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Abstract—Retrieving matchings between process models be-
comes a significant challenge in many applications. Recent
attempts have been done to measure similarity of process
models based on graph-edit distance. This problem is known to
be difficult and computational complexity of exact algorithms
for graph matching is exponential. Thus, heuristics must be
proposed to obtain approximations. In this paper, we propose
an approach to find relevant process models based on their
decomposition into paths of possible execution sequences.Then,
we propose a schema to compute the similarity between two
process models using the proposed decomposition. Moreover,
we give particular attention to the problem of ranking a
collection of process models according to a particular query.
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I. I NTRODUCTION

Process-Aware Information Systems [1] have recently
become an important research area since business world
dynamics is continuously increasing making the compa-
nies confronting frequent changes in their business envi-
ronment [2]. Enterprises show the need of continuously
re-engineering their Business Processes. Hence, their per-
formance in markets is closely related to their business
processes optimization, flexibility and ability to be upgraded.
The increasing importance of Process-Aware Information
Systems and Service-Oriented Architectures leaded the com-
panies to their own process model repositories. Thus, com-
puting similarity between process models is a critical task
that should be completed to manage these repositories.
Comparing two processes mainly consists in determining
differences between two process models, generally a refer-
ence model and the enterprise model. Furthermore, ranking a
set of process models following their similarity with the user
process model helps administrators to manage collections of
process models or several versions of same models.

Inexact, error-tolerant or error-correcting graph-matching
is a challenging problem in the manipulation of relational
structures that arises in many areas of machine intelligence
[3]. Determining the similarity between different graph
structures is one of the important issues that relates to the
problem. This task is frequently defined as the problem of
computing the graph edit distance. Some recent proposals for
process matching [4], [5] showed the effectiveness of using
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graph-based modeling of the problem of process discovery
and ranking. However, the graph matching algorithms that
underly the propositions induce high computational com-
plexity which reduces their application in practice.

The principle of edit distance computation is to identify
a set of basic edit operations on nodes and edges of a
graph, and to associate costs to these operations [6]. The
edit distance is found by determining the sequence of edit
operations that will make the two graphs isomorphic, with
minimum cost. The set of edit operations is given by
insertions, deletions, and relabeling of both nodes and edges.
Unfortunately, computing the exact value of the edit distance
has been proved to be a difficult task by Wanget al. [7].
To make the algorithm tractable, heuristics that reduce the
complexity of the algorithm while keeping an acceptable
precision level are needed. Bunkeet al. showed the intimate
relationship between the size of the maximum common sub-
graph and edit distance [8]. In particular, they demonstrated
that problems of finding the maximum common subgraph
and computing the graph edit distance are equivalent. This is
an important observation since the problems may be related
to find efficient approximations each other.

Indeed, our work focus on decomposing the process
model into its paths of possible execution sequences based
on the process model graph. We propose a generic mecha-
nism using string comparator metrics to compute a distance
between a user query and a given process model based
on their possible execution sequences. Our contributions
include: (i) An algorithm to extract possible execution se-
quences of a process model. (ii) A mechanism to compute
distance or similarity between two process model graphs
based on their possible execution sequences. (iii) A new
similarity metric based on Jaro similarity to improve its
performance. (iv) A solution to rank a collection of process
models according to a given query.

The rest of this paper is organized as follows. After
some preliminaries given in Section II, we review related
work in Section III. The proposed approach is presented in
Section IV. Section V describe our experimental evaluation.
We conclude our paper in Section VI.

II. PRELIMINARIES

In this section, we introduce some concepts that are used
to define a process model. After, we present pertinent metrics
used in the literature to compare strings.



A. Model

The process model used to represent a given service is
based on the one proposed in [4] that covers the core features
of practical languages, such as BPMN, EPC, and OWL-S.

A process model is defined by a directed attributed graph
G = (V,A), whereV is a set of nodes andA is a set of
arcs that defines the precedence of the sequence relations
between nodes. We distinguish between two kinds of nodes:
activitiesandconnectors.

An activity node represents an atomic task. Connector
nodes represent control flow constraints. Two kinds of rules
are defined: split and join rules. For each kind of rule,
two kinds of operators exist: XOR or AND. A XOR-
Split represents a choice between one of several alternative
branches which are merged by a corresponding XOR-Join.
An AND-Split connector triggers its outgoing concurrent
branches which are synchronized by a corresponding AND-
Join connector. A Split connector must have at least two
outgoing arcs and, symmetrically, Join connectors must have
at least two incoming arcs. The model imposes that for each
Split connector, there will be exactly one corresponding Join
connector. Observe that loop operations are induced by arcs
i.e. if an arc links two nodes between which there already
exists a path, then a loop is formed.

B. String comparator metrics

We will use standard notations and definitions of combi-
natorics on words or strings, equally: given a finite alphabet
A, we will denoteA∗ the set of all words onA. The length
of a word w ∈ A∗ will be denoted by|w|. A word w is
called a factor (resp. aprefix) of another wordu if there
exist two wordsx, y such thatu = xwy (resp.u = wy).
A word x is said to be asubwordof y if there exist two
words u1, . . . , un and v0, . . . , vn such thatx = u1 . . . un

andy = v0u1v1 . . . unvn. In other words,x is a subword of
y if he is obtained fromy by deleting some of its factors.
Given two wordsx andy, a longest common subwordis a
word z of maximal size which is both a subword ofx and
y. It will be denotedlcs(x, y). For more details, see [9].

1) Hamming distancedH : This well-known distance is
applied on two words of the same size. Roughly speaking,
the Hamming distance between two wordsu and v is the
number of differences between the letters (characters) ofu
and v taken at the same positions. More formally, ifu =
u1 . . . un and v = v1 . . . vn, whereui and vi are letters
of the alphabet, thendH(u, v) is the number of indicesi
such thatui 6= vi. Note that in case where the two words
have different sizes, this distance can be extended by setting
dH(u, 0) = |u|. (e.g.,dH(aabbba, ababbb) = 3).

2) Subword distancedS : Given two wordsu and v of
arbitrary sizesn andm, the subword distancedS(u, v) is
defined as follows:

dS(u, v) = n+m− 2|lcs(u, v)|

The subword distance is the smallest number of insertions
and deletions needed to transformu into v. Note that in
the above formula, the computation of the longest common
subword of u and v can be done recursively in time
O(|u||v|). Yet, in the case where we search the subword
distance betweenk words, the problem is NP-hard [10].

3) Levenshtein distancedL: Levenshtein distance [11]
is certainly the most frequently used metric for string
comparison. In the literature, it is also callededit distance.
It can be seen as a mix of the two previous metrics, since
it corresponds to the number of edit operations (insertions,
deletions and substitution) needed to transformu into v.
Several surveys [12], [13] summarize the interest of the
Levenshtein distance in various domains.

This distance can be computed according to the following
recursive property: given two wordsu = (u1, . . . , un)
and v = (v1 . . . vm), with prefixesU1,...n (resp.V1,...m),
dL(Ui, Vj) is defined as follows :

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i if j = 0
j if i = 0

min(dL(Ui−1, Vj−1), dL(Ui−1, Vj) + 1,
dL(Ui, Vj−1) + 1) if ui = vj

min(dL(Ui−1, Vj−1) + 1, dL(Ui−1, Vj) + 1,
dL(Ui, Vj−1) + 1) if ui 6= vj

The above formula assumes that the edit costs equal1.
It can straightforwardly be adapted for any other values. A
simple dynamic program derived from it yields aO(nm)
algorithm.

4) The Jaro similarity dJ : The Jaro similarity was
introduced in 1989 [14]. Since then, it is considered as
one of the most accurate metric when dealing with short
words. Compared to the Levenshtein distance, it integrates
the notion of common characters between two words. Its
value is set in the range[0, 1], the value1 corresponding to
a perfect similarity.

Its computation integrates the concept ofcommon char-
acters: given two words u = (u1, . . . , un) and v =
(v1, . . . , vm), we say thatui andvj are common ifui = vj
andj − i ≤ max(n,m)/2− 1 (roughly speaking, it means
that there are not too far from each other). We will denote by
cc(u, v) the number of common characters betweenu and
v. Let u′ = (u′

1, . . . , u
′
k), be the characters inu which are

common withv (in the same order they appear inu) and let
v′ = (v′1, . . . , v

′
l), be the characters inv which are common

with u. The transposition numbert(u, v) is half the Ham-
ming distance betweenu′ andv′, sot(u, v) = dH(u′, v′)/2.
According to these notations, the Jaro similarity is defined
as follows:

dj(u, v) =
1

3
(
cc(u, v)

n
+

cc(u, v)

m
+

cc(u, v)− t(u, v)

cc(u, v)
)



III. R ELATED WORK

Several studies have been proposed for the problem of
determining the similarity of process models [15], [16], [5],
[17], [18].

In [19], workflows are modeled as automata and the
authors proposed a metric for measuring the similarity. The
similarity computation problem is reformulated as automata
intersection problem similarly to the maximum common
subgraph. Execution time by target process size which is
expressed as finding shared traces between the two automata
representing these processes. Trace equivalence is often used
to determine if two process models are similar or not [20].
In addition, the concept of bisimulation [21], [22] extends
trace equivalence by considering stronger constraints. In
[23], authors propose a similarity metric that integrates the
occurrence probability of shared traces between two pro-
cesses. Another work based on traces [24], assigns weights
to every trace based on logs of execution logs. This is done
to distinguish between traces according to their importance.

Work proposed in [25] defines a measure that evaluates
the similarity of state-charts by combining the similarities
of state labels and state depths. The behavioral similarity
of these states is obtained by comparing the vicinities of
states. In [16], authors proposed a representation of process
models based on finite set of structural relationships between
the activities: sequence, conditional, parallel branching, etc..
The distance between two processes is then defined as the
number of shared relations between them. The edit distance
[26] is also used to measure the difference between traces
[24], [27]. However, some asymmetry issues are still present.
To deal with that, some recent work [5] proposes algorithms
to measure the similarity of process models based on graph-
edit distance. Other work considering graph techniques
based on decomposition or summarization were proposed
in [28], [29].

In the present work, we propose a method based on string
comparator metrics to approximate the distance between
process models. Our approach is based on the decomposition
of process models into their expected execution sequences.

IV. OUR APPROACH

We describe in this section our approach for process
models matchmaking. LetA andB be two process models.
We first want to compute the distance betweenA andB.
We can achieve this using a graph matching algorithm [30].
However this problem is NP-complete and the computational
complexity of such algorithm is exponential in the size of the
two process models. To overcome this problem we propose
to decompose the process graph into its paths of possible
execution sequences.

In this paper, we consider two specifics problems. The
first is the problem of computing the distance between two
process models. The second deals with ranking a collection
of process models according to a given query.

In the following, we first give the details of our decom-
position of a process model, then we present our solutions
for the above cited problems.

A. Execution sequences decomposition

We present here how to decompose a process model into
its paths of possible execution sequences (ESs). To achieve
this, we develop an algorithm to extract possible execution
sequences fromSTARTnode to END node of a process
model represented by a graphG according to behavior
definition of each node. For example, anXOR-Splitmeans
that only one activity among children activities is executed.
However, anAND-Splitmeans that all children activities are
executed in any order. Two examples of execution sequences
of two process models are given in Figure 1.

The parameters of the algorithm are from which node the
exploration begins (fromNode) and to which node ends
(toNode). The algorithm requires also the current list of ESs
(currentESs) to continue from this list. The pseudocode
of the algorithm is given by Algorithm 1 (ESsAlgorithm).
The algorithm is recurrently called according to the type of
fromNode. If it is a START , XOR Join or AND Join
node, the algorithm is called to explore from the next child
activity (line 5). In case ofXOR− Split, the algorithm is
called from each child offromNode until the end of this
XOR (given byGetENDfunction) by using the current list of
ESs (line 13). All returned lists of ESs are added to the list of
ESs of this XOR (xorESs). To continue the exploration, the
algorithm is called from the end ofXOR to toNode using
xorESs (line 16). In case ofAND − Split, the algorithm
is called from each child offromNode until the end of this
AND by using an empty list of current ESs (line 23). All
possible concatenations between returned values are done
by ConcatLists function to obtain the list of ESs of this
AND (andESs). After, the algorithm is called from the
end of thisAND to toNode using andESs (line 26). It
remains to treat the case of ordinary activity. In this case,
the value offromNode is added to all ESs ofcurrentESs
list and the algorithm is called from the next child activity
of fromNode to toNode usingcurrentESs list (line 30).
Notice that to avoid infinite executions, we limit tok the
number of execution of loops. The value ofk is set to 1 to
reduce the computational complexity and can be increased
to improve performances of our solution (see the example
in Figure 1). We show in this paper that by settingk to 1,
our solution achieves good performance.

B. Comparing two process models

We propose here a solution to compute the distance
between two process modelsA and B. First, the two
process models are decomposed into their possible ESs using
Algorithm 1. Then, we construct a bipartite graph where the
two partitions of nodes are respectively the set of ESs ofA
and the set of ESs ofB. Consider the example illustrated in



Figure 1. Example of how our solution proceeds. Each ES ofA is related by an arrow to the ES ofB that matches it better.

Algorithm 1 Execution sequences algorithm:ESsAlgorithm
Input: A graphG, from which node the exploration begins (fromNode) and to

which node ends (toNode), and the current list of ESs (currentESs)
Output: List of possible ESs fromfromNode to toNode

1: fromNode.NBExploration ++ //Limit the number of executions of a loop tok
2: if (fromNode = toNode) then
3: return currentESs
4: end if
5: if (fromNode ∈ {START,XOR Join,AND Join}) then
6: return ESsAlgorithm(G,fromNode.child(1),toNode,currentESs)

//To continue the exploration from the next child
7: end if
8: if ( fromNode = XOR Split) then
9: xorESs := null

10: endXOR :=GetEND(XOR Split)
11: for (i := 0; i < fromNode.NBChildren; i + +) do
12: if (fromNode.child(i).NBExploration < k) then
13: xorESs.addAll(ESsAlgorithm(G, fromNode.child(i),

endXOR, currentESs))
14: end if
15: end for
16: return ESsAlgorithm(G, endXOR, toNode, xorESs)
17: end if
18: if ( fromNode = AND Split) then
19: andESs := currentESs

20: endAND :=GetEND(AND Split)
21: for (i := 0; i < fromNode.NBChildren; i + +) do
22: if (fromNode.child(i).NBExploration < k) then
23: andESs := ConcatLists(andESs, ESsAlgorithm(G,

fromNode.child(i), endAND, null))
24: end if
25: end for
26: return ESsAlgorithm(G, endAND, toNode, andESs)
27: end if
28: if (fromNode is an ordinary activity)then
29: AddList(currentESs,fromNode)
30: return ESsAlgorithm(G,fromNode.child(1),toNode,currentESs)
31: end if
32: end

Figure 2. We compute the distances (Levenshtein distance
is used in this example) between every node ofESsA and
every node ofESsB (the bipartite graph is complete). Note
that if the two partitions do not have the same size, we
complete the smaller one with empty ESs. One the complete
bipartite graph is obtained, we compute the distance between
A and B as the sum of distances on the set of edges
given by the Minimal Weight Bipartite Maximum Matching
(MWBMM). In the example given by Figure 2, the distance
betweenA andB is equal to 3.

Figure 2. Solution for computing the distance between two process models.
The weight of each edge connecting an ES ofA and an ES ofB is the
distance between them.

This solution can be easily modified to compute the
similarity betweenA andB. In this case, We compute the
similarities between every node ofESsA and every node
of ESsB. The similarity betweenA and B is the sum
of similarities on the set of edges given by the maximal
weight bipartite maximum matching. Notice that the com-
putational complexity of the algorithm that finds the the



maximal or minimal weight bipartite maximum matching
is O((max(nA, nB))

3) [31] where nA = |ESsA| and
nB = |ESsB|.

C. Ranking process models

In this problem, we are interested to rank a collection
of process models according to a given query. In this case,
we propose a schema to avoid finding the MWBMM which
induces a cubic computational complexity. Our schema
matches each ES ofA with the ES ofB whose it has
the minimum distance (see Figure 1). The computational
complexity of our schema isO(nA × nB).

Our solution is composed of three steps (see Figure 3).
In the first, each process model of the collection is loaded
and transformed to a graph representation. To avoid using an
exponential algorithm [30] to compute the distance between
the entire graphs ofA andB, we propose to decompose the
two graphs into their paths of possible ESs, then we propose
a method to compute a distance between the two graphs
using theirs ESs. Thus, in the second step of our solution, we
extract possible execution sequences of the process model
using Algorithm 1. In the last step, we search for each ES of
a process modelA, the ES of the processB that matches it
better (an example is given in Figure 1). Then, we propose a
generic mechanism to compute the distance or similarity be-
tween the two process models using their ESs (more details
are given in Section IV-C1). We considered four pertinents
string comparators metrics described in Section II-B. We
also propose a new comparator metric by modifying Jaro
similarity to improve its performances. We compare obtained
results of existing string comparator metrics to the results
of the proposed similarity. Each comparator metric gives a
value of the distance or similarity between the query and the
current process model. This process is repeated for the user
query and each process model of the collection. At the end
of this step, a rank of process models that match better the
query is given for each considered metric. We can see that
choosing the first process model in a rank gives the process
model that matches better the given query. However there is
different ranks given by each considered metric. To evaluate
performances of each solution, we compare obtained results
with an expert user results.

1) Distance based rank algorithm:We describe in this
section our algorithm of computation of the distance be-
tween a given user queryA and a process modelB of the
collection. After that we show how to modify the algorithm
if a similarity is considered. First, the algorithm finds for
each ES ofA, the ES ofB that matches it better. To achieve
this, we use one of the string comparator metrics. LetDij

be a distance between theith ES of queryA and jth ES
of the process modelB. We define,DiB to be the distance
between theith ES of A and all ESs ofB. Since we are
searching the ES ofB which matches better theith ES of
A, we considerDiB the minimum of all distances between

Algorithm 2 Distance based rank algorithm
Input: a query A, a collection of process models
Output: a rank of the process models that match better A

1: while there is a process model in the collectiondo
2: B := the current process model
3: DAB := 0 //to initialize the distance to 0
4: for each ESi of query A do
5: DiB := MaxDiB //to initialize DiB to the Max value it can take
6: for each ESj of process model Bdo
7: ComputeDij according to the considered distance
8: if (Dij < DiB) then
9: DiB := Dij //to compute the minimum distance

10: UpdateMaxDiB //according to the considered distance
11: end if
12: end for
13: DAB := DAB +

DiB
MaxDiB

14: end for
15: DAB :=

DAB
Size(A)

//to have the mean distance
16: end while
17: Sort process models according to increasing distancesDAB

18: end

the ith ES of queryA and all ESs ofB (An example is
given in Figure 1). Thus,DiB = min{Dij : j ∈ B}.
We defineDAB to be the mean distance between ESs of
A and ESs ofB. Hence,DAB = 1

size(A)

∑

i∈A
DiB

MaxDiB
,

where size(A) is the number of ESs of the queryA and
MaxDiB is the maximal value that can takeDiB . If Lev-
enstein or Hamming distance is considered, returnedDiB

is always less thanMax(size(A(i)), size(B(j))), where
size(A(i)) is the number of activities of theith ES of
A. ThusMaxDiB = Max(size(A(i)), size(B(j))). This
computation ofDAB yields a value in [0,1] and gives
more weight to a process model that matches better long-
size ESs of the query. However, the weight can be other
practical considerations as frequencies of ESs, the priority
of the process model, ...etc. This process is repeated for each
process model of the collection. At the end of the algorithm,
we sort process models according to increasing distances
DAB to obtain a rank of process models that match better
the queryA. The pseudocode of our algorithm is given by
Algorithm 2. Our algorithm is generic and can be used for
all string distances proposed in the literature. We have only
to defineMaxDiB which is the maximum value that can
take DiB according to each distance. In case of subword
distance,MaxDiB = size(A(i)) + size(B(j)).

The algorithm is modified as follows to computeDAB in
case where a similarity is considered.
DAB = 1

size(A)

∑

i∈A DiB , whereDiB is the maximum of
all similarities between theith ES of queryA and all ESs
of B (i.e. DiB = max{Dij : j ∈ B}). Thus, we inverse the
inequality in line 8 of Algorithm 2. For any similarity,DiB

is in the interval [0,1], thusMaxDiB = 1. Notice that the
computation ofDAB gives always a value between0 an 1.
It remains to sort process models according to decreasing
similarities DAB to obtain a rank of process models that
match better the queryA. The modified algorithm is also
generic and can be used for all similarities.

We also propose a new similarity:



Figure 3. Solution for ranking a collection of process models

2) Proposed similarity:To improve the precision of Jaro
similarity, we propose to considerui andvj to be common
if ui = vj and |i − j| < min(n,m)/2. Thus,ui and vj
are considered to be common if they are nearer. We also
propose to consider the opposite direction when comparing
u andv sincecc(u, v) 6= cc(v, u). Thus we propose a new
similarity:
SP (u, v) = 1

4 (
cc(u,v)

n
+ cc(v,u)

m
+ cc(u,v)−t(u,v)

cc(u,v) +
cc(v,u)−t(u,v)

cc(v,u) ).
Notice thatt(v, u) is not considered since it is equal to

t(u, v). The performances of the proposed similarity are
compared in this paper to those of string comparator metrics
described in Section II-B.

V. EXPERIMENTAL EVALUATION

We present in this section a set of experiments that vali-
date the performance of our solution. All components of the
proposed architecture presented in Figure 3 are implemented
using the Java programming language and Eclipse SDK
version 3.5.2. Evaluating precision of matching algorithms
is often impossible. However, the goals of matching depend
heavily on user requirements. Thus, we compare obtained
results of different considered distances and similarities
algorithms with the match result given by an expert user.
The used dataset [32] contains 623 semantic process models
specified using the graph based representation of process
models defined above. We randomly extracted 240 process
models from this dataset and considered them as target
process models. We have then selected 16 processes from the
collection and we considered them as queries. Each query is
compared to a collection of process models using proposed
algorithms. The query is manually compared by the expert
user to the collection of process models to decide which of
them match this query.

A. Performance Measure

We measured performance of each distance and similarity
based algorithm using recall, precision and overall measures.
Let Rel be the set of relevant process models given by
the expert user andRet be the set of process models

returned by a distance or similarity based algorithm. We
use an acceptance threshold to decide that a process model
belongs to theRet set. Thus, a process model is added
to Ret if it has a similarity computed with Algorithm 2
(DAB) greater than the threshold. In case where a distance
is used, a process model is added toRet if 1

1+DAB
is

greater than the threshold. An important problem is the
choice of this threshold. We compare the different algorithms
using the three measures (precision, recall and overall) under
different values of the threshold chosen between 0.2 and 0.9.
We will then propose an empirical value of the threshold
where all the algorithms present the best results according
to considered measures.

• Precision is given by :Precision = |Rel∩Ret|
|Ret| . It

reflects the share of real correspondences among all
returned (found) process models. A solution having
high value of precision means that it does not return
much false positives.

• Recall is given by :Recall = |Rel∩Ret|
|Rel| . It specifies the

share of real correspondences that is returned. A high
value of recall of a given solution means that it does
not return much false negatives.

• We also consider the overall measure proposed in [33]
which is a combined measure of match quality.
Overall = Recall×(2− 1

Precision
). Notice that overall

makes sense only if precision is not less than 0.5.
Otherwise, the overall is negative.

B. Results and interpretation

For performance evaluation, we measured precision, recall
and overall for the different algorithms according to different
values of the acceptance threshold. As shown in Figure 4(a),
precisions of the algorithms increase according to the thresh-
old because high values of thresholds minimize the number
of false positives in theRet set, what gives higher precision.
However, recalls of algorithms decrease when the threshold
increases (see Figure 4(b)). This is due to the fact that high
thresholds reduce the number of true positives in theRet set,
what leads to low recalls. Using a reduced value of threshold
leads to low precisions, and using a high threshold leads to
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Figure 4. Performance measures according to different thresholds
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Figure 5. Best performance thresholds

low recalls. Figure 4(c) confirms this observation and shows
poor performances in terms of overall for low and high
values of thresholds. Good performances of algorithms are
achieved for the threshold values 0.4, 0.5 and 0.6. To confirm
this, we present performances of algorithms according to
these thresholds (Figure 5(a) for 0.4, Figure 5(b) for 0.5
and Figure 5(c) for 0.6). We can see that high performances
of algorithms especially for overall measure are achieved
when considering the 0.5 threshold.

When comparing the different algorithms we observe
that lower performances are given by the algorithm using
subword distance since it does not take into account the
substitution edit operation. Thus, the distance returned by
subword distance may be far from the real value. The
Hamming distance based algorithm achieves better result
than subword since it considers substitution operation (only
in the same order). The algorithm using Levenstein distance
is better than subword and Hamming algorithms since it
considers all edit operations in any possible order. The Jaro
similarity based algorithm achieves better results than the
above discussed algorithms. This can be explained by the
fact that Jaro similarity comparison is based on common
activities and the appearance order of activities is not so
important in a certain limit of distance between these ac-
tivities. Since in many cases in process models, the order
of activities is not very important (example, rent a car after
hotel reservation is similar to hotel reservation after rent a

car), the Jaro based algorithms detects this kind of matching
and hence presents high performances. Finally, the algorithm
based on our similarity gives better results since we consider
nearer common activities and we take into account the
number of common activities in the opposite direction (i.e.
between the current process model and the query). These
improvements increase the accuracy of results given by our
similarity based algorithm.

VI. CONCLUSION

In this paper we proposed a solution for process model
matchmaking based on comparator metrics of possible ex-
ecution sequences. We implemented our solution and com-
pared results of the different algorithms. The experimental
results show that all algorithms present good performances
for the empirical threshold 0.5. The proposed similarity over-
come other comparator metrics by achieving high precision,
recall and overall.

To improve performances of our solution in real appli-
cations, it will be very interesting to consider semantic
relationships of activities of the process models. This canbe
achieved using a domain ontology containing the semantic
relationships of activities.
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