n: with n an integer, generates a particular set of FDs of the form {n− 1→
n, n− 2→ n− 1, . . . , 0→ 1}, shuffles it and prints it on the standard output (cout);

• closure -normalize input: with Σ the set of FDs read on input, computes Reduce(Minimize(Σ),
see Algorithms 3 and 4, and prints it on the standard output (cout);

• closure -decompose input: with Σ the set of FDs read on input, supposed to be obtained
after normalization, decomposes the (implicit) relation into a BCNF schema, and prints it on the
standard output (cout).

http://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:dbdm:start
mailto:emmanuel.coquery@univ-lyon1.fr

Algorithm 1: Closure(Σ, X)
Data: Σ a set of FDs, X a set of attributes.
Result: X+, the closure of X w.r.t. Σ

1 Cl := X
2 done := false
3 while (¬done) do
4 done := true
5 forall the W → Z ∈ Σ do
6 if W ⊆ Cl ∧ Z 6⊆ Cl then
7 Cl := Cl ∪ Z
8 done := false

9 return Cl

Algorithm 2: Closure′(Σ, X)
Data: Σ a set of FDs, X a set of attributes.
Result: X+, the closure of X w.r.t. Σ

1 for W → Z ∈ Σ do
2 count[W → Z] := |W |
3 for A ∈W do
4 list[A] := list[A] ∪W → Z

5 closure := X, update := X
6 while update 6= ∅ do
7 Choose A ∈ update
8 update := update \ {A}
9 for W → Z ∈ list[A] do

10 count[W → Z] := count[W → Z]− 1
11 if count[W → Z] = 0 then
12 update := update ∪ (Z \ closure)
13 closure := closure ∪ Z

14 return closure

2 Closure algorithms for functional dependencies
2.1 Basic Data Structure

Exercise 1 input and output
Your program needs to read a set of FDs from a file and to write sets of FDs and sets of attributes on
the standard output (cout).

1. Define data structures for attributes, sets of attributes, sets of sets of attributes, FDs and sets of
FDs.

2. Define input/read and output/write for the data structures of the previous question. If needed
by your favorite set library, define a lexical (total) order on FDs.

3. Define a main program with the requested command line options.

2.2 Closure algorithms
The closure X+ of a set of attributes by a set of FDs Σ is defined as X+ = {A | F ` X → A}.
Algorithm 1 gives a procedure to compute X+. As discussed during the lecture1 Algorithm 1 can be
improved to Algorithm 2 that does exactly the same job.

Exercise 2 naive closure
1. Implement Algorithm 1.
2. Provide unit tests for your implementation.

Exercise 3 improved algorithm
1. Define data structures for the count and list indices of Algorithm 2.
2. Implement the construction of indices of Algorithm 2, Lines 2 to 4 as a separate function.
3. Implement Algorithm 2.
4. Provide unit tests for your implementation.

Exercise 4 open questions
1. Justify your implementation choices for the data structures, in the appropriate section of the

readme.txt file.
2. Discuss your strategy that implements the Choose A instruction of Algorithm 2, Line 7.
3. There is a small corner case in Algorithm 2 with non-standard DFs. Find it.

3 Experimental Comparison
At this point you have two algorithms solving the same problem. The goal is to experimentally compare
the practical performance gain.

Exercise 5 performance comparison
1. Implement the -generate n command-line option that produces the set of DFs {n−1→ n, n−2→

n− 1, . . . , 0→ 1}. Shuffle the DFs of this set before it is output.
2. Inspire yourselves from the ./perf.sh script to obtain raw execution times to be stored in a

Tab/Comma Separated Value (tsv/csv) file.
3. Use your favorite spreadsheet, plot or statistics software to graphically depict your results. Figure 1

is provided for inspiration.

1http://liris.cnrs.fr/ecoquery/dokuwiki/lib/exe/fetch.php?media=enseignement:dbdm:dbdm-02.pdf

http://liris.cnrs.fr/ecoquery/dokuwiki/lib/exe/fetch.php?media=enseignement:dbdm:dbdm-02.pdf

Exercise 6 open questions
1. Explain why the set {n− 1→ n, n− 2→ n− 1, . . . , 0→ 1} is “interesting” when evaluating the

closure algorithms.
2. Detail your experimental setup and methodology.
3. Analyze your experimental results.

4 Normalization
Algorithm 3: Minimize(F)

Data: F a set of FDs
Result: G a minimal (in cardinality) cover of F

1 G := ∅
2 for X → Y ∈ F do
3 G := G ∪ {X → X+};
4 for X → X+ ∈ G do
5 if G \ {X → X+} ` X → X+ then
6 G := G \ {X → X+};

7 return G;

Algorithm 4: Reduce(F)
Data: F a set of FDs
Result: G a cover of F with reduced left-hand sides

1 Min := F
2 for X → Y ∈Min do
3 W := Y
4 for A ∈ Y do
5 G := (Min− {X → Y }) ∪ {X → (W −A)}
6 if G |= X → Y then
7 W := W − {A};

8 Min := (Min− {X → Y }) ∪ {X →W};
9 return Min;

Algorithm 5: Decompose(Σ, U)
1 F := Reduce(Minimize(Σ))
2 R = {U};

/* While Σ not in Boyce-Codd Normal Form */
3 while (∃R ∈ R.¬BCNF (R)) do

/* Find a non-trivial non-key FD */
4 let X → Y ∈ F with Y 6⊆ X and F 6|= X → U ;

/* Replace R by R1 = X+ and R2 = (R \X+) ∪X */
5 R := R \ {R} ∪ {X+, (R \X+) ∪X};
6 return R

Exercise 7 decomposition
The decomposition pipeline is given by Algorithm 5. It uses two subroutines Algorithm 3 and

Algorithm 4. The function Reduce ◦Minimize is said to normalize a set of FDs.
1. Implement a tool function that checks if Σ |= X → Y by testing if Y ⊆ Closure(Σ, X) or

Y ⊆ Closure′(Σ, X).

2. Implement the -normalize command-line option that runs Algorithms 3 and 4. Mind that the
set of FDs is modified along the process, so be careful when using Algorithm 2.

3. Implement a tool Schema(Σ) function that gather all attributes that appears in a set of FDs, for
instance Schema({AB → C, D → C}) = ABCD.

4. Implements a tool function that given a set of FDs Σ and a set of attributes X checks if X is
a key of Schema(Σ). Use this function to implement the BCNF test that appears at Line 3 of
Algorithm 5.

5. Implement the -decompose command-line option that computes Decompose(Σ, Schema(Σ))

Figure 1: Sample experimental evaluation

	1 Introduction
	1.1 Delivery
	1.2 Main Program

	2 Closure algorithms for functional dependencies
	2.1 Basic Data Structure
	2.2 Closure algorithms

	3 Experimental Comparison
	4 Normalization

