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Abstract

Graph packing generally considers unlabeled graphs. In this paper, we introduce a
new variant of the graph packing problem, called the labeled packing of graphs. In
particular, we present some results and conjectures about cycles.
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1 Introduction and definitions

All graphs considered in this paper are finite undirected graphs without loops
or multiple edges. For a graph G = (V,E), we use V (G), E(G) to denote
its vertex and edge sets, respectively. Given V ′ ⊆ V , the subgraph G[V ′] =
(V ′, E ′) denotes the subgraph of G induced by V ′, i.e., E ′ contains all the
edges of E which have both end vertices in V ′. If a graph G has order n and
size m, we say that G is an (n,m)-graph. An independent set of G is a subset
of nodes X ⊆ V , such that no two nodes in X are adjacent. An independent
set is maximal if no node can be added without violating independence. An
independent set of maximum cardinality is called maximum independent set.
For undefined terms, we refer the reader to [2].
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A permutation σ is a one-to-one mapping of a set S into itself. We say that an
element e of S is a fixed point of a permutation σ if σ(e) = e. LetG1, G2, . . . , Gk

be k graphs of order n. We say that there is a packing of G1, . . . , Gk (into
the complete graph Kn) if there exist permutations σi : V (Gi) −→ V (Kn),
i = 1, . . . , k, such that σ∗

i (E(Gi)) ∩ σ∗
j (E(Gj)) = ∅ for i 6= j, where the

mapping σ∗
i : E(Gi) −→ E(Kn) is the one induced by σi. A packing of k

copies of a graph G will be called a k-placement of G. A packing of two copies
of G (i.e., a 2-placement) is called an embedding of G (into its complement
G). In other words, an embedding of a graph G is a permutation σ on V (G)
such that if an edge vu belongs to E(G) then σ(v)σ(u) does not belong to
E(G). If there exists an embedding of G we say that G is embeddable.

Graph packing is a well known field of graph theory that has been considerably
investigated in the literature. In 1978, Bollobás and Eldridge [1] made the
following conjecture about the existence of a k-packing for graphs of small size,
which is widely considered to be one of the most important open problems in
graph packing theory.

Conjecture 1 (Bollobás and Eldridge [1]) Let G1, . . . , Gk be k graphs of
order n. If |E(Gi)| ≤ n − k, i = 1, 2 . . . k, then G1, . . . , Gk are packable into
Kn.

The cases k = 2 and k = 3 of this conjecture were proved in [13] and [11],
respectively (the case k = 2 was proved also in [1], independently). That only
two cases are solved shows the hardness of this problem. The following theorem
gives a general result about embedding of (n, n− 1)-graphs.

Theorem 2 (Burns and Schuster [3]) Let G = (V,E) be a graph of order
n. If |E(G)| ≤ n − 1 then either G is embeddable or G is isomorphic to one
of the following graphs: K1,n−1, K1,n−4 ∪K3 with n ≥ 8, K1 ∪K3, K2 ∪K3,
K1 ∪ 2K3, K1 ∪ C4.

A similar result about embeddings of (n, n)-graphs is proved in [5]. Recently,
Żak [18] studied the packing problem for all k and proved the following result.

Theorem 3 (Żak [18]) Let k be a positive integer and G be a graph of order
n ≥ 2(k − 1)3. If |E(G)| ≤ n− 2(k − 1)3, then G is k-placeable.

The graph packing theory also investigates two important directions concern-
ing graphs with bounded maximum degree and bounded girth. The two main
conjectures in this area were posed by Bollobás and Eldridge [1] (and inde-
pendently by Catlin [4]) and Faudree et al. [5], respectively.

Conjecture 4 (Bollobás and Eldridge [1], Catlin [4]) Let G1 and G2 be
two graphs of order n with maximum degrees 41 and 42. If (41+1)(42+1) ≤
n+ 1, then there is a packing of G1 and G2.
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Conjecture 5 (Faudree, Rousseau, Schelp and Schuster [5]) If a graph
G is a non-star graph without cycles of length m ≤ 4, then G is embeddable.

Some significant progress related to Conjecture 4 and Conjecture 5 has recently
been obtained in [6,8,9].

When considering the placement of specific families of graphs such as trees,
important results have been found for the placement of two and three copies
of a given tree (see [10,12,14]). An overview of graph packing can be found
in the survey papers of Woźniak [16] and Yap [17]. However, the majority
of existing works focuses on unlabeled graphs. In this paper, we study the
packing problem for a vertex labeled graph. To the best of our knowledge,
this variant has not been studied so far. Here is the definition of this new
packing problem.

Definition 1 Let p be an integer greater than one and let G1, G2, . . . , Gk be k
copies of a graph G = (V,E). Let f be a mapping from V (G) to the set of labels
{1, 2, . . . , p}. The mapping f is called a p-labeled packing of k copies of G into
Kn if there exist permutations σi : V (Gi) −→ V (Kn), where i = 1, . . . , k, such
that:

(1) σ∗
i (E(Gi)) ∩ σ∗

j (E(Gj)) = ∅ for all i 6= j.
(2) for every vertex v of G, we have f(v)=f(σ1(v))=f(σ2(v)) · · ·=f(σk(v)).

For example, the following figure presents a 5-labeled packing of two copies of
C4 ∪ P3, where the dotted edges represent the second copie of C3 ∪ P3.

Figure 1. A 5-labeled packing of two copies of C4 ∪ P3.

From the previous definition, we define our packing parameter as follows: the
maximum positive integer p for which G admits a p-labeled packing of k copies
of G is called the k-labeled packing number of G and is denoted by λk(G).

Naturally, the existence of a packing of k copies of a graph G is a necessary
condition for the existence of a p-labeled packing of k copies ofG (where p ≥ 1).
Indeed, it suffices to choose the mapping f : V (G) −→ {1}. Throughout this
paper, a labeled packing of two copies of G will be called a labeled embedding
of G.

Let G be a graph of order n and f be a mapping from V (G) to {1, 2, . . . , p}.
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We define S(f) as the subset of labels that occur only once in f(V (G)) and let
VS(f) consist of the vertices colored with the labels of S(f). Thus it is obvious
that |VS(f)| = |S(f)|.

The following lemma gives an upper bound on the labeled embedding number
λ2(G).

Lemma 6 Let G be a graph of order n and let I be a maximum independent
set of G. If there exists an embedding of G, then

λ2(G) ≤ |I|+ bn− |I|
2

c

Proof. Let f be a mapping from V (G) to {1, 2 . . . , p} corresponding to a
p-labeled embedding of G with p maximum, (i.e., p = λ2(G)). A necessary
condition for the existence of a p-labeled embedding of G is that for every two
adjacent vertices of G, one of their labels must occur at least twice in f(V (G)).
Hence, it is easy to see that all vertices of VS(f) form an independent set in G.

Then, we have |VS(f)| ≤ |I| and p ≤ |VS(f)|+bn−|VS(f)|
2

c. Since g(x) = x+bn−x
2
c

is an increasing function of x, it follows that p ≤ |I|+bn−|I|
2

c, giving the desired
result. �

It is clear that any labeled embedding construction (the labeling function f
and the permutation σ) that achieves the upper bound of Lemma 6 must
consider the vertices of VS(f) as fixed-points under the permutation σ, which

then requires to define a b |V (G)\VS(f)|
2

c-labeled embedding without fixed points
for the subgraph induced by the set of vertices V (G)\VS(f). For example, let us
consider the caterpillar T of Figure 2(a). From Lemma 6, we have λ2(T ) ≤ 10.
This upper bound can be reached by finding a 3-labeled embedding without
fixed points for the central path of T (Figure 2(b)).

(a) (b)

Figure 2. (a) A caterpillar T , (b) A 10-labeled embedding of T

Any permutation σ of a finite set can be written as the disjoint union of cycles
(two cycles are disjoint if they do not have any common element). Here, a cycle
(a1, a2, . . . , an) is a permutation sending ai to ai+1 for 1 ≤ i ≤ n− 1 and an to
a1. This representation is called the cyclic decomposition of σ and is denoted
by C(σ). In this context, the cycles of length one correspond to fixed points of
σ. For example, the cyclic decomposition of the permutation induced by the
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labeled embedding of T (in Figure 2) is: {(v1), (v2), (v3), (v4), (v5), (v6), (v7),
(v8, v10), (v9, v12), (v11, v13)}.

We now explain a fundamental congruence relation between the labeled em-
bedding number and the permutation structure. For any labeled embedding of
a graph G induced by a permutation σ, we can easily see that the vertices of
every cycle of C(σ) share the same label. Hence, we can say that the labeled
embedding number of G denotes the maximum number of cycles induced by
a permutation of G.

As we have seen previously, the packing graph is very hard problem; only some
particular results are known for graphs of small size ((n, n− q) graphs where
q ≥ 0). Two studies are possible for the labeled graph packing problem: (i)
packing important number of sample graphs (or copies of a given graph) in
a complete graph; or (ii) packing a fixed number (usually two) of non trivial
graph in a complete graph. For the first study of labeled packing of graphs, we
opt for the first possibility. We will give some results concerning the labeled
packing number of k copies of cycles (where k ≥ 2).

Given a graph G, the generalization of Lemma 6 for any k is not natural. Yet,
it becomes easier when G is a cycle. We know that any complete graph Kn

can be decomposed into n−1
2

Hamilton cycles if n is odd and n−2
2

Hamilton
cycles plus a perfect matching if n is even (see [7]). Thus, Cn cannot admit a
packing of k copies in Kn if n ≤ 2k.

Lemma 7 For every cycle Cn of order n ≥ 2k + 1, we have

λk(Cn) ≤ bn
2
c+ b

n− bn
2
c

k
c

Proof. Let f be a mapping from V (G) to {1, 2, . . . , p} corresponding to a
p-labeled packing of k copies of Cn with p maximum. Let us introduce the
following notation: for a subset S of vertices of G, we denote by N(S) the set
of vertices of G \ S adjacent to at least one vertex of S. Then, two necessary
conditions for the existence of p-labeled packing of k copies of Cn are that:

(1) the labels of N(VS(f)) must occur at least k times in f(V (Cn)).
(2) the labels of V \ (VS(f)∪N(VS(f))) must occur at least twice in f(V (Cn)).

Hence, we have

p = |VS(f)|+ b
|N(VS(f))|

k
c+ b

n− |VS(f)| − |N(VS(f))|
2

c

We can see that,
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|VS(f)| ≤ |N(VS(f))| ≤ 2|VS(f)|

We consider now that |N(VS(f))| = |VS(f)| + x, where 0 ≤ x ≤ |VS(f)|. Then,
we have

p = b
|VS(f)|+ x

k
c+ bn− x

2
c

Since k ≥ 2, the maximum value of p is obtained when |VS(f)| is at a maximum
and x is at a minimum, i.e., |VS(f)| = bn

2
c and x = 0. Hence, we obtain that

p = n
2
+ b n

2k
c, giving the desired result. �

The rest of this paper is organized in three sections as follows: in Section 2, we
show the exact value of λk(Cn) for n ≥ 4k. Section 3 presents a conjecture for
the cycles of order at most 4k − 1 and we will prove this conjecture for some
particular cases. Finally, we conclude the paper by summarizing our results.

2 Labeled-packing of cycles of order at least 4k

In this section, we show the exact value of the labeled packing number of k
copies of cycles of order n ≥ 4k. It is done by proving that the upper bound
of Lemma 7 is reached for all n 6= 4k + x, where k > 2 and x = 2 (mod) 4.

Theorem 8 For every cycle Cn of order n = 2km + x, where k,m ≥ 2 and
x < 2k, we have

λk(Cn) =


n
2
+ 1 if (x mod 4,m) = (2, 2) and k > 2.

bn
2
c+m+ 1 if x = 2k − 1.

bn
2
c+m otherwise.

Proof. Several cases are considered in this proof according to the values of x
and m. In the following figure, we outline the general scheme of our proof.

Case 1 : x 6= 2 (mod) 4. Let Cn = (v1, v2, . . . , vn) be a cycle of order n, where

n ≥ 4k. From Lemma 7, we have λk(Cn) ≤ bn
2
c + bn−bn

2
c

k
c, it then suffices to

prove that Cn admits a (bn
2
c+ bn−bn

2
c

k
c)-labeled packing of k copies. In order

to simplify our proof, we consider three subcases according to the values of m
and x as follows:
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Figure 3. Proof structure.

Subcase 1.1: x = 0 (mod) 2m. Let B = {b0, b1, . . . , bp−1} be a partition of
V (Cn) into p sets, where all sets bi of B have the same cardinalty 2m. Then, we
have p = k+ x

2m
such that for 0 ≤ i ≤ p−1, bi = {vi1, vi2, . . . , vi2m}, where vij =

v2im+j. These notations are illustrated in the example of Figure 4, where
n = 16 and k = 3.

Figure 4. Partition of V (C16) for k = 3.

A mapping f from V (Cn) to {1, 2, . . . , bn
2
c+m} is now defined as follows: for

every set bi in B, let

f(vi2j+1) = im+ j + 1 for 0 ≤ j ≤ m− 1.

f(vi2j) =
n
2
+ j for 1 ≤ j ≤ m.

Let σ0(Cn), σ
1(Cn), σ

2(Cn), . . . , σ
k−1(Cn) be a packing of k copies of Cn into

Kn under the permutations σ0, σ1, . . . , σk−1, respectively, where for 0 ≤ t ≤
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k − 1,

σt(vi2j+1) = vi2j+1 for all (i, j) satisfying 0 ≤ i ≤ p− 1 and 0 ≤ j ≤ m− 1.

σt(vi2j) = v
(i+t) mod p
2j for all (i, j) satisfying 0 ≤ i ≤ p− 1 and 1 ≤ j ≤ m.

Figure 5 presents a 10-labeled-packing of three copies of C16.

(a) (b)

Figure 5. A 10-labeled-packing of three copies of C16: (a) σ
1(C16), (b) σ

2(C16).

From the set of permutations, we can easily see that for every vertex vi in
V (Cn), we have f(vi) = f(σ1(vi)) = f(σ2(vi)) = · · · = f(σk−1(vi)). It then re-
mains to show that the set of cycles σ0(Cn) = Cn, σ

1(Cn), σ
2(Cn) . . . , σ

k−1(Cn)
are edge-disjoint intoKn. To prove this, it suffices to show that for every vertex
vi of V (Cn), we have:

For 0 ≤ t 6= l ≤ k − 1, if σt(vi) = σl(vi), then σt(vi+1) and σt(vi−1) must be
different from both σl(vi+1) and σl(vi−1).

From the set of permutations, we can observe that for every two distinct
integers l, t ∈ {0, 1, . . . , k − 1} and for every set bi of B, we have σl(vi2j+1) =
σt(vi2j+1) = vi2j+1, where 0 ≤ j ≤ m−1. Then for every set bi of B, we consider
two cases according to whether j 6= 1 or j = 1.

(1) for j = 3, 5 . . . 2m−1, we have σl(vij+1), σ
l(vij−1) ∈ b(l+i) mod p and σt(vij+1),

σt(vij−1) ∈ b(t+i) mod p. It follows that (l + i) mod p 6= (t+ i) mod p 6= i.

(2) for j = 1, we can easily see that σl(vi2) and σl(vi−1
2m ) are both different

from σt(vi2) and σt(vi−1
2m ).

Hence, according to the two previous observations, we can see that Cn, σ
1(Cn),

σ2(Cn), . . . , σ
k−1(Cn) are k pairwise edge-disjoint cycles, thus the mapping f

is a (bn
2
c+m)-labeled-packing of k copies of Cn.

Subcase 1.2: x = 2k − 1. In this case, the partition B = {b0, b1, . . . , bk−1} of
V (Cn) is defined as follows: for 0 ≤ i ≤ k − 2, bi = {vi1, vi2, . . . , vi2(m+1)} and
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bk−1 = {vk−1
1 , vk−1

2 , . . ., vk−1
2m+1}, where vij = v2i(m+1)+j.

A mapping f from V (Cn) to {1, 2, . . . , bn
2
c+m+1} is now defined as follows:

for every set bi in B, let

f(vi2j+1) = i(m+ 1) + j + 1 for 0 ≤ j ≤ m and (i, j) 6= (k − 1,m).

f(vk−1
2m+1) =

n−1
2

+m+ 1.

f(vi2j) =
n−1
2

+ j for 1 ≤ j ≤ m+ 1 and (i, j) 6= (k − 1,m+ 1).

Let σ0(Cn), σ1(Cn), . . . , σ
k−1(Cn) be a packing of k copies of Cn into Kn

under the permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and
for 1 ≤ t ≤ k − 1, let

σt(vi2j+1) = vi2j+1 for all (i, j) satisfying 0 ≤ i ≤ k − 1, 0 ≤ j ≤ m

and (i, j) 6= (k − 1,m).

σt(vi2j) = v
(i+t) mod k
2j for all (i, j) satisfying 0 ≤ i ≤ k − 1, 1 ≤ j ≤ m+ 1

and (i, j) 6= (k − t− 1,m+ 1).

σt(vk−1
2m+1) = vt−1

2m+2.

σt(vk−t−1
2m+2 ) = vk−1

2m+1 = vn.

Figure 6 shows a 11-labeled-packing of three copies of C17.

(a) (b)

Figure 6. A 11-labeled-packing of three copies of C17: (a) σ
1(C17), (b) σ

2(C17).

Using the same proof as in Subcase 1.1, we can show that the mapping f is a
(bn

2
c+m+ 1)-labeled-packing of k copies of Cn.

Subcase 1.3: x = 0 (mod) 2m and x 6= 2k − 1. Let B = {b0, b1, . . . , bp−1} be
a partition of V (Cn) into p = k + d x

2m
e sets such that for 0 ≤ i ≤ p− 2, bi =

{vi1, vi2, . . . , vi2m} and bp−1 = {vp−1
1 , vp−1

2 , . . . , vp−1
x mod 2m}, where vij = v2im+j. We

let r = x mod 2m.
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A mapping f from V (Cn) to {1, 2, . . . , bn
2
c+m} is defined as follows:

f(vi2j+1) = im+ j + 1 for all (i, j) satisfying 0 ≤ i ≤ p− 2, 0 ≤ j ≤ m− 1.

f(vi2j) = bn
2
c+ j for all (i, j) satisfying 0 ≤ i ≤ p− 2, 1 ≤ j ≤ m.

f(vp−1
2j+1) = (p− 1)m+ j + 1 for 0 ≤ j ≤ d r−1

2
e − 1.

f(vp−1
2j ) = bn

2
c+ j for 1 ≤ j ≤ b r−1

2
c.

f(vp−1
r ) = bn

2
c+m.

Let σ0(Cn), σ1(Cn), . . . , σ
k−1(Cn) be a packing of k copies of Cn into Kn

under the permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and
for 1 ≤ t ≤ k − 1, let

σt(vi2j+1) = vi2j+1 for all (i, j), 0 ≤ i ≤ p− 2 and 0 ≤ j ≤ m− 1.

σt(vi2j) = v
(i+t) mod p
2j for all (i, j), 0 ≤ i ≤ p− 2 and 1 ≤ j ≤ b r−1

2
c.

σt(vi2j) = v
(i+t) mod (p−1)
2j for all (i, j), 0 ≤ i ≤ p− 2 and b r−1

2
c+ 1 ≤ j ≤ m− 1.

σt(vi2m) = v
(i+t) mod p
2m for 0 ≤ i 6= p− t− 1 ≤ p− 2.

σt(vp−t−1
2m ) = vp−1

r = vn.

σt(vp−1
2j+1) = vp−1

2j+1 for 0 ≤ j ≤ d r−1
2
e − 1.

σt(vp−1
2j ) = vt−1

2j for 1 ≤ j ≤ b r−1
2
c.

σt(vp−1
r ) = vt−1

2m .

Figure 7 shows a 9-labeled-packing of three copies of C15.

(a) (b)

Figure 7. A 9-labeled-packing of three copies of C15: (a) σ
1(C15), (b) σ

2(C15).

Using the same proof as in Subcase 1.1, we can show that the mapping f is a
(bn

2
c+m)-labeled-packing of k copies of Cn.
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Case 2: x = 2 (mod) 4. We consider three subcases according to the value of
k and m as follows:
Subcase 2.1: k > 2 and m = 2. We first prove that λk(C4k+x) <

n
2
+2. From

Lemma 7, it follows that the value n
2
+2 is an upper bound of λk(C4k+x). We as-

sume that there exists a mapping f : V (C4k+x) −→ L = {1, 2, . . . , n
2
+2} which

is a (n
2
+2)-labeled-packing of C4k+x. Let σ

0(C4k+x), σ
1(C4k+x), . . . , σ

k−1(C4k+x)
be a packing of k copies of C4k+x intoK4k+x under the permutations σ0, σ1, . . . ,
σk−1, respectively. We know that the vertices colored with the labels of Sf form
an independent set in C4k+x (implying that |Sf | ≤ n

2
). We consider two cases

according to the cardinality of Sf as follows:

(a): |Sf | < n
2
. From Lemma 7, 2k + x

2
+ 2 is an upper bound for λk(C4k+x).

Using the same neccesary conditions defined in the proof of Theorem 7, we
can derive the following equation (we recall that N(VS(f)) is the set of vertices
of C4k+x \ VS(f) adjacent to at least one vertex of VS(f)).

2k+
x

2
+2 = max{b

|VS(f)|+ y

k
c+bn− y

2
c, 0 ≤ |VS(f)| ≤ bn

2
c−1, 1 ≤ y ≤ |VS(f)|}

Since k ≥ 2, the maximum of the second term of the inequality is obtained
when |VS(f)| is at a maximum and y is at a minimum, i.e., |VS(f)| = bn

2
c − 1

and y = 1. Hence, we obtain that

2k +
x

2
+ 2 = b

bn
2
c

k
c+ bn− 1

2
c

From hypothesis, we have n = 4k + x is even and x < 2k, then

2k +
x

2
+ 2 ≤ 2 + bn

2
c − 1 = 2k +

x

2
+ 1

Hence, this leads to a contradiction for |Sf | < n
2
.

(b): |Sf | = n
2
. It means that the vertices colored with the labels of Sf form

a maximum independent set in C4k+x. Then the two labels of L \ Sf are
attributed to the remaining vertices such that each label occurs at least k
times. With this labeling scheme, there exist necessarily three vertices vi−1, vi
and vi+1 such that f(vi) ∈ Sf and f(vi−1), f(vi+1) = c ∈ L \ Sf . This requires
that the label c must occur at least 2k times in C4k+x, yielding a contradiction.
Hence λk(C4k+x) <

n
2
+ 2.

We now prove that λk(C4k+x) =
n
2
+ 1. Let f be the mapping from V (Cn) to
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{1, 2, . . . , n
2
+ 1} defined as follows:

f(v2j+1) = j + 1 for j = 0, 1, . . . , n
2
− 1.

f(v2j) =
n
2
+ 1 for j = 1, 2 . . . , n

2
.

Let σ0(Cn), σ1(Cn), . . . , σ
k−1(Cn) be a packing of k copies of Cn into Kn

under the permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and
for 1 ≤ t ≤ k − 1:

σt(v2j+1) = v2j+1 for j = 0, 1, . . . , n
2
− 1.

σt(v2j) = v2(j+2t) mod n for j = 1, 2 . . . , n
2
.

According to this scheme, Figure 8 presents a 8-labeled-packing of three copies
of C14.

(a) (b)

Figure 8. A 8-labeled-packing of three copies of C14: (a) σ
1(C14), (b) σ

2(C14).

Subcase 2.2: (k,m) = (2, 2). From Lemma 7, we have λ2(C10) ≤ 7. Figure 9
gives a 7-labeled-embedding of C10.

Figure 9. A 7-labeled-embedding of C10
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Subcase 2.3: m ≥ 3

Let B = {b0, b1, . . . , bp−1} be a partition of V (Cn) \ {vn−1, vn} into p sets,
where all sets bi of B have the same cardinalty 2m. Then, we have p = k+ x

2m

such that for 0 ≤ i ≤ p− 1, bi = {vi1, vi2, . . . , vi2m}, where vij = v2im+j.

A mapping f from V (Cn) to {1, 2, . . . , bn
2
c+m} is defined as follows: for every

set bi in B, let

f(vi2j+1) = im+ j + 1 for 0 ≤ j ≤ m− 1.

f(vi2j) =
n
2
+ j for 1 ≤ j ≤ m.

f(vn−1) =
n
2
.

f(vn) =
n
2
+m− 1.

Let σ0(Cn), σ1(Cn), . . . , σ
k−1(Cn) be a packing of k copies of Cn into Kn

under the permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and
for 1 ≤ t ≤ p− 1:

σt(vi2j+1) = vi2j+1 for all (i, j) satisfying 0 ≤ i ≤ p− 1, 0 ≤ j ≤ m− 1.

σt(vi2j) = v
(i+t) mod p
2j for all (i, j) satisfying 0 ≤ i ≤ p− 1, 1 ≤ j ≤ m

and j 6= m− 1.

σt(vi2m−2) = v
(i+t) mod (p+1)
2m−2 for 0 ≤ i ≤ p− 1 and i 6= p− t.

σt(vp−t
2m−2) = vn.

σt(vn−1) = vn−1.

σt(vn) = vt−1
2m−2.

Using the same proof as in Subcase 1.1, we can show that the mapping f is a
(bn

2
c+m)-labeled-packing of k copies of Cn.

To illustrate this case, Figure 10 presents a 13-labeled-packing of three copies
of C20. �

3 Labeled packing of cycles of order at most 4k − 1

In the case where n is relatively small compared to k, some additional diffi-
culties arise naturally, and λk(Cn) has to be estimated differently. We know
that any complete graph Kn can be decomposed into n−1

2
Hamilton cycles if

13



(a) (b)

Figure 10. A 13-labeled-packing of three copies of C20: (a) σ
1(C20), (b) σ

2(C20).

n is odd and n−2
2

Hamilton cycles plus a perfect matching if n is even. Thus,
Cn cannot admit a packing of k copies if n ≤ 2k. After much work, we raise
the following conjecture.

Conjecture 9 For every cycle Cn of order n = 2k + x, where k ≥ 2 and
1 ≤ x ≤ 2k − 1,

λk(Cn) =

2 if x = 1 and k is even.

x+ 2 otherwise .

This conjecture asserts that the upper bound of Lemma 7 is reached for all
n = 4k−1, 4k−2 and 4k−3, where (k, n) 6= (2, 5). We report in the following
the results of our attempt to give some support to Conjecture 9 for some
particular cases.

Theorem 10 For every cycle Cn of order n = 2k+ x, where k ≥ 2, 2k− 3 ≤
x ≤ 2k − 1 and (k, n) 6= (2, 5), we have

λk(Cn) = x+ 2

Proof. Let Cn = (v1, v2, . . . , vn) be a cycle of order n = 2k+x, where 2k−3 ≤
x ≤ 2k−1 and (k, n) 6= (2, 5). We know that a maximum independent set of Cn

has size bn
2
c. Then, from Lemma 7, we have λk(Cn) ≤ bn

2
c+ bn−bn

2
c

k
c = x+ 2,

it then suffices to prove that Cn admits a (x+ 2)-labeled packing of k copies.
In what follows, we give the proof only for the case x = 2k−1, since the proofs
of the other cases are similar.

Assume that x = 2k − 1 and let B = {b0, b1, . . . , bk−1} be a partition of
V (Cn) into k sets, such that for 0 ≤ i ≤ k − 2, bi = {vi1, vi2, vi3, vi4}, and

14



bk−1 = {vk−1
1 , vk−1

2 , vk−1
3 }, where vij = v4i+j.

A mapping f from V (Cn) to {1, 2, . . . , 2k + 1} is defined as follows:

f(vi2j+1) = 2i+ j + 1 for all (i, j) where 0 ≤ j ≤ 1, 0 ≤ i ≤ k − 2.

f(vi2) = 2k for 0 ≤ i ≤ k − 2.

f(vi4) = 2k + 1 for 0 ≤ i ≤ k − 2.

f(vk−1
1 ) = 2k − 1.

f(vk−1
2 ) = 2k.

f(vk−1
3 ) = 2k + 1.

Let σ0(Cn), σ1(Cn), . . . , σ
k−1(Cn) be a packing of k copies of Cn into Kn

under the permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and
for 1 ≤ t ≤ k − 1, let

σt(vi2j+1) = vi2j+1 for all (i, j) satisfying 0 ≤ i ≤ k − 2, 0 ≤ j ≤ 1.

σt(vi2j) = v
(i+t) mod k
2j for all (i, j) satisfying 0 ≤ i ≤ k − 2, 1 ≤ j ≤ 2.

and (i, j) 6= (k − t− 1, 2).

σt(vk−t−1
4 ) = v

(k−1)
3 .

σt(vk−1
1 ) = v

(k−1)
1 .

σt(vk−1
2 ) = v

(t−1)
2 .

σt(vk−1
3 ) = v

(t−1)
4 .

Figure 11 presents a 7-labeled packing of three copies of C11. �

(a) (b)

Figure 11. A 7-labeled packing of three copies of C11: (a) σ
1(C11), (b) σ

2(C11).
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We now present our results concerning the cycles of order 2k + 1 and 2k + 2.

Theorem 11 For every prime number k > 2, we have λk(C2k+1) < 4.

Proof. Let C2k+1 = (v1, v2, . . . , v2k+1, v2k+1 = v1). We assume that there ex-
ists a mapping f : V (C2k+1) −→ L = {1, 2, 3, 4} which is a 4-labeled packing
of C2k+1. Let σ

0(C2k+1), σ
1(C2k+1), . . . , σ

k−1(C2k+1) be a packing of k copies
of C2k+1 into K2k+1 under the permutations σ0, σ1, . . . , σk−1, respectively. We
consider two cases according to the cardinality of Sf (which is defined in Sec-
tion 1).

Case 1. |Sf | = 0. In this case, each label occurs at least twice in f(V (Cn)). Let
us introduce the following notation: for every label i of L, let Vi be the subset of
vertices with color i. We know that σ0(C2k+1)∪σ1(C2k+1)∪· · ·∪σk−1(C2k+1) =
K2k+1. We know that all vertices of the complete graph are neighbors. Then,
for every label i of L, the number of edges in the subgraph of K2k+1 induced
by the set Vi is

|Vi|(|Vi|−1)
2

. Then, for every cycle σi(C2k+1) of the packing, we

must have exactly |Vi|(|Vi|−1)
2k

= pi edges between the vertices colored with i
in the cycle σi(C2k+1). Hence, the following system of equations must have at
least one solution.

|Vi|(|Vi| − 1) = 2kpi for 1 ≤ i ≤ 4 (1)

|V1|+ |V2|+ |V3|+ |V4| = 2k + 1 (2)

Since k is prime, equation (1) has a solution if and only if |Vi| or |Vi| − 1 are
multiples of k (where 1 ≤ i ≤ 4) since k is prime. Then we have |V1|+ |V2|+
|V3|+ |V4| > 2k + 1, therefore this system of equations has no solution which
is a contradiction for k > 2.

Case 2. |Sf | ≥ 1. Let vi be any vertex of VS(f). Then we consider two cases
according to the labels of the neighbors vertices of vi.

Subcase 1. f(vi−1) = f(vi+1) = c. In this case, we must have at least 2k
vertices colored with c. This requires at least 2k + 3 vertices in C2k+1, which
is a contradiction.

Subcase 2. f(vi−1) 6= f(vi+1). From hypothesis, each of the two labels f(vi−1)
and f(vi+1) must occur at least k times. This requires at least 2k + 2 vertices
in C2k+1. Hence, we also reached a contradiction and the theorem is proved.
�

In the rest of this section, we show a new upper bound for the labeled packing
number of some particular cases of C2k+1 and C2k+2. Using the same proof as
in the above theorem, we can obtain the following results.
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Theorem 12 For every even number k ≥ 2, where k is a power of 2, we have
λk(C2k+1) = 2.

Proof. Let C2k+1 = v1, v2, . . . , v2k+1, v2k+2 = v1. We first prove that λk(C2k+1) <
3. We assume that there exists a mapping f : V (C2k+1) −→ L = {1, 2, 3} which
is 3-labeled-packing of C2k+1. Let σ

1(Cn), σ
2(Cn), . . . , σ

k(Ck) be a packing of
k copies of Cn into Kn under the permutations σ1, σ2, . . . , σk, respectively. We
consider two cases according to the cardinality of Sf .

Case 1. |Sf | = 0. Using exactly the same techniques as in the proof of
Theorem 11 (Case 1), we can show that λk(C2k+1) < 3.

Case 2. |Sf | > 1. Let vi be a vertex of Sf . Then we consider two subcases
according to the labels of the neighboring vertices of vi.

Subcase 1. f(vi−1) = f(vi+1) = c. From hypothesis, we must have at least 2k
vertices colored with c. This requires at least 2k + 2 vertices in C2k+1, which
is a contradiction.

Subcase 2. f(vi−1) 6= f(vi+1). Let Sf = {1}. In this case, it is clear that
we cannot construct a 3-labeled-packing of Cn if we use a labeling function
different than the one with the following labeling scheme:

(1) one vertex is colored with 1.
(2) k vertices are colored with 2.
(3) k vertices are colored with 3.

We know that σ1(C2k+1) ∪ σ2(C2k+1) ∪ · · · ∪ σk(C2k+1) = K2k+1. As on the
complete graph all vertices are neighbors, the number of edges in the subgraph
of Kk induced by V2 or V3 is k(k−1)

2
. Then, for every cycle σi(C2k+1) of the

packing, we must have exactly k−1
2

edges in the subgraph of σi(C2k+1) induced
by V2 or V3, which is a contradiction since k is even.

Since we get a contradiction in both cases, we conclude that λk(C2k+1) ≤ 2.
It then remains to show that λk(C2k+1) = 2. This can be can be easily proved
using the following labeling scheme : f(v1) = 1 and f(vi) = 2 for 2 ≤ i ≤ 2k+2.

�

Theorem 13 For every even number k ≥ 2, we have λk(C2k+2) < 5.

Proof. Let C2k+1 = v1, v2, . . . , v2k+1, v2k+1 = v1. We assume that there exists
a mapping f : V (C2k+1) −→ L = {1, 2, 3, 4, 5} which is 5-labeled-packing
of C2k+1. Let σ

1(C2k+1), σ
2(C2k+1), . . . , σ

k(C2k+1) be a packing of k copies of
C2k+1 in K2k+1 under the permutations σ1, σ2, . . . , σk, respectively. We con-
sider two cases according to the cardinality of Sf .
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Case 1. |Sf | = 0. In this case, each label occurs at least two times. It suffices
to prove that λk(c2k+2) < 3. We first assume that λk(c2k+2) ≥ 3. We know
that any complete graph K2k+2 can be decomposed into k Hamilton cycles
plus a perfect matching of size k+1, we know that all vertices of the complete
graph are neighbors, then we have

(1) For every label i of L, the number of edges in the subgraph of K2k+2

induced by |Vi| is equal to |Vi|(|Vi|−1)
2

.
(2) For every two labels i and j of L, the number of edges (in K2k+2) between

two sets of vertices Vi and Vj where i 6= j is equal to |Vi| · |Vj|.

Hence, the following system of equations must have at least one solution.


|Vi|(|Vi| − 1)− lii = 2kpii for 1 ≤ i ≤ 3 (1)

|Vi||Vj| − lij = kpij for 1 ≤ i 6= j ≤ 3 (2)

|V1|+ |V2|+ |V3| = 2k + 2 (2)∑3
i,j=1 lij = k + 1 (4)

From this system of equations, it is clear from equation (3) that the three
values |V1|, |V2| and |V3| must be even number. Then, each equation of (1)
and (2) has a solution if and only if the values of lii and lij are even since k
is even. This is a contradiction with equation (4). So this system of equations
has no solution, which is a contradiction with hypothesis.

Case 2. |Sf | > 1. Let vi be a vertex of Sf . Then we consider two cases
according to the labels of the neighboring vertices of vi.

Subcase 1. f(vi−1) = f(vi+1) = c. From hypothesis, we must have at least 2k
vertices colored with c. This requires at least 2k + 4 vertices in C2k+2, which
is a contradiction.

Subcase 2. f(vi−1) 6= f(vi+1). From hypothesis, each of the two vertices
f(vi−1) and f(vi+1) must occur at least k times. This requires at least 2k + 3
vertices in C2k+2. Hence, we also reached a contradiction and the theorem is
proved. �

Conclusion

In this paper, we have proved the exact value of λk(Cn) for all k ≥ 2 and
n ≥ 4k − 3. Our results are summarized in the follwoing table.
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value of n λ2(Cn)

n ≤ 4 no packing

n = 5 2

n ≥ 6 b3n
4
c

n = 2km + x, where x < 2k and k > 2 λk(Cn)

n ∈ {3, 4, . . . , 2k} no packing

n ∈ {2k + 1, 2k + 2, . . . , 4k − 4} remains to prove

n ≥ 4k − 3 and (x 6= 2 (mod) 4 or m ≥ 3 ) bn
2
c+ bn−bn

2
c

k
c

x = 2 (mod) 4 and m = 2 bn
2
c+ bn−bn

2
c

k
c − 1

As a corollary, the exact value of 2-labeled embedding number of cycles is a
direct consequence of Theorem 8, Theorem 10 and Theorem 12.

Corollary 14 Let Cn be a cycle of order at least 5. Then

λ2(Cn) =

b3n
4
c if n > 5.

2 n = 5.

Similarly, from Theorem 8 and Theorem 10, we obtain immediately the exact
value of λ3(Cn) for all n ≥ 9. Then, it follows from Theorem 11 and Theorem
13 that λ3(C7) < 4 and λ3(C8) < 5. The 3-labeled packing and 4-labeled
packing of three copies of C7 and C8 are shown in Figure 12 and Figure 13,
respectively. Hence, we obtain the following corollary.

Corollary 15 Let Cn be a cycle of order at least 7. Then

λ3(Cn) =



3 if n = 7.

4 if n = 8.

8 if n = 14.

bn
2
c+ bn−bn

2
c

3
c otherwise.
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