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Abstract—MCTS (Monte Carlo Tree Search) is a well-known
and efficient process to cover and evaluate a large range of
states for combinatorial problems. We choose to study MCTS
for the Computer Go problem, which is one of the most
challenging problem in the field in Artificial Intelligence. For
this game, a single combinatorial approach does not always lead
to a reliable evaluation of the game states. In order to enhance
MCTS ability to tackle such problems, one can benefit from
game specific knowledge in order to increase the accuracy of the
game state evaluation. Such a knowledge is not easy to acquire.
It is the result of a constructivist learning mechanism based on
the experience of the player. That is why we explore the idea
to endow the MCTS with a process inspired by constructivist
learning, to self-acquire knowledge from playing experience.
In this paper, we propose a complementary process for MCTS
called BHRF (Background History Reply Forest), which allows
to memorize efficient patterns in order to promote their use
through the MCTS process. Our experimental results lead to
promising results and underline how self-acquired data can be
useful for MCTS based algorithms.

Keywords-Monte Carlo Tree Search; Computer-Game; Re-
inforcement Learning; Knowledge Engineering

I. INTRODUCTION

In this paper, we propose a self-acquiring knowledge
process to deal with the resolution of hard combinatorial
problems. The generic MCTS enhancement is applied to a
difficult combinatorial game : the game of Go. We observe
that MCTS is a very efficient process to cover a huge set
of states. Nevertheless it does not take full advantage of
its experience. This statement motivates us to explore a
new approach to increase the ability for such a process
to capitalize its experience, which lead us to consider the
formed system as a cognitive system.

The game of Go is a good testbed for Artificial Intelli-
gence [1]. The rules are simple but capturing the underlying
explanations for an efficient sequence of moves remains
an open problem. The human players acquire an advanced
representation of the game by an extensive practice. This
explains why the best players still defeat computer programs.
Indeed a better representation allows to focus on the most
relevant parts of the game, unlike to the default tree search
which considers all the possible evolutions of the game. In

order to cope with the combinatorial hardness of the prob-
lem, a recurrent approach has been to endow the programs
with a large amount of encoded expert knowledge (rules,
patterns, etc.).

MCTS led to a major breakthrough for the game of Go [2]
and is now applied to a wide set of problems [3]. Contrary to
the former approaches, the evaluations of possible evolutions
are learnt on-line, through random simulations. The program
acquires hence some knowledge about the current situation
by a self-play simulated experience. Nevertheless, MCTS
does not suffice to overcome the combinatorial complexity
of the game of Go yet. The performance of the programs
stagnate for an increasing number of simulations, even
combined with expert knowledge [4]. In our understanding,
past a certain threshold, the pure computational approach
cannot be a substitute for a better cognitive integration of
the experience.

A promising way to increase the efficiency of a program
would be to enhance its ability to accumulate knowledge
about its simulated experience. The general idea consists in
a better assimilation of the inherent knowledge associated
with the states covered by MCTS. This approach has been
partially considered in the literature but we claim and
argue that this kind of process can be improved in many
ways. With our approach BHRF (Background History Reply
Forest), we choose to endow the program with the ability to
memorize patterns learnt on-line and adapt their estimated
value during the game. These patterns will influence back
the simulations in order to enrich the simulated experience.
This paper give insights about the potential of such an
approach. Note that our results mainly focus on the quality
of the learning rather than the effective performance in a
competitive setting.

More details about BHRF will be provided in Section III.
The MCTS baseline and the main knowledge endowment
will be presented in Section II. Experimental results are
given and analyzed in Section IV. A conclusion and some
perspectives are drawn in Section V.



Figure 1: Monte Carlo Tree Search process

II. HOW TO COMPLEMENT MCTS ?

MCTS progressively weights by self-play several possible
evolutions of the game. However, additional knowledge
can substantially enhance the learning process. A brief
presentation of the MCTS process along with its dynamic is
presented in Section II-A. Section II-B reviewed the main
enhancement in the current programs based on MCTS and
Section II-C details the underlying data structure.

An extensive presentation of MCTS and its enhancements
is beyond the scope of this paper, we invite the reader to refer
to [3] for more details.

A. Monte Carlo Tree Search

The standard MCTS algorithm gradually expands a search
tree starting from the current state. The four steps descent,
growth, roll-out and update (see Figure 1) are iteratively
applied until we meet some restraining constraints (time,
memory or iteration number). The descent policy covers the
tree and selects a new node to sample. The growth phase
adds a node to the tree search. From this node, the roll-out
policy generates the remaining moves until the simulation
reaches a final state. The update phase finally propagates
back the outcome in the tree search.

The value learnt in the search tree are tightened with the
underlying policies. On the one hand, the descent policy
considers the node’s values to reach the most promising node
to deepen. On the other hand, the outcome of the simulated
end game adjusts the values of the node selected during
the descent and influence back the next descent policy. The
interaction between the policy and the learnt values refers
to the generalized policy iteration process [5].

In MCTS, the policy iteration involves also a roll-out
policy. This policy generates the last moves leading to the
final state and therefore contributes to the learning process.
However the roll-out policy does not benefit from the learnt
weights. The purpose of the presented method is to influence
back the roll-out policy as presented in Figure 2.
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Figure 2: Generalized policy iteration process for MCTS

B. Enhanced policy iteration process

As pointed out by the generalized policy iteration, the
policies play a major role in the learning. The descent and
roll-out policies have been progressively enhanced to cope
with the issues addressed by each phase. In this section,
the main enhancements for each policy are reviewed from a
Go-specific and a more general perspective.

Over the iterations, the node’s weights are progressively
refined and the descent policy has to focus quickly on the
most promising parts of the tree. For the game of Go,
expert off-line knowledge may efficiently promote states
consequent to interesting moves and avoid silly ones. This
knowledge may enhance the search by biasing the values
or pruning the tree [6]. From a broader perspective, the
Upper Confidence bound applied to Tree [7] considers the
number of updates to achieve a good balance between the
exploration of current sub-optimal states and the exploitation
of the current best states.

A pure random roll-out policy generates many non-
representative final states whose outcome slows the learning
of the system. Thus, the roll-out policies generally involve
additional knowledge to enhance the relevance of the final
states. For the game of Go, the sequence-like policies suc-
cessfully consider expert or off-line knowledge to guide the
simulations [8]. However such a roll-out policy is difficult to
improve because it has to balance carefully the distribution
of the final states to cover [9]. A promising way consists in
designing adaptive (rather than static) roll-out policies.

General-game approaches such as N-Grams [10] propose
more adaptive kind of knowledge. They enhance the roll-
out policy with move sequences evaluated on-line. However
the move sequences considered come from the roll-out itself
rather from the search tree. To the best of our knowledge,
the Pool-RAVE enhancement [11] is the only attempt to
exploit knowledge coming from the tree but considers single
moves rather than sequences. A pool of potential best moves
are picked up during the descent and re-exploited in the
roll-out. This method achieves good results for the roll-
out policies without expert knowledge but does not intend
to learn explicit knowledge from the tree. Such a learning
requires the adequate underlying data-structure as presented
in Section II-C.

The search tree actually stores the outcomes of the
simulations. Following this perspective, MCTS becomes
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Figure 3: Additional knowledge for MCTS

then a cognitive problem : how to capitalize the simulated
experience of the system ? This is a long-term issue and,
in our approach, we will focus on the memorization of raw
moves sequences coming from the tree.

C. Knowledge data structure

The policies select the action to perform based on the
knowledge available for the system. The data-structure sup-
porting this knowledge has an high influence on how this
knowledge may be re-exploited. Current programs based
on MCTS handle different kinds of knowledge. In the
present paper, we differentiate the knowledge learnt in the
search tree from the additional knowledge considered in the
enhanced policies. The latter shall be applied to different
situations contrary to the node’s knowledge which is specific
to a single game state. In this section, the main knowledge
data-structures are reviewed for both kind of knowledge.

In the best Go-program, the expert knowledge involved in
descent and roll-out policies considers immediate reply to
small spatial context. For each pattern, the surrounding posi-
tions stand for the context and the middle move corresponds
to an appropriated reply (Figure 3a). This knowledge suc-
cessfully simulate local fights in sequence-like policies but
is insufficiently expressive to evaluate states with multiple
independent sub-problems. Indeed spatial patterns alone are
not able to express the diversity of a sequential decision
process [12].

The general-game approach considers immediate reply to
small temporal context (or pattern). For each pattern, the
first moves stand for the context and the last move stands for
an appropriated reply (Figure 3b). This context is generally
small. One of the most relevant approach is detailed in [13]
and considers up to two moves for the context. However
this short term perimeter for the contexts may raise a short-
sighted phenomenon, i.e., the so formed sequences can be
applied to many different states but are not relevant for each
of them. Previous attempts such as the move answer tree
in [14] or the local tree in [15] propose to specialize the
temporal pattern but does not provide effective results yet.

The values learnt in the search tree corresponds to the
estimated win probability of the specific game states covered
during the descent phase. This knowledge is not prone to
be re-exploited in similar states (except for the very same

Figure 4: Background History Reply Forest process

game state see [16]). As pointed out in [17], if a branch
of the tree learns a sequence of actions that solves a local
sub-problem, this sequence has to be rediscovered in the
other branches where this sub-problem occurs. Moreover
each time the opponent has played his move, one has to
prune the tree to keep only the subtree associated with the
moves that are effectively played. As a result, the knowledge
accumulated in the other branches is also lost.

The purpose of our approach is to design temporal pattern
in order to extract the knowledge inside the search tree. We
choose to extend the size of the patterns so that they can
specialize to more specific contexts, as for the search tree.

III. A TRANSVERSAL DATA STRUCTURE TO COMPLETE
MCTS

Our proposal is generic, and can be applied to MCTS
whatever the considered problem. The purpose of our ap-
proach is to increase the system ability to memorize data,
and also its ability to adapt it to close applicative contexts.
The overall idea of BHRF is presented in Section III-A and
an implementation in detailed in Section III-B.

A. Background History Reply Forest

We propose to build up an independent data-structure
to complement the Monte Carlo tree and allow transversal
knowledge memorizing. In order to improve the roll-out reli-
ability, we choose to exploit the self-acquired and long-term
data to influence the roll-out policy. Moreover the purpose
of this contribution is to produce a policy that improves the
learning process using knowledge that is already gathered.
Therefore, the sequence estimation process is fed by the
current sequence played during the descent phase, according
to the simulation outcome (Winning, Undefined, Loosing).

We then extract from the considered contexts small sub-
sequences giving rise to many local contexts to learn. Pro-



Algorithm 1 update algorithm - Reply Forest

procedure UPDATEREPLYFOREST(
descentSequence: Array<Move>,
outcome: Result {Win, Undefined, Lost})

//descentSequence : moves selected in the last tree descent
//outcome : result of the simulation following the descent

for i ← descentSequence.size −1 to 0 do
rt : ReplyTree
rt ← self.getReplyTree(descentSequence[i])

// the reply tree leading to move i is considered
if opponentMove(i) then

rt.updateTree(i,descentSequence,inv(outcome))
else

rt.updateTree(i,descentSequence,outcome)
end if

end for
end procedure

gressively, the contexts are refined, i.e., their sizes increase.
As presented in Figure 4, the accumulated knowledge is
stored inside a forest. The root of each tree stands for a
reply while considering a context formed by a path between
a leaf and the root. The set of all reply trees defines the
Background History Reply Forest (BHRF).

B. Knowledge accumulation and exploitation

During the update phase, MCTS and BHRF are indepen-
dently updated using the same simulation outcomes. The
BHRF update is detailed through two algorithms.

First, considering knowledge acquiring, we cover each
move of the descent sequence and launch a reply tree update
(Algorithm 1). Indeed, the whole descent sequence contains
many different context-move associations to memorize. The
details of the tree update process is presented in Algorithm 2.
As for MCTS, the node estimates are updated each time a
stored sequence matches with the current one. For each reply
tree, new nodes are regularly added and the whole structure
is kept over the turns. We do not restrain accumulation and
gather as much data as possible to refine contexts.

Second, considering knowledge exploitation presented in
Algorithm 3, the roll-out policy controls the involvement
of BHRF during the simulation process. Within the set of
legal replies, the process can select a move among the ones
matching a memorized context.

Since a richer context defines a more accurate knowledge,
we promote the use of the longest context sequences. A
softMax policy picks up one sequence among the selected
ones based on their UCT estimates as follows1 :

1the bias term b has been set to 0.7 empyrically

Algorithm 2 update algorithm - Reply Tree

procedure UPDATETREE(i: int,
descentSequence: Array<Move>,
outcome: Result {Win, Undefined, Lost})

//i : position of the reply move in the descentSequence
nodeCreated: Boolean
mv : Move
nodeCreated ← false
childNode, lastNode : Node
lastNode ← self.getRoot()

// the root node of the tree corresponds to the reply
while i > 0 && ¬ nodeCreated do

i ← i −1
mv ← descentSequence[i]
childNode ← lastNode.getDirectChild(mv)
if childMove == null then

childMove ← lastNode.createChild(mv)
childMove.updateMean(outcome)
nodeCreated ← true

else
childMove.updateMean(outcome)
lastNode ← childNode

end if
end while

end procedure

P (r|c) =

x̄r|c + b×
√

ln
∑

i∈C ni|c
nr|c∑

i∈C P (i|c)
, (1)

where

r : legal reply
c : context
C : set of legal replies for context c
x̄r|c : average result of r in c
b : UCT bias term
nr|c : selection number of r in c

The associated reply is finally selected according to its
estimate value. If no sequence matches, the default policy
is applied. The ε parameter sets the using rate for BHRF in
the simulation process.

IV. EXPERIMENTAL RESULTS

In this section, we study the influence of this self-acquired
knowledge over the learning process. The experiments pro-
tocol is exposed in Section IV-A. The results presented
in Section IV-B show that BHRF successfully catches the
knowledge of the tree search and Section IV-C highlights
that this tree knowledge may successfully complement an
expert roll-out policy.



Algorithm 3 roll-out policy

procedure ROLLOUTPOLICY(lastMoves: Array<Move>)
: Move
//lastMoves : moves previously selected (temporal context)

candidate : Move
lstCandidate : List<Move>

//Probability ε to use BHRF
if randomValue() < ε then

for m: Move ∈ legalMoves() do
// Gets the best estimated candidate matching the context

candidate =
getReplyTree(m).BestCandidate(lastMoves)

if candidate 6= null then
lstCandidate.add(candidate)

end if
end for

// Selects the reply according to Equation 1
candidate =

BestCandidateSoftMaxUct(lstCandidate)

if randomValue() < candidate.uctEstimate() then
return candidate

else
return defaultRandomMove()

end if
end if

end procedure

A. Experimental setup

The BHRF heuristic has been implemented using the open
source framework Fuego (version 1.1) [18]. This framework
offers the main enhancements for MCTS computer-go pro-
grams such as UCT and expert knowledge. In this program,
the expert knowledge is used to initialize the new node of
the tree search and also for the roll-out policy.

In the following experiments, the program with the BHRF
heuristic competes against the same baseline program with-
out BHRF2. The common settings of both programs are
the same (if not mentioned). The settings we will further
consider in the experiments are the following:
• Board size (M): 9x9,19x19: determines the difficulty

of the game played. The search space is huge on 19x19
and the program has to focus even more on game state
of interest. Moreover games on wider boards produce
more complex situations which may not be covered by
expert knowledge.

• roll-out simulations (H): 1k, ..., 10k, 30k: cor-
responds to the maximum number of simulations
granted. A larger value generates a more accurate tree

2All game results are provided with 95% confidence interval
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goban 9x9 +17.3%± 1.6 +16.9%± 2 +18%± 2.6
goban 19x19 +24.3%± 3.5 +26.6%± 2.5 +27.7%± 3.4

Table I: Success rate for the BHRF approach (opposed to
the same configuration without BHRF)

knowledge and therefore a better descent policy.
• roll-out expert knowledge (�): True, False: de-

fines whether the roll-out policy involves expert know-
ledge or not.

• BHRF: ε = 0 .. 100% (�): tunes the rate of ex-
ploitation of the self-acquired knowledge in the roll-out
phase.

In this article we mainly focus on the potential for using
such a knowledge, rather than on the next-step optimisation.
That is why we considers both programs with equal number
of simulations rather than equal time. Considering our lightly
optimized BHRF algorithms and a middle range hardware
configuration (Intel(R) Core(TM) i7-2600 CPU 3.40 GHz
with 8GB memory), the BHRF module tends to slow down
the computing time from 4 to 12 times, according to the
game size and the roll-out simulation number. The present
implementation is not competitive on equal time settings but
provides a substantial improvement in the learning quality.

B. Increasing efficiency due to Self-acquired knowledge

For these experiments, competing programs are both
set without expert roll-out knowledge but both programs
initialize the node value using prior expert knowledge. In
Table I, we report the values of BHRF knowledge for 9x9
and 19x19 game sizes with the maximum number of roll-out
simulations allowed.

The program that considers self-acquired knowledge, sig-
nificantly outperforms the baseline program in all the config-
urations and whatever is the number of allowed simulations.
Pool-RAVE [11] provides similar results for the game of Go
without expert roll-out knowledge3. These results confirm
further the interest of using knowledge from the search tree
in the roll-out.

One can note that for 19x19 game size, BHRF slightly
stresses its advance while the roll-out simulation increases.
As the 19x19 game size involves a huge combinatorial space,
it is suitable to enhance the difference between different pro-
grams’ efficiency. Whatever the considered settings, BHRF
highly outperform the baseline program.

In order to appreciate the BHRF ability to manage and
benefit from complementary knowledge, we choose to vary
the available number of roll-out simulations available for
BHRF, while keeping it constant (fixed to 10k) for the

3Their results are provided only for the 9x9 game size.
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Figure 5: Success rate and CPU time ratio for BHRF
approach considering roll-out number variations (opposed
to the same configuration without BHRF, roll-out number
fixed to 10k)

baseline program. As shown in Figure 5, BHRF outperforms
the baseline program as soon as it reaches the half of the
available number of roll-out simulations of the baseline
program. However, as mentioned previously, the process
of real-time self-acquiring knowledge is time-consuming
and a further optimization is required before being time-
competitive with the current programs.

These results are very encouraging, and show that BHRF
successfully embeds the knowledge of the tree. The know-
ledge used to initialize the tree node is the same that the
one normally used in expert roll-out policies. Therefore
BHRF integrates these knowledge along with the knowledge
acquired by the simulation outcomes.

C. Competition with full expert knowledge programs

The knowledge accumulated by BHRF is exploited during
roll-out, but how does this knowledge face expert roll-out
rules used by professional-level computer-go programs ?

In this section, we choose to involve expert knowledge
heuristics for BHRF roll-out as a second choice. When no
move is selected by the BHRF roll-out policy, the standard
rules originating from Fuego roll-out policy are applied.
BHRF competes then with Fuego set to the best of its ability.

In Figure 6, we show that BHRF outperforms Fuego
when we use BHRF data moderately (ε around 15). The
number of simulation was set to 30k in order to accumulate
substantial data about the game. A low ε value involves
more exploration through the general MCTS process. BHRF
nevertheless allows to significantly increase the global per-
formance while memorizing efficient situated patterns.
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The expert knowledge involved in the roll-out policy plays
locally, around the last move generated. On 9x9 board local
fights cover quickly the whole board but on 19x19 board,
local fights have to consider also the situation in other
area of the board. As mentioned before, our data-structure
embeds the expert and the self-acquired knowledge of the
tree. BHRF knowledge may adjust this locality according to
the state covered in the tree. Therefore the enhanced roll-out
policy benefits from knowledge adapted to the real situation.

V. CONCLUSION

This paper proposes new enhancements to complete the
well-known MCTS search process in the context of com-
binatorial games. We show that a better assimilation of the
knowledge learnt by MCTS may enhance the performance of
the system. As presented in this paper, the knowledge stored
in the search tree is not prone to be re-exploited. A promising
way is to consider MCTS as a cognitive system. Indeed,
a better assimilation of this knowledge allows to adapt it
to different situations and may avoid to learn redundant
patterns among the branches [17] for instance. Moreover,
such an approach may provide better insights on how the
system considers its simulated experience and therefore the
underlying mechanisms of MCTS.

The data-structure detailed in this paper, is a raw manner
to memorize adaptive knowledge coming form the search
tree. The presented results show that this data-structure
successfully catches such a knowledge (Section IV-B) and
this knowledge may actually complement expert know-
ledge (Section IV-C). In particular, a professional program
combined with BHRF achieves up to a 11% increase in
performance. These results points out the potential of such



an approach though the slow down of the learning process
prevents from experiments with constant time yet. We de-
cided to apply our algorithm to the game of Go because this
problem is demanding in terms of knowledge, nevertheless
the current implementation is designed for a general-game
perspective. A more time-efficient implementation may con-
sider characteristics of the game such as the locality of the
reply but this was beyond the scope of the present paper.
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