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Abstract—Retrieving matchings between process models be-
comes a significant challenge in many applications. Recent
attempts have been done to measure similarity of process
models based on graph-edit distance. This problem is knowrot
be difficult and computational complexity of exact algorithms
for graph matching is exponential. Thus, heuristics must be
proposed to obtain approximations. In this paper, we propose
an approach to find relevant process models based on their
decomposition into paths of possible execution sequenc@sen,
we propose a schema to compute the similarity between two
process models using the proposed decomposition. Moreoyer
we give particular attention to the problem of ranking a
collection of process models according to a particular quer.

Keywords-process model matchmaking; process model re-
trieval; string comparators metrics;

I. INTRODUCTION

graph-based modeling of the problem of process discovery
and ranking. However, the graph matching algorithms that
underly the propositions induce high computational com-
plexity which reduces their application in practice.

The principle of edit distance computation is to identify
a set of basic edit operations on nodes and edges of a
graph, and to associate costs to these operations [6]. The
edit distance is found by determining the sequence of edit
operations that will make the two graphs isomorphic, with
minimum cost. The set of edit operations is given by
insertions, deletions, and relabeling of both nodes anédg
Unfortunately, computing the exact value of the edit distan
has been proved to be a difficult task by Wagigal. [7].

To make the algorithm tractable, heuristics that reduce the
complexity of the algorithm while keeping an acceptable
recision level are needed. Bun&eal. showed the intimate

Process-Aware Information Systems [1] have recentl

become an important research area since business WorrlﬁlatlonShIp between the size of the maximum common sub-

dynamics is continuously increasing making the Cornloa_graph and edit distance [8]. In particular, they demonstrat
that problems of finding the maximum common subgraph

nies confronting frequent changes in their business enw—noI computing the araph edit distance are equivalent. This i
ronment [2]. Enterprises show the need of continuousl)fi . puting graph e q '
n important observation since the problems may be related

re-engineering their Business Processes. Hence, their peq’ find efficient imati h oth
formance in markets is closely related to their businesé0 Ind efticient approximations €ach other.

processes optimization, flexibility and ability to be updgd. Indeed, our work focus on decomposing the process

The increasing importance of Process-Aware Im‘ormatior{ﬂodel into its paths of possible execution sequences based
Systems and Service-Oriented Architectures leaded the com” the process model graph. We propose a generic mecha-

panies to their own process model repositories. Thus cordgism using string comparator met.rics to compute a distance
puting similarity between process models is a critical tas etween a user query and a given process model based

that should be completed to manage these repositorieg.n their POSS'bIe e>_<ecut|on sequences. Our cont_rlbut|0ns
clude: (i) An algorithm to extract possible execution se-

Comparing two processes mainly consists in determinin uences of a process model. (i) A mechanism to compute
differences between two process models, generally a refert P : P

ence model and the enterprise model. Furthermore, ranking%{Stagce o;h5|_mllar|ty_bt|>etween tt.WO process modgl gXaphs
set of process models following their similarity with theeus ased on their possible execution sequences. (iii) A new

process model helps administrators to manage collectibns glmllarlty metrl_c based on Jaro similarity t(_) Improve its
process models or several versions of same models. performance. (iv) A solution to rank a collection of process

Inexact, error-tolerant or error-correcting graph-matgh m?ritzsrigfo(;?'?ﬁisto aag;e:;qgfrg‘mze d as follows. After
is a challenging problem in the manipulation of relational pap g '

: . Lo . some preliminaries given in Section Il, we review related
structures that arises in many areas of machine intelligenc P g

[3]. Determining the similarity between different graph work in Section Ill. The proposed approach is presented in

structures is one of the important issues that relates to tr}%ectmn IIV.dSectlon M de§crslbet9ur (\e/>|<per|mental evaluation
problem. This task is frequently defined as the problem o € conclude our paper in section Vi.
computing the graph edit distance. Some recent proposals fo Il. PRELIMINARIES

process matching [4], [5] showed the effectiveness of using In this section, we introduce some concepts that are used

to define a process model. After, we present pertinent nsetric
used in the literature to compare strings.

1This work has received support from the National Agency fes&arch
on the reference ANR- 08-CORD- 009



A. Model The subword distance is the smallest number of insertions

The process model used to represent a given service d deletions needed to transforminto v. Note that in
based on the one proposed in [4] that covers the core featurdd€ a@bove formula, the computation of the longest common
of practical languages, such as BPMN, EPC, and OwL-s. Subword of u and v can be done recursively in time

A process model is defined by a directed attributed grapiy’(/¢//v])- Yet, in the case where we search the subword
G = (V, A), whereV is a set of nodes and is a set of distance betweeh words, the problem is NP-hard [10].

arcs that defines the precedence of the sequence relatio,ns3) Levenshtein distancé,: Levenshtein distance [11]

between nodes. We distinguish between two kinds of nodedS certainly the most frequently used metric for string
activities and connectors comparison. In the literature, it is also calledit distance
An activity node represents an atomic task. Connectoft €an be seen as a mix of the two previous metrics, since

nodes represent control flow constraints. Two kinds of ruled! cor.responds to th? m_meer of edit operations .(|nser1|ons
are defined: split and join rules. For each kind of rule,delétions and subsitution) needed to transfarnnto v.

two kinds of operators exist: XOR or AND. A XOR- Several surveys [12], [13] summarize the interest of the

Split represents a choice between one of several alteenati-€venshtein distance in various domains.
branches which are merged by a corresponding XOR-Join.
An AND-Split connector triggers its outgoing concurrent ) :
branches which are synchronized by a corresponding ANDFECUrsive. property: given tWO_ worda = (ui,...,un)
Join connector. A Split connector must have at least wnd v = (v1...vm), With prefixesUy,_., (resp.Vi,..m),

outgoing arcs and, symmetrically, Join connectors musg havdL(Ui’ Vj) is defined as follows :

This distance can be computed according to the following

at least two incoming arcs. The model imposes that for eac i if =0

Split connector, there will be exactly one correspondirig Jo J ifi=0

connector. Observe that loop operations are induced by arc main(dr,(Ui—1,Vj-1),do(Us—1,Vj) + 1,

i.e. if an arc links two nodes between which there already dr(U;,Vi—1) +1) if u; =v;

exists a path, then a loop is formed. min(dr,(Ui—1,Vj-1) + 1,dr (U1, V) + 1,
dL(Ui,‘/}_l)"f'l) if ui;«évj

B. String comparator metrics )
The above formula assumes that the edit costs egual

We will use standard notations and definitions of combi-\ can straightforwardly be adapted for any other values. A
natorics on words or strings, equally: given a finite alp"’abesimple dynamic program derived from it yields(@(nm)

A, we will denoteA* the set of all words omd. The length algorithm.

of a wordw € A* will be denoted by|w|. A word w is

called afactor (resp. aprefiy) of another wordu if there 4) The Jaro similarity d;: The Jaro similarity was
exist two wordse, y such thatu = zwy (resp.u = wy). introduced in 1989 [14]. Since then, it is considered as
A word z is said to be asubwordof y if there exist tWo  gne of the most accurate metric when dealing with short
words uy, . .., un @nd v, ..., v, such thatz = ui...un  \words. Compared to the Levenshtein distance, it integrates

andy = vou1vy . .. upvy. I other wordsy is a subword of  the notion of common characters between two words. Its

Y _if he is obtained frony by deleting some of its fagtors. value is set in the rang@, 1], the valuel corresponding to
Given two wordsz andy, alongest common subwoid @ 5 perfect similarity.

word z of maximal size which is both a subword afand

y. It will be denotedics(z, y). For more details, see [9]. Its computation integrates the conceptanimmon char-
1) Hamming distancel;: This well-known distance is  acters given two wordsu = (uy,...,u,) and v =
applied on two words of the same size. Roughly speaking,, .. 4,,), we say that; andv; are common ifu; = v;

the Hamming distance between two wordsand v is the  andj — i < max(n,m)/2 — 1 (roughly speaking, it means
number of differences between the letters (characters) of that there are not too far from each other). We will denote by

and v taken at the same positions. More formallyuif= (.(4, v) the number of common characters betweeand
u...un @ndov = vy...v,, wherew; andv; are letters et = (uf,...,u}), be the characters in which are
of the alphabet, thedy (u,v) is the number of indice$  common withv (in the same order they appearihpand let
such thatu; # v;. Note that in case where the two words v — (/. ,v}), be the characters in which are common
have different sizes, this distance can be extended byigetti with 4. The transposition numbefu, v) is half the Ham-
dp (u,0) = [ul. (€.9.,dy (aabbba, ababbb) = 3). ming distance betwees andv’, sot(u,v) = dg (u',v')/2.

2) Subword distancels: Given two wordsu andv of  According to these notations, the Jaro similarity is defined
arbitrary sizesn and m, the subword distancés(u,v) IS zs follows:
defined as follows: 4 (u.v) l(cc(u,v) N ce(u,v) N ce(u,v) — t(u,v))
i(u,v) = =
ds(u,v) =n+ m — 2|lcs(u,v)| ! 3 n m ce(u,v)




[1l. RELATED WORK In the following, we first give the details of our decom-

Several studies have been proposed for the problem dyosition of a process model, then we present our solutions
determining the similarity of process models [15], [16],[5 for the above cited problems.
[17], [18].

In [19], workflows are modeled as automata and th .
authors proposed a metric for measuring the similarity. The We present here how to decompose a process model into
similarity computation problem is reformulated as autaanat itS paths of possible execution sequences (ESs). To achieve
intersection problem similarly to the maximum common this, we develop an algorithm to extract possible execution
subgraph. Execution time by target process size which i§égquences fronBTARTnode to END node of a process
expressed as finding shared traces between the two autom&#@de! represented by a graphi according to behavior
representing these processes. Trace equivalence is sfen u definition of each node. For example, #OR-Splitmeans
to determine if two process models are similar or not [20].that only one activity among children activities is exedute
In addition, the concept of bisimulation [21], [22] extends However, _arAND-Splltmeans that all children a_ct|V|t|es are
trace equivalence by considering stronger constraints. 1§xecuted in any order. Two examples of execution sequences
[23], authors propose a similarity metric that integratess t ©Of two process models are given in Figure 1.
occurrence probability of shared traces between two pro- The parameters of the algorithm are from which node the
cesses. Another work based on traces [24], assigns weigh@kPloration begins fromNode) and to which node ends
to every trace based on logs of execution logs. This is don&oN ode). The algorithm requires also the current list of ESs
to distinguish between traces according to their impoganc (currentESs) to continue from this list. The pseudocode

Work proposed in [25] defines a measure that evaluateQf the algorithm is given by Algorithm 1KS's Algorithm).
the similarity of state-charts by combining the similadti The algorithm is recurrently called according to the type of
of state labels and state depths. The behavioral similarity7omNode. Ifitis a START, XOR_Join or AND_Join
of these states is obtained by comparing the vicinities oftode, the algorithm is called to explore from the next child
states. In [16], authors proposed a representation of psoce@ctivity (line 5). In case ofXOR — Split, the algorithm is
models based on finite set of structural relationships betwe called from each child off romNode until the end of this
the activities: sequence, conditional, parallel branghétc. ~ XOR (given byGetENDfunction) by using the current list of
The distance between two processes is then defined as theS (line 13). All returned lists of ESs are added to the fist o
number of shared relations between them. The edit distandeSs of this XOR or ESs). To continue the exploration, the
[26] is also used to measure the difference between tracé¥gorithm is called from the end oY O R to toNode using
[24], [27]. However, some asymmetry issues are still presenZor£Ss (line 16). In case oAN D — Split, the algorithm
To deal with that, some recent work [5] proposes a|gorithmgs called from each child of rom N ode until the end of this
to measure the similarity of process models based on grapftND by using an empty list of current ESs (line 23). Al
edit distance. Other work considering graph technique@OSSime concatenations between returned values are done
based on decomposition or summarization were propose'ay ConcatLists function to obtain the list of ESs of this
in [28], [29]. AND (andESs). After, the algorithm is called from the

In the present work, we propose a method based on strin§nd of thisAND to toNode using andESs (line 26). It
comparator metrics to approximate the distance betweefgmains to treat the case of ordinary activity. In this case,
process models. Our approach is based on the decompositifie value offromNode is added to all ESs afurrent ESs

of process models into their expected execution sequencelist and the algorithm is called from the next child activity
of fromNode to toNode usingcurrentESs list (line 30).

IV.  OUR APPROACH Notice that to avoid infinite executions, we limit to the

We describe in this section our approach for proces:mumber of execution of loops. The value fofs set to 1 to
models matchmaking. Led and B be two process models. reduce the computational complexity and can be increased
We first want to compute the distance betweérand B.  to improve performances of our solution (see the example
We can achieve this using a graph matching algorithm [30]in Figure 1). We show in this paper that by settihdo 1,
However this problem is NP-complete and the computationabur solution achieves good performance.
complexity of such algorithm is exponential in the size @& th .
two process models. To overcome this problem we proposB: Comparing two process models
to decompose the process graph into its paths of possible We propose here a solution to compute the distance
execution sequences. between two process modeld and B. First, the two

In this paper, we consider two specifics problems. Theprocess models are decomposed into their possible ESs using
first is the problem of computing the distance between twoAlgorithm 1. Then, we construct a bipartite graph where the
process models. The second deals with ranking a collectiotwo partitions of nodes are respectively the set of ESd of
of process models according to a given query. and the set of ESs dB. Consider the example illustrated in

eA. Execution sequences decomposition



Start Process model A

¢ ESs of A:
XOR_Split1 af
bcdef
bcedf
bdcef
bdecf
becdf
Tb bedcf
AND_SplitT
a c d e
AND_Join1
XOR_Joinl

i
1

End

Figure 1.

Algorithm 1 Execution sequences algorithEBSsAlgorithm

A graph G, from which node the exploration beging{om Node) and to
which node endstp N ode), and the current list of ESs:(rrentES's)
Output: List of possible ESs fronfromNode to toN ode

Input:

1: fromNode.NBExploration ++ //Limit the number of execuaoof a loop tok

2. if (fromNode = toNode) then

3: return currentESs

4: end if

5: if (fromNode € {START, XOR_Join, AN D_Join}) then

6: return ESsAlgorithm@G, from N ode.child(1),toNode,currentES's)
/[To continue the exploration from the next child

7: end if

8: if ( fromNode = XOR_Split) then

9: zorESs := null

10: end X OR :=GetEND(X O R_Split)

11: for (¢ := 0;% < fromNode.NBChildren;i+ +) do

12: if (fromNode.child(i).N BEzploration < k) then

13: zor ESs.addAll(ESsAlgorithmG, fromNode.child(i),
endX OR, currentES's))

14: end if

15: end for

16: return ESsAlgorithm(Z, endX OR, toNode, zor ESs)
17: end if

18: if ( fromNode = AN D_Split) then

19: andESs := currentESs

20:  endAND :=GetEND@AN D_Split)

21: for (¢ := 0;4 < fromNode.NBChildren;i+ +) do

22: if (fromNode.child(i).N BEzploration < k) then

23: andESs = Concatlists¢nd E S's, ESsAlgorithm(,
fromNode.child(i), end AN D, null))

24: end if

25: end for

26: return ESsAlgorithm(@G, end AN D, toNode, andE S's)

27: end if

28: if (fromNode is an ordinary activitythen

29: AddList(currentESs,fromN ode)

30: return ESsAlgorithm(3, from N ode.child(1),toN ode,current ESs)
31: end if

32: end

: Start Process model B

ESs of B: l
XOR_SplitL

b

&

XOR_Join2 —e—
}
XOR_Split3
m
c d e k
W
XOR_Join3
!
XOR_Split2

XOR_Join1>

l

End

Example of how our solution proceeds. Each ER3 d related by an arrow to the ES &f that matches it better.

Figure 2. We compute the distances (Levenshtein distance
is used in this example) between every nodeFsis 4 and
every node off Ssg (the bipartite graph is complete). Note
that if the two partitions do not have the same size, we
complete the smaller one with empty ESs. One the complete
bipartite graph is obtained, we compute the distance betwee
A and B as the sum of distances on the set of edges
given by the Minimal Weight Bipartite Maximum Matching
(MWBMM). In the example given by Figure 2, the distance
betweenA and B is equal to 3.

ESSA ESSB

Figure 2. Solution for computing the distance between tvezc@ss models.
The weight of each edge connecting an ES4find an ES ofB is the
distance between them.

This solution can be easily modified to compute the
similarity betweenA and B. In this case, We compute the
similarities between every node @&Ss, and every node
of ESsg. The similarity betweend and B is the sum
of similarities on the set of edges given by the maximal
weight bipartite maximum matching. Notice that the com-
putational complexity of the algorithm that finds the the



maximal or minimal weight bipartite maximum matching Algorithm 2 Distance based rank algorithm

i 3 — Input: a query A, a collection of process models
IS O((max(nA’ nB)) ) [31] where nA |ESSA| and Output: a rank of the process models that match better A
np = |ESSB | 1: while there is a process model in the collectidn
2: B := the current process model
i 3: D 4 := 0 /Ito initialize the distance to 0
C. Ranking process models 4 Tor oo ES: of query Ado
In th|s problem’ we are interested to rank a Co”ection 5: D;p := MaxD;g Ilto initialize D; g to the Max value it can take
. . . : for each ESj of process model Rio
of process models according to a given query. In this case,7: ComputeD,; according to the considered distance
we propose a schema to avoid finding the MWBMM which & if (Dij < Dip) then o A
. . . . . D;p := D;j; llto compute the minimum distance
induces a cubic computational complexity. Our schemao: UpdateMaz D; 5 /laccording to the considered distance
matches each ES ofl with the ES of B whose it has 1% g it
the minimum distance (se_e Figure 1). The computationa&g} Dap = Dap + _Mf;gw
complexity of our schema i®(n4 x np). ig: endfor o have th .
. . . : D = —4L< [ t ist
Our solution is composed of three steps (see Figure 3); o o4k = swetay 1o have e mean dsiance

In the first, each process model of the collection is loadedi7: sort process models according to increasing distanBess
and transformed to a graph representation. To avoid using atf: "
exponential algorithm [30] to compute the distance between
the entire graphs oft and B, we propose to decompose the
two graphs into their paths of possible ESs, then we proposée i ES of queryA and all ESs ofB (An example is
a method to compute a distance between the two grapH@ven in Figure 1). ThusD;p = min{D;; : j € B}.
using theirs ESs. Thus, in the second step of our solution, wéVe defineD 45 to be the mean distance between ESs of
extract possible execution sequences of the process moddl and ESs ofB. Hence,Dap = -l Yic A wronbiy
using Algorithm 1. In the last step, we search for each ES ofvhere size(A) is the number of ESs of the query and
a process modell, the ES of the procesB that matches it MazD;p is the maximal value that can take;s. If Lev-
better (an example is given in Figure 1). Then, we propose &nstein or Hamming distance is considered, returbeg
generic mechanism to compute the distance or similarity beis always less than\lax(size(A(i)), size(B(j))), Where
tween the two process models using their ESs (more detailsize(A(i)) is the number of activities of thé ES of
are given in Section IV-C1). We considered four pertinentsA. Thus MaxzD;p = Max(size(A(i)), size(B(j))). This
string comparators metrics described in Section II-B. Wecomputation of D,z yields a value in [0,1] and gives
also propose a new comparator metric by modifying Jardnore weight to a process model that matches better long-
similarity to improve its performances. We compare obtdine Size ESs of the query. However, the weight can be other
results of existing string comparator metrics to the rasult practical considerations as frequencies of ESs, the pyriori
of the proposed similarity. Each comparator metric gives &f the process model, ...etc. This process is repeated ¢br ea
value of the distance or similarity between the query and th@rocess model of the collection. At the end of the algorithm,
current process model. This process is repeated for the usee sort process models according to increasing distances
query and each process model of the collection. At the end’a5 to obtain a rank of process models that match better
of this step, a rank of process models that match better thée queryA. The pseudocode of our algorithm is given by
query is given for each considered metric. We can see thatlgorithm 2. Our algorithm is generic and can be used for
choosing the first process model in a rank gives the procesd! string distances proposed in the literature. We havg onl
model that matches better the given query. However there i defineMaxD;p which is the maximum value that can
different ranks given by each considered metric. To eveluattake D;p according to each distance. In case of subword
performances of each solution, we compare obtained resulg§istance, MaxzD;p = size(A(i)) + size(B(j)).
with an expert user results. The algorithm is modified as follows to computes g in

1) Distance based rank algorithmie describe in this case where a similarity is considered.
section our algorithm of computation of the distance be-Das = m > ica Din, whereD;p is the maximum of
tween a given user queny and a process modét of the  all similarities between thé'® ES of queryA and all ESs
collection. After that we show how to modify the algorithm of B (i.e. D;p = max{D;; : j € B}). Thus, we inverse the
if a similarity is considered. First, the algorithm finds for inequality in line 8 of Algorithm 2. For any similarity}); 5
each ES of4, the ES ofB that matches it better. To achieve is in the interval [0,1], thus\axD;g = 1. Notice that the
this, we use one of the string comparator metrics. Dgt ~ computation ofD 45 gives always a value betweénan 1.
be a distance between thi& ES of queryA andj?* ES It remains to sort process models according to decreasing
of the process moddB. We define,D; 5 to be the distance similarities D45 to obtain a rank of process models that
between the'® ES of A and all ESs ofB. Since we are match better the queryi. The modified algorithm is also
searching the ES oB which matches better th&" ES of  generic and can be used for all similarities.
A, we considerD; 5 the minimum of all distances between We also propose a new similarity:
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Figure 3. Solution for ranking a collection of process medel

2) Proposed similarity:To improve the precision of Jaro returned by a distance or similarity based algorithm. We
similarity, we propose to consides; andv; to be common use an acceptance threshold to decide that a process model
if u; = v; and|i — j| < min(n,m)/2. Thus,u;, andv;  belongs to theRet set. Thus, a process model is added
are considered to be common if they are nearer. We alsto Ret if it has a similarity computed with Algorithm 2
propose to consider the opposite direction when comparingD 45) greater than the threshold. In case where a distance

uw andv sincecc(u, v) # ce(v,u). Thus we propose a new is used, a process model is added Ret if ﬁ is
similarity: greater than the threshold. An important problem is the
Splu,v) = d(elww) o celvw) CCW(;gg;ng +  choice of this threshold. We compare the different alganih
ce(v,u) —t(u,v) ). ' using the three measures (precision, recall and overalgun

cc(v,u)

Notice thatt(v, «) is not considered since it is equal to differe_nt values of the threshold_ <_:hosen between 0.2 and 0.9
#(u,v). The performances of the proposed similarity areVe will then propose an empirical value of the threshold

compared in this paper to those of string comparator metric&/N€"e "?‘(Ijl th% algorithms present the best results according
described in Section II-B. to considered measures.

« Precision is given by :Precision = %. It
V. EXPERIMENTAL EVALUATION reflects the share of real correspondences among all
We present in this section a set of experiments that vali-  returned (found) process models. A solution having

date the performance of our solution. All components of the ~ high value of precision means that it does not return
proposed architecture presented in Figure 3 are implemente ~ Much false positives.
using the Java programming language and Eclipse SDK e Recallis given by Recall = %- It specifies the
version 3.5.2. Evaluating precision of matching algorishm share of real correspondences that is returned. A high
is often impossible. However, the goals of matching depend ~ Value of recall of a given solution means that it does
heavily on user requirements. Thus, we compare obtained Not return much false negatives.
results of different considered distances and similaitie <« We also consider the overall measure proposed in [33]
algorithms with the match result given by an expert user. ~ Which is a combined measure of match quality.
The used dataset [32] contains 623 semantic process models Overall = Recall x (2— gz )- Notice that overall
specified using the graph based representation of process Makes sense only if precision is not less than 0.5.
models defined above. We randomly extracted 240 process Otherwise, the overall is negative.
models from this dataset and considered them as target
process models. We have then selected 16 processes from e
collection and we considered them as queries. Each query is For performance evaluation, we measured precision, recall
compared to a collection of process models using proposeand overall for the different algorithms according to diéfet
algorithms. The query is manually compared by the expervalues of the acceptance threshold. As shown in Figure 4(a),
user to the collection of process models to decide which oprecisions of the algorithms increase according to thestire
them match this query. old because high values of thresholds minimize the number
of false positives in th&ket set, what gives higher precision.
However, recalls of algorithms decrease when the threshold
We measured performance of each distance and similarityncreases (see Figure 4(b)). This is due to the fact that high
based algorithm using recall, precision and overall messur thresholds reduce the number of true positives inRheset,
Let Rel be the set of relevant process models given bywhat leads to low recalls. Using a reduced value of threshold
the expert user and?et be the set of process models leads to low precisions, and using a high threshold leads to

Results and interpretation

A. Performance Measure
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Figure 5. Best performance thresholds

low recalls. Figure 4(c) confirms this observation and showsar), the Jaro based algorithms detects this kind of magchin
poor performances in terms of overall for low and highand hence presents high performances. Finally, the atgorit
values of thresholds. Good performances of algorithms arbased on our similarity gives better results since we censid
achieved for the threshold values 0.4, 0.5 and 0.6. To confirmearer common activities and we take into account the
this, we present performances of algorithms according tmumber of common activities in the opposite direction (i.e.
these thresholds (Figure 5(a) for 0.4, Figure 5(b) for 0.Sbetween the current process model and the query). These
and Figure 5(c) for 0.6). We can see that high performancesnprovements increase the accuracy of results given by our
of algorithms especially for overall measure are achievedimilarity based algorithm.

when considering the 0.5 threshold.
VI. CONCLUSION

substltuuon- edit operation. Thus, the distance returngd bpared results of the different algorithms. The experimenta
SUbWOTd dls_tance may be far _from the_ real value. Theresults show that all algorithms present good performances
Hamming d|3t51_nce _based _algonthm _acmeves bet'_[er resu{Br the empirical threshold 0.5. The proposed similaritgiey
than subword since it considers substitution operatioy(on ., ~iher comparator metrics by achieving high precision,
in the same order). The algorithm using Levenstein distancg, .11 and overall.

is better than subword and Hamming algorithms since it 1 improve performances of our solution in real appli-
considers all edit operations in any possible order. The ‘]arcations, it will be very interesting to consider semantic
similarity_ based algorit_hm achieyes better resul'_[s than th relationships of activities of the process models. Thislzan
above dlscusseq glg(_)rlthms. Th_|s can be explained by thgqje\eq using a domain ontology containing the semantic
fact that Jaro similarity comparison is based on Commor}elationships of activities.
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