
CAIR-EXP: speci�cations
Version 2.0

Ineui Hong, Eunhye Kim, Ugo Comignani

Supervised by :

Mohand-Said Hacid
Ra�qul Haque

October 27, 2015



Version Date Modi�cation

1.0 October 20, 2015 initial version
2.0 October 22, 2015 phase 2 added
3.0 October 27, 2015 Informations about completion of the tasks added

1



1 Context

This project lies in the context of the semantic web. With the rapid increase of
RDF data sources and their ever-growing size, it is important to query disjoint
sources more e�ciently. One way to achieve this goal is to split the query into
smallest sub-queries which are dispatched locally to job nodes. This allows to
delegate the jobs of querying the RDF endpoints to the job nodes.

The basis of this project is a software called iSeeker, which permits to query
multiple endpoints with the Sparql language. Given a query as input, iSeeker
parses and splits it to create one sub-query for each predicate for that input
query. Then, these sub-queries are dispatched to the job nodes. When job
nodes receive responses from the endpoints, they reduces them before sending
the �nal outcome to the preprocessing node. Finally, the preprocessing node
present the answer of the query.

In this context, the goal of this project is to implement iSeeker using new
methods to split the query and aggregate the results. Since this is a research
oriented of project, only the �rst phases project are known.

2 Tools and methods

The languages used are java and sparql for the back-end, and javascript for the
front-end part.

To deploy the system, three VM will be used (one for the preprocessing node,
the others for the job nodes).

In order to follow the instruction of the supervisors, each member of the
team is assigned to one task of the current phase. The V-model is used during
each phase.

3 Planning

3.1 Phase 1

This phase was �nished during the �rst week. The basis implementation of the
interface was received in the middle of the rush week, bringing some delay in
the connection between iSeeker's new functionalities and the new interface.

3.1.1 task 1

Implementing an automatic annotation process to create bitset which represent,
for each predicate, their availability in the endpoints.
Assigned to Eunhye KIM.

3.1.2 task 2

Implementing a hierarchical clustering algorithm to cluster the predicates ac-
cording to their availability in the endpoints.
Assigned to Ugo COMIGNANI.

2



3.1.3 task 3

Implementing a web based interface in JavaScript to allow the users to submit
their queries to the system.
Assigned to Ineui HONG.

3.2 Phase 2

For now, only task 1 has been begun (≈ 30% of completetion).

3.2.1 task 1

Implementing a query planner. This component needs to plan the queries so
that the communications between preprocessing node, job nodes and sources
nodes will be optimized.
Assigned to Ugo COMIGNANI.

3.2.2 task 2

Implementing a query dispatcher to dispatch the sub-queries to the job nodes.
This query planner is deployed in the preprocessing node.
Assigned to Eunhye KIM.

3.2.3 task 3

Implementing a query aggregator to aggregate the result returned by the sources.
The aggregator must underlie a very e�cient algorithm and technique so that
the aggregation time is optimized.
Assigned to Ineui HONG.

3


