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Abstract

In this paper, we study a new coloring parameter of graphs called the gap vertex-
distinguishing edge coloring. It consists in an edge-coloring of a graph G which
induces a vertex distinguishing labeling of G such that the label of each vertex is
given by the difference between the highest and the lowest colors of its adjacent
edges. The minimum number of colors required for a gap vertex-distinguishing edge
coloring of G is called the gap chromatic number of G and is denoted by gap(G).

In this paper, we study the gap chromatic number for a large set of graphs G of
order n and we even prove that gap(G) ∈ {n− 1, n, n + 1}.

Key words: graph, edge coloring, gap vertex-distinguishing edge coloring.

1 Introduction and definitions

All graphs considered in this paper are finite and undirected. For a graph
G, we use V (G), E(G), 4(G) and δ(G) to denote its vertex set, edge set,
maximum degree and minimum degree, respectively. For any undefined terms,
we refer the reader to [7].
A vertex labeling of a graph G is said to be vertex-distinguishing labeling if
distinct vertices are assigned distinct labels. Let k be a non-negative integer.
A k-edge-coloring of G is a mapping f from E(G) to {1, 2, ..., k}. We say
that an edge coloring is proper if no two adjacent edges have the same color.
Many researchers investigated the question of edge coloring inducing a vertex
distinguishing labeling. This is often referred to as vertex-distinguishing edge
colorings. In the literature, four main different functions have been proposed
to label each vertex v of G according to the colors of its incident edges. A
vertex labeling l induced by an edge-coloring f is said to be:
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(1) vertex-labeling by sum if l(v) =
∑

v3e f(e),∀v ∈ V (see [12,18]).
(2) vertex-labeling by sets if l(v) =

⋃
v3e f(e),∀v ∈ V (see [8,9,14]).

(3) vertex-labeling by multiset if l(v) =
⊎

v3e f(e),∀v ∈ V (see [1,6,11]).
(4) vertex-labeling by product if l(v) =

∏
v3e f(e),∀v ∈ V (see [17]).

The problem of vertex-distinguishing edge colorings offers many variants and
received a great interest during these last years. We refer the interested reader
to Chapter 13 of Chartrand and Zhang’s book [13]. In this paper, we define a
new variant called gap vertex-distinguishing edge coloring, which is defined as
follows:

Definition 1 Let G be a graph, k be a positive integer and f be a mapping
from E(G) to the set {1, 2, ..., k}. For each vertex v of G, the label of v is
defined as

l(v) =

f(e)e3v if d(v) = 1

maxe3v f(e)−mine3v f(e) otherwise

The mapping f is called gap vertex-distinguishing labeling if distinct vertices
have distinct labels. Such a coloring is called a gap-k-coloring.

The minimum positive integer k for which G admits a gap-k-coloring is called
the gap chromatic number of G and is denoted by gap(G). Necessary and suf-
ficient conditions for the existence of such a coloring are given by the following
proposition:

Proposition 1 A graph G admits a gap vertex-distinguishing edge coloring if
and only if it has no connected component isomorphic to K1 or K2.

Proof. Since no isolated vertex of a graph G is assigned a label in an edge
coloring of G, we may assume that G has no isolated vertices. Furthermore,
if G contains a connected component K2, then the two vertices of K2 are
assigned the same label in any edge coloring of G. Hence, when considering
gap vertex-distinguishing edge coloring of a graph G, we may assume that
the order of every connected component of G is at least 3. Let G be such a
graph and let E(G) = {e1, e2, ..., em}. The following edge coloring function:
f(ei) = 2i−1 for 1 6 i 6 m induces a gap vertex-distinguishing edge coloring
of G. �

The following lemma gives a lower bound on the gap chromatic number.

Lemma 2 A graph G of order n and without connected component isomorphic
to K1 or K2 satisfies gap(G) ≥ n− 1. Moreover, if δ(G) ≥ 2 or if any vertex
of degree greater than 1 has at least two adjacent vertices of degree 1, then
gap(G) ≥ n.
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[] [] []

Figure 1. A gap vertex-distinguishing edge coloring of a graph.

To illustrate these concepts, consider the graph G shown in Figure 1. A 6-edge
coloring f1 of G is given in Figure 1 and a 5-edge coloring f2 of G is given
in Figure 1. For example, in Figure 1, the vertex w is incident to two edges
colored 2 and one edge colored 3, then l1(w) = 1, while the vertex z is incident
with one edge colored 6, then l1(z) = 6. The resulting vertex labels are distinct
for both figures. By Lemma 2, we have gap(G) ≥ 5, hence we can immediately
conclude that gap(G) = 5.
After a strong analysis of this problem, we raised the conjecture asserting that
there is no graph G of order n with gap(G) > n+ 1.

Conjecture 3 A graph G of order n (not necessarily connected), without iso-
lated edges and isolated vertices has gap(G) ∈ {n− 1, n, n+ 1}.
In the following sections, we prove this conjecture for a large set of graphs and
we even decide the exact value of gap(G). The rest of the paper is organized as
follows: first, we point out some previous work related to the topic of this paper
and give some motivations to investigate this new parameter. The results of
Section 3 will confirm our conjecture for a large part of graphs with minimum
degree at least 2. In Section 4, we prove our conjecture for some classes of
graphs with minimum degree 1, such as paths, complete binary trees and all
trees with at least two leaves at distance 2. This classification of our results
according to δ(G) is due to the definition of our parameter, especially to the
definition of labels of vertices of degree one. Concluding remarks and some
open issues are discussed in the last section.

2 Motivation and Related Work

In this section, we describe the motivation to study the gap coloring problem.
We first introduce the following notation: given a set S of positive integers, we
denote by diam(S) the diameter of S, where diam(S) = max{x−y : x, y ∈ S}.
The following proposition is thus obvious.

Proposition 4 Let S1 and S2 be two sets of positive integers, if diam(S1) 6=
diam(S2), then S1 6= S2.

From the gap vertex labeling function (Definition 1), we observe that the label
of every vertex v with degree at least 2 is the diameter of the set of colors
incident to v. Note that this is not the case for the vertices of degree 1. Then,
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the gap labeling of a graph G can be seen as a strong version of set and
multisets labelings (defined on page 2, in (2) and (3)). Indeed, according to
Proposition 4, a gap distinguishing labeling of a graph G is also a multiset
distinguishing labeling of G and a set distinguishing labeling (if δ(G) > 1).
We here present the main results about these related coloring problems.

Let χ′(G) denote the minimum number of colors required to have a proper
edge coloring of G that induces a vertex-distinguishing labeling by sets. This
coloring number was introduced and studied by Burris and Schelp in [2,8], and
independently called observability of a graph by Cerny et al [9]. The following
result has been conjectured by Burris and Schelp [8] and proved in [5].

Theorem 5 ([5]) A graph G with n vertices, without isolated edges and with
at most one isolated vertex, has χ′(G) ≤ n+ 1.

Let χ′0(G) denote the minimum number of colors required to have an edge
coloring (not necessarily proper) of a graph G that induces a vertex distin-
guishing labeling by sets. Harary and Plantholt [14] referred to this type of
coloring as a point-distinguishing edge coloring. They proved, among other
things, the exact value of χ′0(Pn), χ′0(Cn), χ′0(Qn) and χ′0(Kn) for n ≥ 3. Even
for bipartite graphs it seems that the problem of determining χ′0(Km,n) is not
easy (see [15,16,19]). Clearly we have χ′0(G) ≤ χ′(G), and the following result
follows from Theorem 5.

Theorem 6 A graph G with n vertices, without isolated edges and with at
most one isolated vertex, has χ′0(G) ≤ n+ 1.

Finally, let c(G) denote the minimum number of colors required to have an
edge coloring (not necessarily proper) of G that induces a vertex-distinguishing
labeling by multisets. This concept was studied in [3,4,10,11] and the following
result stated in [13] will be useful to bound our parameter.

Theorem 7 ([13]) If G is a connected graph of order n ≥ 4, then c(G) ≤
n− 1.

We now characterize the relationship between our coloring parameter and the
two coloring parameters χ′0(G) and c(G) defined previously. The following
results follows from Proposition 4 and the definitions of χ′0(G) and c(G).

Lemma 8 For every graph G without components isomorphic to either K1 or
K2 and with minimum degree at least 2, we have

χ′0(G) ≤ gap(G)

Lemma 9 For every graph G, without components isomorphic to either K1

or K2, we have
c(G) ≤ gap(G)
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We will see in Corollary 20 how the results of the current paper can be con-
nected to the study of χ′0(G).

3 Graphs with δ(G) ≥ 2

Recall that a m-edge-connected graph is a graph in which removing any m− 1
edges does not disconnect it. The main result of this section is the following:

Theorem 10 For every m-edge-connected graph G of order n with m ≥ 2,

gap(G) =

n if G is not a cycle of length ≡ 2, 3(mod 4)

n+ 1 otherwise

The proof of Theorem 10 is the combination of several results detailed below.

Theorem 11 Let Cn be a cycle of order n, then

gap(Cn) =

n if n ≡ 0, 1(mod 4)

n+ 1 otherwise

Proof. Let Cn = (v1, v2, · · · , vn, vn+1 = v1). For each integer i with 1 ≤ i ≤ n,
let ei = vivi+1. We consider two cases as follows:

Case 1: n ≡ 0, 1(mod 4). By Lemma 2, we have gap(Cn) ≥ n, it then suffices
to prove that Cn admits a gap-n-coloring. Two subcases are considered:
Subcase 1.1: n ≡ 0(mod 4). A mapping f from E(Cn) to {1, 2, · · · , n} is
defined as follows (see Figure 3).

For 1 ≤ i ≤ n, f(ei) =


n+ 1− i if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

This mapping induces the following gap vertex labeling function:

For 1 ≤ i ≤ n, l(vi) =


n− i+ 1 if i ≡ 2(mod 4)

n− i if i ≡ 0, 3(mod 4)

n− i− 1 if i ≡ 1(mod 4)

Then, it is easy to check that l is a bijection from V (Cn) to {0, 1, · · · , n− 1}.
Hence gap(Cn) = n.
Subcase 1.2: n ≡ 1(mod 4). A mapping f from E(Cn) to {1, 2, · · · , n} is
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defined as follows (see Figure 3):

For 1 ≤ i ≤ n, f(ei) =


i if i is odd

n− 1 if i ≡ 2(mod 4)

n if i ≡ 0(mod 4)

This mapping induces the following gap vertex labeling function:

For 1 ≤ i ≤ n, l(vi) =


n− i if i ≡ 1, 2(mod 4)

n− i+ 1 if i ≡ 0(mod 4)

n− i− 1 if i ≡ 3(mod 4)

Then, it is easy to check that l is a bijection from V (Cn) to {0, 1, · · · , n− 1}.
Hence gap(Cn) = n.

Case 2: n ≡ 2, 3(mod 4). We first prove that gap(Cn) > n. Let f : V (Cn) −→
{1, 2, · · ·n} be any edge-coloring of Cn which induces a gap vertex-distinguishing
function l. Now note that:

n∑
i=1

l(vi) =| f(e1)− f(en) | +
n∑

i=2

| f(ei)− f(ei−1) |=
n(n− 1)

2

In this formula, each term f(ei) appears twice with opposite (or same) signs,

hence n(n−1)
2

is even. But this latter value is odd if n ≡ 2, 3(mod 4), which is a
contradiction. Thus, gap(Cn) ≥ n+1. It then remains to show that gap(Cn) ≤
n+ 1. Two subcases are considered according to whether n mod 4 = 2 or 3.
Subcase 2.1: n ≡ 3(mod 4). We know that Cn+1 admits a gap-(n + 1)-
coloring. Necessarily, Cn+1 must contain two successive edges of same color j
where 1 ≤ j ≤ n + 1. By merging these two edges into a single edge colored
by j, we obtain a gap-(n+ 1)-coloring of Cn (see Figure 3).
Subcase 2.2: n ≡ 2(mod 4). In this subcase, we define an edge coloring f
from E(Cn) to {1, 2, · · · , n, n + 1} by (see Figure 3) : f(en) = f(en−1) = 2,
f(en−2) = 3 and

For 1 ≤ i ≤ n− 3, f(ei) =


n+ 2− i if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

This mapping induces the following gap vertex distinguishing labeling:
l(vn−2) = 2, l(vn−1) = 1, l(vn) = 0 and

For 1 ≤ i ≤ n− 3, l(vi) =


n− i if i ≡ 1(mod 4)

n+ 2− i if i ≡ 2(mod 4)

n+ 1− i if i ≡ 0, 3(mod 4)
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Then, it is easy to check that l is a bijection from the vertex set of Cn to the
set {0, 1, · · · , n, n+ 1} \ {3}. Hence gap(Cn) = n+ 1. �

[] []

cycleb-eps-converted-to.pdf

[] []

Figure 2. A gap vertex-distinguishing edge colorings of Cn: (a) n = 8, (b) n = 9,
(c) n = 7, (d) n = 6.

We now introduce a definition which plays a pervasive role in this section.

Definition 2 Let G be a graph of order n and let f be an edge coloring of G.
For every vertex v of G, we specify an interval I(v) = [minf(e)e3v,maxf(e)e3v].
We say that f is balanced if I(v1) ∩ I(v2), · · · ∩ I(vn) 6= ∅.

The following proposition summarizes an important property of our coloring
parameter.

Proposition 12 Let G be a graph with δ(G) ≥ 2. If there exists a spanning
subgraph H of G with δ(H) ≥ 2 and there exists a gap vertex-distinguishing
balanced edge coloring f of H with k colors, then gap(G) ≤ k.

Proof. Under the stated hypothesis, the gap vertex-distinguishing labeling
of H is induced by a balanced edge coloring f with k colors. Therefore, there
exists at least an integer j where 1 ≤ j ≤ k such that ∀v ∈ V , we have j ∈ I(v).
By coloring the edges of G \H with the color j, we obtain a gap-k-coloring of
G. Hence gap(G) ≤ k. �

We illustrate the interest of Proposition 12 by considering the following ex-
ample: let G be a Hamiltonian graph of order n ≡ 0(mod 4). In the proof of
Theorem 11 (Subcase 1.1), it is easy to check that the proposed edge coloring
of Cn is balanced. Indeed, for each vertex v in G, we have 2 ∈ I(v). Hence,
we can extend the cycle Cn to G by weighting the added edges with color 2
without affecting the gap chromatic value of Cn. Thus, for every Hamiltonian
graph G of order n ≡ 0(mod 4), we have gap(G) = n.
The following proposition is useful for proving Theorem 10. Furthermore, it
provides a useful tool for proving other results.

Proposition 13 If G = (V,E) is a m-edge-connected graph of order n (with
m ≥ 2), different from a cycle of length ≡ 1, 2 or 3(mod 4), then for all
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integer a ≥ 0, there exists an (a + n)-edge-coloring f which induces a gap
vertex-distinguishing labeling l : V → {a, a+ 1, · · · , a+ n− 1}

Proof. The proof of this proposition is done by giving a polynomial-time
algorithm. Let us begin with some definitions and notations. For every subset
S of V , let NS denote the set of neighboring vertices of S, not included in S.

NS = {u ∈ V \ S : ∃v ∈ S for which (v, u) ∈ E}

For every two adjacent vertices u and v of G such that v ∈ S and u ∈ NS,
let P (v, u) be a function which returns a path (or cycle) from v to a vertex
w ∈ S that passes through u, such that the set of vertices between v and w
does not belong to S.
Let f be an edge coloring of G. For every subgraph R of G, let g(R) be a
function defined on the set E(R) as follows:

g(R) = min{f(ei) : ∀ei ∈ E(R), f(ei) 6= 1, 2}

We denote by Q the set of all graphs that are isomorphic to a cycle of order
multiple of 4 or to two cycles having at least one vertex in common.

Observation Every m-edge-connected graph G (with m ≥ 2), different from
a cycle of length ≡ 1, 2 or 3(mod 4) contains at least one subgraph H ∈ Q.

It is clear that if G is a 2-edge-connected graph, different from a cycle, then
4(G) ≥ 3. Hence, the subgraph H can always be obtained from G. The
basic idea of our algorithm is to find a balanced edge-coloring f of a 2-edge-
connected spanning subgraph G′ = (V ′, E ′) of G. Initially, both sets V ′ and
E ′ are empty set. During the algorithm, the updating of V ′ and E ′ is done
gradually through a specific edge coloring procedure (which is explained in
more detail below). When an edge of G is colored by this procedure it is
inserted into E ′. A vertex v ∈ V is inserted into V ′ if and only if it is incident
with at least two colored-edges (e, s ∈ E). Note that when a vertex v is
inserted in V ′, we set the label l(v) as l(v) = |f(e) − f(s)| and the interval
I(v) at [min(f(e), f(s)),max(f(e), f(s))]. Such an edge coloring ensures that
for every interval I(v), we have 2 ∈ I(v).
In more details, the proposed algorithm starts by coloring the edges of a
subgraph H ∈ Q of G of order k which induces a gap vertex-distinguishing
labeling of H, where the vertices of H are labeled by distinct numbers ranging
from n+ a− k to n+ a− 1. We can easily establish this labeling structure for
every subgraph H of G which is isomorphic to a member of Q. Then, we have
proposed four edge-coloring functions to color the set of edges which constructs
a cycle that has an unique vertex in V ′ or a path between two vertices of V ′.
This last step is iterated until all vertices are labeled (i.e., |V ′| = |V | ).
In order to color the subgraph H, we need to define several edge-coloring
functions. For a proper understanding of our algorithm, we are going to present
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the algorithm for a graph G which contains at least one cycle of length multiple
of 4. Otherwise, all other edge-coloring functions of H are described in detail
in the Appendix. The different steps of the algorithm are illustrated in the
example of Figure 3, where a = 12.

Algorithm 1
Input: An integer a ≥ 0 and a m-edge-connected graph G = (V,E) of

order n, such that m ≥ 2 and G is not isomorphic to a cycle of length
≡ 1, 2 or 3(mod 4).

Output: A balanced (a+n)-edge-coloring f of G which induces a gap vertex-
distinguishing function l : V → {a, a+ 1, · · · , a+ n− 1}.

Begin of Algorithm
Step1: V ′ ← ∅, E ′ ← ∅. Let an index t = 2.
Step2: Take any subgraph H = R1 ∈ Q of G.

2.1 If (R1 is a cycle of length k ≡ 0(mod 4)) Then
Let H = (v1, v2, · · · , vk, vk+1 = v1). For each integer i with 1 ≤ i ≤ k,
let ei = vivi+1. A mapping f from E(R1) to {1, 2, · · · , a + n} is defined as
follows:

For 1 ≤ i ≤ k, f(ei) =


n+ a− i+ 1 if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

This mapping induces the following vertex labeling of R1:

For 1 ≤ i ≤ k, l(vi) =


n+ a− i+ 1 if i ≡ 2(mod 4)

n+ a− i if i ≡ 0, 3(mod 4)

n+ a− i− 1 if i ≡ 1(mod 4)

Then, it is easy to check that l is a bijection from the vertex set of R1 to
the set {n+ a− 1, n+ a− 2, · · · , n+ a− k}.
Otherwise all other edge-coloring functions of R1 are described in detail
in the Appendix.
2.2 V ′ ← V (R1), E

′ ← E(R1) and set z = g(R1).

Step3: While ( V ′ 6= V ) do
Begin while
3.1 Take any two adjacent vertices u and v such that v ∈ V ′ and u ∈ NV ′ .
3.2 Let Rt = P (v, u), we represent the obtained subgraph Rt by the walk
(v1 = v, v2 = u, · · · vk−1, vk). For each integer i with 1 ≤ i ≤ k − 1, let
ei = vivi+1. We now define an edge coloring f of Rt. Four cases according
to the value of k mod 4.
Case 1: k ≡ 0(mod 4). A mapping f from E(Rt) to {1, 2, · · · , a + n} is
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defined as follows: f(ek−1) = z − k + 2 and

For 1 ≤ i ≤ k − 2, f(ei) =


z − i if i is odd

1 if i ≡ 0(mod 4)

2 if i ≡ 2(mod 4)

This mapping induces the following gap vertex labeling of Rt: l(vk−1) = z−k
and

For 2 ≤ i ≤ k − 2, l(vi) =


z − i− 1 if i ≡ 1, 2(mod 4)

z − i− 2 if i ≡ 3(mod 4)

z − i if i ≡ 0(mod 4)

Case 2: k ≡ 2(mod 4). A mapping f from E(Rt) to {1, 2, · · · , a + n} is
defined as follows:

For 1 ≤ i ≤ k − 1, f(ei) =


z − i if i is even

1 if i ≡ 3(mod 4)

2 if i ≡ 1(mod 4)

This mapping induces the following gap vertex labeling of Rt.

For 2 ≤ i ≤ k − 1, l(vi) =


z − i− 1 if i ≡ 0, 1(mod 4)

z − i− 2 if i ≡ 2(mod 4)

z − i if i ≡ 3(mod 4)

Case 3: k ≡ 1(mod 4). A mapping f from E(Rt) to {1, 2, · · · , a + n} is
defined as follows: f(e1) = z − 2 and

For 2 ≤ i ≤ k − 1, f(ei) =


z − i if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

This mapping induces the following gap vertex labeling of Rt: l(v2) = z− 3
and

For 3 ≤ i ≤ k − 1, l(vi) =


z − i− 1 if i ≡ 0, 3(mod 4)

z − i− 2 if i ≡ 1(mod 4)

z − i if i ≡ 2(mod 4)

Case 4: k ≡ 3(mod 4). A mapping f from E(Rt) to {1, 2, · · · , a + n} is
defined as follows: f(ek−1) = z − k + 2 and

For 1 ≤ i ≤ k − 2, f(ei) =


z − i if i is even

1 if i ≡ 3(mod 4)

2 if i ≡ 1(mod 4)
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This mapping induces the following gap vertex labeling ofRt: l(vk−1) = z−k,
and

For 2 ≤ i ≤ k − 2, l(vi) =


z − i− 1 if i ≡ 0, 1(mod 4)

z − i− 2 if i ≡ 2(mod 4)

z − i if i ≡ 3(mod 4)

Observation: In the previous four cases, it is easy to check that l is a bi-
jection from the vertex set V (Rt)− {v1, vk} to {z − 3, z − 4, · · · , z − k}.

2.3 V ′ ← V ′ ∪ V (Rt), E
′ ← E ′ ∪ E(Rt). Set z = g(Rt) and t = t+ 1.

End while

Step4: For all edges e ∈ E \ E ′, set f(e) = 2.

End of algorithm.

[] [] []

[] [] []

[] []

Figure 3. Illustration of Algorithm 1 (a=12): (a) A 2-edge-connected graph G.
(b) Coloring of R1. (c),(d),(e),(f) illustrates the coloring of R2, R3, R4, R5, re-
spectively. (g) A balanced gap-30-coloring of a spanning subgraph G′ of G.
(h) A gap-30-coloring of G which induces a gap vertex-distinguishing function
l : V → {12, 13, · · · , 29}.

We now present the proof of correctness of the above algorithm. We first show
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that this algorithm achieves its goal without blocking, i.e., both actions in
Step 3 (3.1 and 3.2) satisfy the following assertions:

If |V ′| < |V | then NV ′ 6= ∅. (1)

For every vertex u ∈ NV ′ there exists a path

from u to a vertex v ∈ V ′of order at least 2.
(2)

The assertion (1) follows from the the connectivity hypothesis on G. For a
vertex u ∈ NV ′ there exists, at last, an edge (u, v) ∈ E such that v ∈ V ′. The
2-edge-connectivity hypothesis of G implies that every edge of G belongs to a
cycle, then the two vertices u and v belong to the same cycle. Therefore, the
assertion (2) also holds.
We now prove that our coloring algorithm gives a gap vertex-distinguishing
function l : V ′ → {a, a + 1, · · · , a + n − 1} of G′ induced by a balanced edge
coloring f with a + n colors. At the end of the loop of Step 3, we obtain a
bijection l from the set V ′ to the set {a, a+ 1, ..., a+ n− 1}, i.e., for any two
vertices u, v of V ′, we have l(u) 6= l(v). It then remains to show that f is
a balanced edge-coloring and for every vertex v of V ′, we have l(v) equal to
maxe3v f(e)−mine3v f(e) in G′. By considering the degree in G′ of each vertex
v, we have two cases.
Case 1. d(v) = 2: from the algorithm, it is clear that the label of each ver-
tex v of degree 2 which is incident with two edges e and s of E ′ is equal to
|f(e)− f(s)|.
Case 2. d(v) > 2: let R(v) = {Rd1 , Rd2 , · · · , Rdp} denote the set of all sub-
graphs having a common vertex v, where d1 ≤ d2 · · · ≤ dp. From the algorithm,
we can observe that (see Figure 3):

• For any two subgraphs Ri and Rj of R(v), we have E(Ri) ∩ E(Rj) = ∅.
• v is incident with exactly two edges ed1 and sd1 of E(Rd1). Let f(ed1) ≥
f(sd1), then the label of v is fixed as l(v) = f(ed1)− f(sd1).
• For every subgraph Ri of R(v), where i ≥ d2, we have v is incident with one

or two edges of E(Ri).

Furthermore, according to the edge coloring f , we can easily see that:

• For every vertex v of G′ , we have 2 ∈ I(v).
• 1 ≤ f(sd1) ≤ 2 and f(ed1) ≥ g(Rd1) ≥ 2.
• For every subgraph Ri of R(v), where i ≥ d2 then ∀e ∈ E(Ri) with v ∈ e,

we have 2 ≤ f(e) ≤ g(Rd1).

From these observations we can conclude the following:

• The edge-coloring f is balanced.
• For every vertex v of V ′, maxe3v f(e) = f(ed1) and mine3v f(e) = f(sd1).
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At the Step 4 of the algorithm, we know that the obtained edge coloring
f of G′ is balanced. Hence, we can extend G′ to G by coloring the added
edges with color 2 without affecting the vertex labeling function l : V →
{a, a+ 1, · · · , a+ n− 1}. �

Now, we can state the proof of Theorem 10. To proceed, we introduce the
following result.

Theorem 14 For every m-edge-connected graph G of order n (with m ≥ 2),
different from a cycle of length n ≡ 2 or 3(mod 4), we have

gap(G) = n

Proof. By Lemma 2, we have gap(G) ≥ n. It then suffices to prove that G
admits a gap-n-coloring. We know by Theorem 11 that if G is a cycle of length
n ≡ 0, 1(mod 4), then gap(G) = n. Otherwise, it is clear by Proposition 13
that if we set the integer parameter a at 0, we obtain a gap-n-coloring of G
induced by a balanced edge coloring. Hence gap(G) = n. �

We can now conclude that the result of Theorem 10 is a direct consequence
of Theorem 11 and Theorem 14.
Here we generalize the previous results to a special case of disconnected graphs
as follows:

Theorem 15 If G is a graph of order n with connected components G1, · · · , Gt

such that each component of G is a m-edge connected graph (with m ≥ 2),
different from a cycle of length ≡ 1, 2, 3(mod 4), then

gap(G) = n

Proof. Let ni be the order of Gi (1 ≤ i ≤ t). The proof is essentially due to
Proposition 13. The idea is to provide a gap vertex distinguishing edge coloring
for each component of Gi according to the parameter a of Proposition 13 as
follows: by applying this proposition in sequence to G1, G2, · · · , Gt, we can
obtain the labeling function l : V (Gi) → {a, a + 1, · · · , a + ni − 1} induced
by an edge coloring f with a + ni colors such that a = n − ∑i

j=1 nj. From
this, it is easy to check that l is a bijection from the vertex set of G to the set
{0, 1, 2, · · · , n− 1}. Thus gap(G) = n. �

We believe that the result of Theorem 10 can be extended to all graphs of
minimum degree at least 2. But we have not been able to prove it. We suggest
the following conjecture:

13



Conjecture 16 For every connected graph G of order n with minimum degree
δ(G) ≥ 2, we have

gap(G) =

n+ 1 if G is a cycle of length ≡ 2, 3(mod 4)

n otherwise

4 Graphs with δ(G) = 1

In this section we give the value of gap(G) for some classes of graphs having
δ(G) = 1.

Theorem 17 Let Pn be the path of order n. Then

gap(Pn) =

n− 1 if n ≡ 0, 1(mod 4)

n otherwise

Proof. The proof of this theorem is similar to the one of Theorem 11. Let
Pn = (v1, v2, · · · , vn). For each integer i with 1 ≤ i ≤ n − 1, let ei = vivi+1.
We consider two cases as follows:
Case 1: n ≡ 0, 1(mod 4). By Lemma 2, we have gap(Pn) ≥ n − 1, it then
suffices to prove that Pn admits a gap-(n − 1)-coloring. Two subcases are
considered:
Subcase 1.1: n ≡ 0(mod 4). A mapping f from E(Pn) to {1, 2, · · · , n− 1} is
defined as follows (see Figure 4).

For 1 ≤ i ≤ n− 1, f(ei) =


i
2

if i even
n−2
2

if i ≡ 3(mod 4)

n− 1 if i ≡ 1(mod 4)

This mapping induces the following vertex labeling function: l(vn) = n−2
2

and for 1 ≤ i ≤ n− 1, l(vi) =



n−i−2
2

if i ≡ 0(mod 4)

n− 1− i−1
2

if i ≡ 1(mod 4)

n− 1− i
2

if i ≡ 2(mod 4)
n−i−1

2
if i ≡ 3(mod 4)

Then, it is easy to check that l is a bijection from V (Pn) to {0, 1, · · · , n− 1}.
Hence gap(Pn) = n− 1.
Subcase 1.2: n ≡ 1(mod 4). A mapping f from E(Pn) to {1, 2, · · · , n− 1} is

14



defined as follows (see Figure 4).

For 1 ≤ i ≤ n− 1, f(ei) =


i
2

if i even
n−1
2

if i ≡ 3(mod 4)

n− 1 if i ≡ 1(mod 4)

This mapping induces the following vertex labeling function:

and for 1 ≤ i ≤ n− 1, l(vi) =



n−1−i
2

if i ≡ 0(mod 4)

n− 1− i−1
2

if i ≡ 1(mod 4)

n− 1− i
2

if i ≡ 2(mod 4)
n−i
2

if i ≡ 3(mod 4)

Then, it is easy to check that l is a bijection from V (Pn) to {0, 1, · · · , n− 1}.
Hence gap(Pn) = n− 1.
Case 2: n ≡ 2, 3(mod 4). We first prove that gap(Pn) > n − 1. Let f :
V (Pn) −→ {1, 2, · · ·n − 1} be any edge-coloring of Pn which induces a gap
vertex-distinguishing labeling l. We note that:

n∑
i=1

l(vi) = f(e1) + f(en−1) +
n−1∑
i=2

| f(ei)− f(ei−1) |=
n(n− 1)

2

In this formula, each term f(ei) appears twice with opposite (or same) signs,

hence n(n−1)
2

is even. But this latter value is odd if n ≡ 2, 3(mod 4), which is a
contradiction. Thus, gap(Pn) ≥ n. It then remains to show that gap(Pn) ≤ n.
Two subcases are considered according to whether n mod 4 = 2 or 3.
Subcase 2.1: n ≡ 3(mod 4). We know that Pn+1 admits a gap-n-coloring.
Necessarily Pn+1 must contain two successive edges of same color j where
1 ≤ j ≤ n. By merging these two edges into a single edge colored by j, we
obtain a gap-n-coloring of Pn (see Figure 4).
Subcase 2.2: n ≡ 2(mod 4) In this subcase, we define an edge coloring f
from E(Pn) to {1, 2, · · · , n} (see Figure 4) by f(en−1) = n− 1 and

For 1 ≤ i ≤ n− 2, f(ei) =


i
2

+ 1 if i even
n
2

if i ≡ 3(mod 4)

n if i ≡ 1(mod 4)

This mapping induces the following gap vertex distinguishing labeling: l(v1) =
n, l(vn−1) = n

2
− 1,l(vn) = n− 1 and

for 2 ≤ i ≤ n− 2, l(vi) =



n−i
2
− 1 if i ≡ 0(mod 4)

n− i+1
2

if i ≡ 1(mod 4)

n− i
2
− 1 if i ≡ 2(mod 4)

n−i−1
2

if i ≡ 3(mod 4)
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Then, it is easy to check that l is a bijection from V (Pn) to {0, 1, · · · , n}\{n
2
}.

Hence gap(Pn) = n. �

[]

[]

[]

[]

Figure 4. A gap-coloring of Pn: (a) n = 8, (b) n = 9, (c) n = 7, (d) n = 6.

The complete binary tree of height h > 0 will be denoted by BTh, note that
BTh has exactly 2h+1 − 1 vertices. The following theorem gives the gap chro-
matic number of BTh.

Theorem 18 For any complete binary tree BTh of order n and height h ≥ 2,
we have

gap(BTh) = n− 1

Proof. By Theorem 17, we have gap(BT1) = gap(P3) = 3. Then, we may
restrict our attention to h ≥ 2. By Lemma 2, we have gap(BTh) ≥ n − 1,
it then suffices to prove that BTh admits a gap-(n − 1)-coloring. We define
the level l(u) of vertex u of BTh as the the number of edges along the unique
path between it and the root. Similarly, the level of an edge e = (u, v) of BTh
is l(e) = max{l(u), l(v)}. We represent the vertices and the edges of BTh,
level by level, left to right by the sequence v1, v2, · · · , vn, and e1, e2, · · · , en−1,
respectively (see Figure 4). We now define a mapping f from E(BTh) to
{1, 2, · · · , n− 1} as follows.

For 1 ≤ i ≤ n− 1, f(ei) =

2h if i ≤ 2

i+ 2(h− l(ei)) if i ≥ 3

This mapping induces the following gap vertex labeling: l(vi) = i − 1 for
1 ≤ i ≤ n. Then it is easy to check that l is a bijection from V (BTh) to
{0, 1, · · · , n− 1}. Thus gap(BTh) = n− 1. �

[] []

Figure 5. (a) Notation of BT3, (b) A gap-14-coloring of BT3
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Theorem 19 Let T = (V,E) be a tree of order n which has at least two leaves
u and v at distance two, then

gap(T ) ≤ n

Proof. The proof of this theorem is done by giving a polynomial-time algo-
rithm. We first start with some definitions used in the following. Let R1 =
(u,w, v) be a path of T and let R be the subtree of T rooted in w and induced
by the set V \ {u, v} (see Figure 4). Let h be the depth of R. For every level
i of R, let Li denote the set of leaves at level i. Let S be a subset of V (R)
and for every vertex x of V (R) \ S, let P (x, S) be the function which returns
a path from x to a vertex y ∈ S, such that the set of vertices between x and
y does not belong to S.
Let l be a vertex labeling on V (T ). For every path P of T , let g(P ) be a
function defined as follows:

g(P ) = min{l(v) : ∀v ∈ V (P )}

The different steps of Algorithm 2 are illustrated in the example of Figure 6.
Algorithm 2
Input: A tree T = (V,E) of order n with two leaves u and v at distance 2.
Output: A gap-n-coloring of T .
Begin of Algorithm
Set a mapping f : E(R1)→ {1, n} as follows: f(vw) = n, f(uw) = 1.
This mapping induces the following gap vertex labeling of R1: l(v) = n, l(w) =
n− 1 and l(u) = 1.
Let a set S = {w}, an integer z = n− 1 and an index t = 2.
For i = 1 to h do
Begin For

For every vertex x of Li in the subtree R do
Begin For
Let Rt = P (x, S). We denote the path Rt by the sequence of vertices
v1 = x, v2 , · · · vk−1, vk. For each integer i with 1 ≤ i ≤ k−1, let ei = vivi+1.
Set an edge coloring f of Rt as follows:

For 1 ≤ i ≤ k − 1, f(ei) =

z −
i+1
2

if i odd
i
2

otherwise

This mapping induces the following gap vertex labeling of Rt.

For 1 ≤ i ≤ k − 1, l(vi) = z − i

S ← S ∪ V (Rt), z ← g(Rt), t← t+ 1.
End for

End for
End of Algorithm
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[] [] []

[] []

[] []

Figure 6. Illustration of Algorithm 2: (a) A tree T . (b) Coloring of R1. (c),(d),(e),(f)
illustrates the coloring of R2, R3, R4, R5, respectively. (g) A gap-14-coloring of T .

Now, we present the proof of correctness for the above algorithm. At the end
of this algorithm, we obtain a bijection l from V to the set {1, 2, ..., n}. It then
remains to show the property of our coloring parameter. By considering the
degree of each vertex v of T , we have three cases:
Case 1. d(v) = 1: from the algorithm, it is clear that l(v) = f(e)e3v.
Case 2. d(v) = 2: from the algorithm, it is clear that the label of vertex v of
degree 2 which is incident with two edges e and s of E equal to |f(e)− f(s)|.
Case 3. d(v) > 2: let R(v) = {Rd1 , Rd2 · · · , Rdp} denote the set of all paths
having a common vertex v, where d1 ≤ d2 ≤ · · · ≤ dp. We represent the
distance between two vertices x, y ∈ V by dist(x, y). From the algorithm, we
can observe that:

• every path Ri of R(v) contains a leaf li of T which is an endpoint of Ri. We
can see that that dist(v, ld1) ≤ dist(v, ld2) ≤ · · · ≤ dist(v, ldp).
• for any two paths Ri and Rj of R(v), E(Ri) ∩ E(Rj) = ∅.
• the vertex v is incident with exactly two edges ed1 and sd1 of E(Rd1). Let
f(ed1) ≥ f(sd1), then the label of v is fixed as l(v) = f(ed1)− f(sd1).
• for every path Ri of R(v), where i ≥ d2, the vertex v is incident to exactly

one edge ei of E(Ri).
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Furthermore, according to the edge-coloring f , we can see that:

• f(sd1) = ddist(v,ld1 )
2
e.

• for every path Ri of R(v), where i ≥ d2, we consider two cases for the value
of f(ei) (with v ∈ ei) according to the distance between v and li:

• dist(v, li) is even. We have f(ei) = dist(v,li)
2

. Hence f(sd1) ≤ f(ei) ≤
g(Rd1) ≤ f(ed1).

• dist(v, li) is odd. We have f(ei) = g(Ri) + dist(v,li)−1
2

. Hence f(sd1) ≤
f(ei) ≤ g(Rd1) ≤ f(ed1).

From these observations, we can conclude that for every vertex v of V , f(ed1) =
maxe3v f(e) and f(sd1) = mine3v f(e). Hence, T admits a gap-n-coloring. �

5 Concluding remarks and open problems

In this paper, we studied a new variant of graph edge colorings that induces a
vertex distinguishing labeling. Exact results are given for paths, cycles, some
trees and all m-edge-connected graph with m ≥ 2. The study of the relation-
ships between our parameter and the point distinguishing problem gives the
following result which is a direct consequence of Lemma 8 and Theorem 15.

Corollary 20 If G is a graph of order n with connected components G1, · · · , Gt

such that each component of G is an m-edge connected graph (with m ≥ 2)
different from a cycle of length ≡ 1, 2, 3(mod 4), then χ′0(G) ≤ n.

We would like to end this paper by mentioning three further issues.

(1) we leave as an open question to show that the gap chromatic number of
a graph of order n is always in {n− 1, n, n+ 1}.

(2) the computational complexity of the gap chromatic number is still an
open problem (this is the case of the most variants of vertex distinguishing
problems derived from an improper edge coloring).

(3) as for the other distinguishing parameters, it would be interesting to
consider the variant of the gap coloring problem that distinguishes the
adjacent vertices only.
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Appendix: Step 2 of Algorithm 1

In Step 2 of Algorithm 1, it remains to handle the case where R1 is a subgraph
of G which is isomorphic to two cycles having at least one vertex in common.
Let us recall that the goal is to define an edge coloring of R1 (of order k)
which induces the following gap vertex-distinguishing function l : V (R1) →
{n+ a− 1, n+ a− 2, · · · , n+ a− k} such that ∀ ∈ v, we have 2 ∈ I(v).
It is clear that the edge set of R1 can be partitioned into two sets generating
a cycle C and a path (cycle) P such that the endpoints of P belong to C.
Let C = (v1, v2, · · · , vq, vq+1 = v1). For each integer i with 1 ≤ i ≤ q, let
ei = vivi+1. Let P = (u1, u2, · · · , ut). For each integer i with 1 ≤ i ≤ t − 1,
let si = uiui+1, we assume that vq = u1. In the following, we illustrates the
coloring of R1, several cases are considered according to the value of q and t.
Case 1: q ≡ 1(mod 4) and t ≡ 1, 2(mod 4). A mapping f of E(R1) is defined
as follows: f(eq) = 2 and

For 1 ≤ i ≤ q − 1, f(ei) =


a+ n− i+ 1 if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

Then, the following cases define the coloring of the remaining edges of R1.
Subcase 1.1: t ≡ 1(mod 4).

For 1 ≤ i ≤ t− 1, f(si) =


g(C)− i− 1 if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

Subcase 1.2: t ≡ 2(mod 4). We use the same coloring scheme as in Subcase
1.1 except that f(st−1) = g(C)− t+ 1.
Case 2: q ≡ 1(mod 4) and t ≡ 0, 3(mod 4). A mapping f of E(R1) is defined
as follows: f(eq) = 1 and

For 1 ≤ i ≤ q − 1, f(ei) =


a+ n− i+ 1 if i is odd

2 if i ≡ 2(mod 4)

1 if i ≡ 0(mod 4)

Then, the following cases define the coloring of the remaining edges of R1.
Subcase 2.1: t ≡ 3(mod 4).

For 1 ≤ i ≤ t− 1, f(si) =


g(C)− i− 1 if i is odd

2 if i ≡ 2(mod 4)

1 if i ≡ 0(mod 4)

Subcase 2.2: t ≡ 0(mod 4). We use the same coloring scheme as in Subcase
2.1 except that f(st−1) = g(C)− t+ 1.
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Case 3: q ≡ 2(mod 4) and t ≡ 0, 1, 2(mod 4). A mapping f of E(C)\{eq, eq−1}
is defined as follows:

For 1 ≤ i ≤ q − 2, f(ei) =


a+ n− i+ 1 if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

Then, the following cases define the coloring of the remaining edges of R1.
Subcase 3.1: t ≡ 0(mod 4). f(eq) = 2, f(eq−1) = n+ a− q + 2 and

For 1 ≤ i ≤ t− 1, f(si) =


g(C)− i if i is even

1 if i ≡ 1(mod 4)

2 if i ≡ 2(mod 4)

Subcase 3.2: t ≡ 1(mod 4). f(eq) = 2, f(eq−1) = a+n−q+1, f(s1) = g(C)+1
and

For 2 ≤ i ≤ t− 1, f(si) =


g(C)− i+ 1 if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

Subcase 3.3: t ≡ 2(mod 4). We use the same coloring scheme as in Subcase
3.2 except that f(st−1) = g(C)− t+ 3.
Case 4: q ≡ 2(mod 4) and t ≡ 3(mod 4). A mapping f of E(R1) is defined as
follows:

For 2 ≤ i ≤ q − 2, f(ei) =


a+ n− i− 2 if i is odd

2 if i ≡ 2(mod 4)

1 if i ≡ 0(mod 4)

f(e1) = a+ n, f(eq−1) = a+ n− 4, f(eq) = 1, f(s1) = a+ n− 2 and

For 2 ≤ i ≤ t− 1, f(si) =


g(C)− i+ 1 if i is odd

1 if i ≡ 0(mod 4)

2 if i ≡ 2(mod 4)

Case 5: q ≡ 3(mod 4) and t ≡ 0(mod 4). A mapping f of E(R1) is defined as
follows:

For 1 ≤ i ≤ q − 1, f(ei) =


a+ n− i+ 1 if i is odd

2 if i ≡ 2(mod 4)

1 if i ≡ 0(mod 4)
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f(eq) = 1, f(st−1) = g(C)− t+ 1 and

For 1 ≤ i ≤ t− 2, f(si) =


g(C)− i− 1 if i is odd

1 if i ≡ 0(mod 4)

2 if i ≡ 2(mod 4)

Case 6: q ≡ 3(mod 4) and t ≡ 1(mod 4). A mapping f of E(R1) is defined as
follows:

For 1 ≤ i ≤ q − 1, f(ei) =


a+ n− i+ 2 if i is even

2 if i ≡ 1(mod 4)

1 if i ≡ 3(mod 4)

f(eq) = a+ n− q + 2, f(st−1) = g(C)− t+ 2 and

For 1 ≤ i ≤ t− 2, f(si) =


g(C)− i if i is even

1 if i ≡ 1(mod 4)

2 if i ≡ 3(mod 4)

Case 7: q ≡ 3(mod 4) and t ≡ 2, 3(mod 4). A mapping f of E(C) is defined
as follows: f(eq) = n+ a− q + 1 and

For 1 ≤ i ≤ q − 1, f(ei) =


a+ n− i+ 2 if i is even

1 if i ≡ 1(mod 4)

2 if i ≡ 3(mod 4)

Then, the following cases define the coloring of the remaining edges of R1.
Subcase 7.1: t ≡ 2(mod 4)

For 1 ≤ i ≤ t− 1, f(si) =


g(C)− i+ 1 if i is even

1 if i ≡ 3(mod 4)

2 if i ≡ 1(mod 4)

Subcase 7.2: t ≡ 3(mod 4). We use the same coloring scheme as in Subcase
7.1 except that f(st−1) = g(C)− t+ 3.
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