
Blob-Tree Metamorphosis

Eric Galin, Antoine Leclercq Samir Akkouche
L.I.G.I.M L.I.G.I.M

Université Claude Bernard Lyon 1 Ecole Centrale de Lyon
69622 Villeurbanne Cedex B.P. 163, 69131 Ecully Cedex

[egalin-leclercq]@ligim.univ-lyon1.fr samir@ec-lyon.fr

Abstract

Implicit surfaces have proved to be a particularly well suited and
efficient model for animating and morphing shapes of arbitrary
topologies. The Blob-Tree model is characterized as a hierarchical
combination of skeletal primitives organized in a tree. The nodes
hold blending, boolean and warping operators, which allows the
design of complex objects.

In this paper, we address the metamorphosis of the Blob-Tree.
This appears a difficult task as the tree data-structures of the ini-
tial and final shapes are completely different in the general case,
and consequently cannot be matched easily. We propose an origi-
nal technique that solves the correspondence process and creates an
intermediate generic Blob-Tree model whose instances interpolate
the initial and final shapes.

The animator may control the correspondence between features
and can specify both the speed of transformation and the trajectory
of the nodes and the leaves of the generic Blob-Tree model. This
provides him with a tight control over the transformation so as to
achieve good visual effects.

Keywords: animation, Blob-Tree, implicit surfaces, metamorpho-
sis, warping

1 Introduction

Metamorphosis (or morphing) can be defined as the process of
smoothly transforming an initial shape into a final shape. Meta-
morphosis has a vast variety of applications. It has been success-
fully applied to some modeling systems, and is extensively used for
generating special effects in the movie industry.

Given two shapes, there are an infinity of transformations that
create the metamorphosis sequence. Therefore, the visual aspect of
the transformation is often the only relevant criterion to evaluate the
quality of the transformation in a key-frame animation system.

It seems essential that the metamorphosis should avoid unnec-
essary shape distortion or changes of the topology. In general, the
transformation should be smooth and continuous. Shape coherence
should be maintained whenever possible so as to preserve the char-
acteristic features of the source and target shapes. Amorphous (i.e.
featureless) transitions that cannot be avoided in complex morph-

ing sequences should be limited in time. Although some techniques
focus on automating the metamorphosis process (which may be ef-
fective for restricted class of shapes or models), user control proves
to be fundamental to produce convincing animations.

1.1 Previous work

Lazarus has presented an interesting survey of existing metamor-
phosis techniques [15]. The proposed classification exhibits two
major categories according to the underlying shape model : tech-
niques focusing on mesh models and volumetric methods.

1.1.1 Boundary representation approaches

Methods that directly work on the boundary representation of
polygonal meshes need to solve the vertex correspondence problem.
Although many approaches have been proposed, no general solu-
tion has been presented so far. Kent [13] first proposed to merge the
topologies (i.e. the adjacency graph) of star shaped polyhedral ob-
jects. Lazarus [14] later generalized that technique to a wider class
of objects. Kaul [9] has proposed to tackle the vertex correspon-
dence problem by using the weighted Minkowski sum of argument
polyhedra which works well for convex objects.

Kanai [11, 12] gives an alternative method based on a user de-
composition of the meshed models into patches that can be paired
and morphed. Even though a good control can be achieved, the de-
composition process can become slow and tedious for large meshes.
Recently, Lee [16] has presented a multi-resolution mesh morphing
approach that overcomes this problem.

The very limitation of boundary representation based morphing
methods is that the source and target models should share the same
topology (i.e. have the same genus). Moreover, the computation of
intermediate shapes becomes the more expensive as the size of the
mesh increases, and the control of the transformation difficult.

1.1.2 Volumetric methods

Unlike mesh based techniques, volumetric methods can handle the
metamorphosis of shapes of different topologies easily. Volumetric
approaches further separate into two categories : voxel based ap-
proaches that sample space on a regular grid, and implicit surface
techniques that work on the equations characterizing the volume of
the objects.

Lerios [17] first extended the two-dimensional morphing algo-
rithm proposed by Beier [2], warping and cross-dissolving matched
density volumes. Hughes [8] and He [7] proposed a method based
on the Fourier and on a wavelet decomposition of space respec-
tively. Voxel based approaches are memory consuming, and good
visual results cannot be obtained unless using a fine sampling of the
objects. The computation cost becomes the more prohibitive as the
size of the sampling grid increases.

On contrary to voxel based methods, implicit surface based tech-
niques avoid the computation of a fixed sized sampling grid and di-
rectly compute the metamorphosis by interpolating the parameters
of the functions representing the objects.

Pasko [18] has proposed a general morphing scheme, using the
linear interpolation to define the intermediate implicit functions
characterizing the transformation. Wyvill [3] has proposed an origi-
nal technique for morphing implicit surfaces built from point skele-
tal elements, also known as blobs or soft objects. A pre-processing
correspondence step, namely cellular matching and hierarchical
matching, ensures all the elements of the initial and final shapes
have been paired, possibly creating null components whenever nec-
essary. The time varying blob is defined by interpolating the pa-
rameters characterizing the paired primitives. However the visual
aspect of the morphing sequences are often poor.

We have generalized and extended Wyvill’s morphing technique
to implicit surfaces built from point convex skeletons of any dimen-
sion [5]. Our method provides a good control of the transformation.
The animator may freely pair sets of primitives of the source and
target models, and even control the trajectory [6] of intermediate
primitives to avoid amorphous or featureless transitions. Still re-
mains the fact that blobs specifically model smooth objects, and are
ill suited to create non-organic shapes, which consequently limits
the scope of the proposed metamorphosis technique.

1.2 Contributions

Recently, Wyvill has presented the Blob-Tree model [21] that can
be thought of as an extension of blobs. The Blob-Tree is character-
ized by a hierarchical combination of skeletal primitives organized
in a tree data-structure whose nodes hold blending, boolean oper-
ators and warping operators. The key feature of the Blob-Tree is
that complex models can be built with a small number of skeletal
primitives using arbitrary combinations of blending, warping and
boolean operations.

In this paper, we address the metamorphosis of the Blob-Tree
model. Specifically, we make the following contributions :� We extend the blob metamorphosis technique to the more gen-

eral Blob-Tree model. We put the emphasis on the creation of
a generic intermediate Blob-Tree that characterizes the whole
transformation. For instance, genericity enables us to save in-
teresting intermediate shapes for later use, and combine inter-
polations so as to define a Bézier-like metamorphosis where
control knots are replaced by control Blob-Tree shapes.� We provide both low and high level tools to achieve coarse
and fine control over the transformation. The animator may
control the correspondence between features of the Blob-
Trees and may specify both the speed of the transformation
and the trajectory of the nodes and the leaves of the generic
Blob-Tree model.

The remainder of this paper is organized as follows. To make it
self-contained, we recall the fundamentals of the Blob-Tree model
in section 2. In section 3, we address the metamorphosis of the
Blob-Tree. We first recall the keys of our blob morphing technique,
and adapt exiting algorithms to the tree structure of the Blob-Tree
model. In section 4, we present morphing sequences.

2 The Blob-Tree

Let us recall that implicit surfaces built from skeletal elements, also
known as blobs or soft objects [20], are characterized by a scalar

field
���������	��
�

generated by summing the influences of � scalar
field elements

��������������
��
.���������	��
���� ������ ����� �����������	��
��

The field contributions
���

are decreasing functions of the distance
to a skeleton

� � ��� �� "!#�
where

� �%$'&)(�*+&
is the potential

function, and
! � $�&-,%*.& (

refers to distance to the skeleton.

The Blob-Tree model [21] can be thought of as an extension of
those soft objects. Unlike blobs that are characterized by a mere
set of elements that blend in the same way

�
, the Blob-Tree is char-

acterized by a hierarchical combination of primitives organized in
a tree data-structure. The nodes of the tree hold blending, boolean
operators and warping operators, whereas the leaves are character-
ized as skeletal elements (figure 1).

/

0
1

/

Figure 1: Candlestick created by blending the twisted union of three
cylinders with tapered spheres

The evaluation of the field function in space is achieved by recur-
sively traversing the Blob-Tree, either evaluating the field functions
at the leaves of the tree or combining the field function values re-
turned by the children of a given node.

The blending operator is defined by summing the field functions
of the contributing elements :��()���2���	��
���� �3���� ����� �������2���	��
��
As suggested in [21], boolean operators may be defined by using
Pasko’s set theoretic functions [18]. In our own implementation
however, we use the minimum and the maximum instead.��45���2���	��
����7698�:�<;>= ��? �A@ ���������B�	��
����C5���2���	��
����D6FEHG�<;>= ��? �A@ � � �����B�	��
��

The Blob-Tree includes warping operators at its nodes that dis-
tort the shape of the implicit surface by warping space in its neigh-
borhood. Generally speaking, a warp is a continuous function�

A restricted class of blobs rely on a graph that hold blending relation-
ships to avoid unwanted blending between neighboring elements

I �������	��
�� that maps
& ,

into
& ,

. The field function in space is
defined as : ��J5�����B�	��
����K� 1ML � ���2���	��
��
Although affine transformations can be thought of as special cases
of warp operators, they have been coded separately so that consec-
utive affine transformations may be concatenated out of efficiency.
In our own implementation, warps have been taken among the Barr
operators [1].

As it is the case in constructive solid geometry, different Blob-
Tree models may result in the same implicit surface. Therefore, two
models will said to be equivalent if and only if they characterize
the same implicit surface. Two Blob-Trees will overlap if their tree
structure overlap, i.e. if the leaves and nodes at the same levels can
be bijectively matched.

3 Metamorphosis

In this section, we address the metamorphosis of implicit surfaces
characterized by a Blob-Tree data-structure. First, we recall the
blob metamorphosis technique [5] that inspired the Blob-Tree meta-
morphosis method. Then, we address the creation of a generic
Blob-Tree data-structure and put the emphasis on the key features
inherited from the blob morphing approach.

3.1 Blob metamorphosis

As mentioned in the introduction, the metamorphosis between two
shapes relies on the definition of a graph of correspondence match-
ing elements of the initial and the final models. This graph specifies
which parts of the models should undergo metamorphosis.

As suggested in [5], the graph of correspondence may be gener-
ated automatically by matching all the elements of the source and
target models. Several heuristics for matching and interpolating
soft objects based on skeletal elements have been proposed (Wyvill
has presented a good overview in [3]). Those techniques may be
split into two categories : techniques matching elements according
to their position in space (cellular matching), and techniques that
require extra information about the elements (hierarchical match-
ing). A pre-processing step ensures that both initial and final shapes
share the same number of components by creating null components
whenever necessary. /N � NPO /Q � Q O Q ,

Figure 2: Graph of correspondence matching elements of the initial
and final blobs

We assume that the animator provides us with a graph of corre-
spondence that matches elements of the initial and the final shapes
(figure 2). Elements that are not matched involve the creation of
specific phantom elements. In practice, there are no restrictions
over this graph of correspondence that characterizes which ele-
ments really undergo metamorphosis. As we will see in the next
section, this is no longer the case for the transformation of the Blob-
Tree.

Since this graph is in general non-bijective, we split each com-
ponent into sub-components with a view to creating a new graph bi-
jectively matching those sub-components. An intermediate generic
sub-component is associated to each graph link.

The whole transformation itself is characterized by a generic
model whose instantiations interpolate the initial and the final
shapes throughout time, computed as follows. Its time varying
skeleton is defined as the linear interpolation based on Minkowski
sum of the skeletons of the initial and final associated sub-
components. /

NR�TSU N O SU N O SU N O
/

Q � Q O SV Q , SV Q ,
Figure 3: Creating a bijective graph through component splitting

As demonstrated in [6], the use of the Minkowski sum implicitly
generates a trajectory path for each time varying skeletal element,
which often results in a loss of shape coherence during the transfor-
mation. We have proposed to rely on local frame systems to control
both the dimension of the intermediate skeletons and their trajec-
tory path, which provides the animator with a tight control over the
transformation.

Since directly interpolating distance and potential functions gen-
erates complex formulations, we tackle the transformation prob-
lem by using classes of parametrized functions. We characterize
time varying distance and potential functions as specific members
of those classes with interpolated parameters. The time varying
implicit surface of intermediate shapes is defined as the points of
space whose potential equals an intermediate threshold value that
interpolates the thresholds of the initial and the final blob models.

Thus, we achieve a concise generic representation, which pre-
serves the shape coherence during the transformation. Moreover,
this generic representation enables us to combine interpolations so
as to define a Bézier-like metamorphosis where control knots are
replaced by control soft objects [5].

3.2 Blob-Tree metamorphosis

Unlike blobs that are characterized by a mere set of elements that
blend in the same way, the Blob-Tree is defined by a hierarchical
combination of primitives organized in a tree data-structure whose
nodes are characterized as heterogeneous operators, such as blend-
ing, boolean operators or even warping. Therefore, we are con-
fronted with the following issues :� The correspondence process is no longer as straightforward

as it used to be in for the blob model. Because of the hierar-
chical structure of the Blob-Tree, the nodes and the leaves of
the source and target models may not be matched freely. In
practice, the graph of correspondence must remain compati-
ble with the tree hierarchy. For instance the nodes at a given
level should not be matched unless their ancestor nodes had
also been paired.� As the correspondence process matches nodes and leaves of
the source and target models, we need to characterize trans-
formations between heterogeneous operators. For instance we
need to define the interpolation between a union and a blend-
ing operator.

As recalled in the previous section, the key idea of the blob mor-
phing method is the decomposition of multiply matched elements
into sub-elements [5]. This process allows the creation of bijective
graph of correspondence which eventually leads to the generic blob
model. In the following paragraphs, we demonstrate that we can
directly adapt this decomposition method to the union, intersection
and blending operators, whereas the difference and warping opera-
tors deserve a special case. Instead of splitting the difference and
warping nodes, the Blob-Tree will be updated into equivalent struc-
tures.

3.2.1 Overview of the algorithm

Given two Blob-Tree models
N

and
Q

, we aim at creating two
new overlapping Blob-Trees

NXW
and

Q W
whose nodes and leaves

can be bijectively paired. This involves the creation of a graph of
correspondence matching two Blob-Trees compatible with the tree
structure of both the source and the target models.

Equivalent

Blob-Tree A

Blob-Tree A’ Overlap

Generic Blob-Tree C

Equivalent

Blob-Tree B

Blob-Tree B’

Overlap Overlap

Figure 4: Generic Blob-Tree creation process

Starting from the roots of the Blob-Tree, we propose to iter-
atively descend down the Blob-Tree data-structures and create a
graph of correspondence between the nodes at the same level.
Whenever a node Y[Z of

N
holds several correspondence links, it is

split into sub-nodes Y Z]\ and the Blob-Tree structure
N

is updated
into an equivalent form

N^W
. The same process is simultaneously

performed on the nodes Y`_ of
Q

.

The correspondence process ends when reaching the leaves of
either Blob-Tree. Multiply matched leaves of the Blob-Tree are
split as described in [5]. In practice, this correspondence process
may be either controlled by the animator or achieved automatically
through heuristics.

The generic Blob-Tree model a is implicitly created during the
correspondence and the decomposition steps. The structure of a is
the same as the overlapping structures of

N W
and

Q W
. The nodes and

the leaves of a are defined as time varying tuples b�Y Z�c � Y _2c ��d�fe���g
where

d�fe��
refers to the speed of transformation between the nodesY Z c and Y _ c . As we will see in section 3.2.4, those time varying

nodes will be denoted as :

Y[h5ikj�l � Y Z c d��fe��mnmom * Y _ c
Notations The operators of the Blob-Tree fall into two cate-
gories : the commutative operator set and the difference and warp-
ing operators that are not commutative. In the remainder of this
paper, we will refer to the following terminology. The set of union,
intersection and blending operators (the commutative operator set)
will be referred to as b 0 �qp-� / g for short. The other two sub-set
will be denoted as b�r g and b 1 g respectively.

3.2.2 Node decomposition background

In this section, we present the decomposition background that will
enable us to create the equivalent Blob-Tree models during the cor-
respondence process. As we will see in section 3.2.3, the decompo-
sition algorithm will be only applied to the union, intersection and
blending nodes.

In this section, we will refer to the following prefixed notation :Y[Z � YsZ � �utntutv� Y[Z �xw � will denote a node Y[Z taken in the whole
set b 0 �qp-� / r � 1 g and its �2Z children Y[Z � . The following property
will be involved in the decomposition algorithm.

Scaling nodes Let y{z}| a real positive number, the scaled
node y~Y Z is equivalent to :y	Y Z � Y Z � y	Y Z � �utututv� y	Y Z �xw �
If Y Z is a leaf characterized by a potential field function

�
, theny	YsZ is the primitive characterized by y�� � .

The interpretation in the case of operators relies on the function
definition of the operators of the Blob-Tree. We restrict to binary
nodes out of clarity. Let us define y 0 . In the case of the union op-
erator, we use the distributivity of y with respect to the maximum :� y 0 �	�������o��� y 698�:X�������o�� 698�:P� y ��� y �o��� 0 � y ��� y �o�
The same demonstration applies to the blending, intersection and
difference operators as well. In the case of warping operators, we
have the following definition of y 1 :� y 1 �����	��� y ��� 1 L � �� � y �	� 1 L � � 1 � y �	�
Decomposition algorithm Let

N
and

Q
two Blob-Trees. LetY[Z � YsZ � � and Y[_ � Y`_ � � two corresponding commutative nodes

with � Z and � _ children respectively. Whenever a node Y Z � is
multiply matched with

Vs� � � �2_ nodes Y`_2� , we split Y[Z � so
that the decomposition should be neutral with respect to the parent
node Y Z :� If the parent node Y[Z is a union or an intersection opera-

tor, Y Z � is replicated � times. This decomposition creates an
equivalent model as this replication is neutral with respect to
the union and the intersection.� If Y Z is a blending operator, the previous straightforward
replication technique cannot be applied. Instead, we create� weighted copies y � Y Z � with the constraint that the weightsy � should be positive and form a partition of unity.

The heuristics for computing the coefficients y � may be de-
rived from [5] if the children of the nodes are skeletal ele-
ments, yet a simpler technique that performs well in the gen-
eral case simply consists in setting y � � S r�� for all sub-
nodes.

As we will see in the next section, the decomposition never ap-
plies to difference and warping operators.

3.2.3 The correspondence process

Let
N

and
Q

two Blob-Trees whose structures do not overlap. We
aim at transforming

N
and

Q
into equivalent models

N W
and

Q W
that do overlap. Our method iteratively parses the Blob-Tree data-
structures

N
and

Q
and simultaneously creates the equivalent Blob-

Trees
N W

and
Q W

.

The algorithm starts by matching the roots of the argument Blob-
Trees. At each level, we apply the following two steps to each
pair of matched nodes

� Y Z � Y _ � . First we invoke a correspon-
dence process that creates correspondence links between the chil-
dren nodes of Y[Z and Y`_ . Then, we apply a decomposition
scheme to the multiply matched children with a view to creating the
new equivalent structures that will eventually overlap. The splitting
process strictly follows a set of decomposition rules that depend on
the types of the matched operators.

In the most general case, we need to solve the correspondence
between all the possible operators of the Blob-Tree, i.e. we address
the transformation of the whole set b 0 ��p�� / � r � 1 �qg .

Difficult cases involve the correspondence between commuta-
tive and non-commutative operators. We propose to reduce the
complexity by creating equivalent Blob-Tree structures whenever
needed to avoid those difficult correspondences. This enables us
to focus on the following three simpler correspondence problems :
commutative operator correspondence b 0 �qp-� / g * b 0 ��p-� / g ,
difference to difference b�r g * bAr g and warping to warpingb 1 g * b 1 g correspondences.

For each tuple
� Y Z � Y _ � of nodes paired by a link in the cor-

respondence graph, the children of Y[Z and Y`_ may be paired ac-
cording to the following rules.

Commutative nodes Whenever Y Z and Y _ are taken among
the subset union, intersection, and blending (i.e. we address the
transformation b 0 ��p�� / g * b 0 ��p-� / g), any child of Y[Z may be
paired with any child of Y _ . Automatic pairing may match all
children of Y[Z with all children of Y`_ , however this results in the
creation of � Z ��� _ sub-nodes which often results in featureless
intermediate shapes. In practice, the animator may freely control
the correspondence process (figure 5).0

� Z �9Z
p

� _ ��_
0 p

� Z � Z��9Z � _���_���_
Figure 5: Decomposition of a left node

� Z , whose parent node is a
union operator, paired with two target nodes

� _ and � _ . The right
node ��_ is also split accordingly

Multiply matched children of Y[Z and Y`_ are split into sub-
nodes according to the previous decomposition rules.

Difference nodes This operator deserves a special case as it is
only a binary node. No problem occurs whenever two difference
nodes are paired, i.e. we address the transformation b�r g * bAr g :
we suggest that the left children and the right children should be
automatically matched.

The correspondence between the difference operator and a com-
mutative operator cannot be performed directly in the general
case. We propose to tackle the correspondence problem b�r g *b p-� 0 � / g by creating equivalent Blob-Tree structures that will be
transformed easily. Let Y _�� b p-� 0 � / g , let Y Z the difference
operator, and

� Z and � Z the left and the right children of Y[Z
respectively. We proceed as follows (figure 6) :� We insert a difference operator above Y _ , whose left child is

set to Y`_ , and whose right child is the empty set, i.e. a null
field function in practice.

� We replace the left child of the difference operator
� Z by the

same operator as Y`_ whose child will be set as
� Z , whereas�9Z remains unchanged.

?

r Y _
Y`_� Z � Z

r r
Y`_� Z �� Z

Figure 6: Matching a difference operator Y Z � r with a commu-
tative operator Y`_

The correspondence and decomposition process are recursively
applied to the leaves of the equivalent nodes. This technique en-
ables us to match a difference operator with a union, an intersection
or a blending operator. The correspondence between a difference
and a warping b�r g * b 1 g is addressed in the next paragraph.

Warping nodes Whenever two warping nodes are paired, the
correspondence process is trivial as we only need to pair the unique
child of Y Z with the unique child of Y _ . As for the difference op-
erator, warping nodes deserve a special algorithm when we address
the correspondence problem b 1 g * b p-� 0 � / � r g .

?

Y Z
1 Y`_ 1

Y _
Id

Y _
�YsZ

Figure 7: Matching a warping operator with a non warping operator

Let Y Z the warping operator and Y _ its paired counterpart. We
perform the transformation shown figure 7, inserting an a phantom
warping operator (the identity warp) at the top of the right tree, to
match the warp of the left tree, and inserting operator YT_ in the
left tree, with a right child of empty to match the operator YT_ in
the right tree. This enables us to preserve the overall balance of the
trees.

3.2.4 Evaluation of the generic Blob-Tree model

Let us recall that at this step of the metamorphosis algorithm, we
have created two overlapping Blob-Tree models

N W
and

Q W
whose

nodes and leaves are bijectively matched. The intermediate generic
Blob-Tree model is generated by traversing the trees and creating
morphing nodes and leaves for each correspondence link.

In this section, we focus on the creation of the time varying
nodes. The transformation of the skeletal primitives is performed
as for blobs (see section 3.1). Let Y Z and Y _ the nodes of two
overlapping Blob-Trees

N
and

Q
. The metamorphosis between the

nodes Y[Z and Y`_ at speed
d�fe��

will be referred to as :

Y`h�iHj�l � YsZ d�fe��mnm>m * Y[_
The generic Blob-Tree describing the metamorphosis is created

by morphing all the nodes in correspondence. When the process

reaches the leaves of the Blob-Trees, we invoke the transformation
of the skeletal primitives as for blobs (see section 3.1).

Let us recall that our correspondence and decomposition algo-
rithms result in the following three correspondence sub-problems :
the commutative node transformation problem b 0 �qp�� / g *b 0 �qp-� / g , and the metamorphosis of two differences b�r g * bAr g
and two warpings b 1 g * b 1 g .
Commutative operator metamorphosis Whenever the
node Y Z and Y _ hold the same operator, we simply defineY`h�iHj�l � YsZ . In the general case, we propose the following defini-
tion of time varying nodes, which holds for whatever union, inter-
section or blending operators :

YsZ d�fe��mnm�m * Y[_ ��� S m d�fe���� YsZ / d�fe�� Y[_
For instance, the function that evaluates the potential field of the
morphing operator interpolating the union and the intersection op-
erators may be written as :��4>� C ��� S m d��fe�����698�:��;>= ��? ��@ ������� / d��fe��`6FE�G��;>= ��? ��@ �����B�
As mentioned in [21], super-elliptic blending may be used to
smoothly morph the union and the blending operators. Let us re-
call that super-elliptic blending, referred to as � is defined as :

�����.� �3���� ����� � � �#����
The standard blending operator

/
proves to be a special case of the

super-elliptic blend with � � S . When � varies from S to infinity,
it creates a set of blends interpolating between blending and union.

Morphing difference operators In the case bAr g * bAr g , no
problem occurs as we simply need to define the morphing operator
as the difference operator.

Morphing warping operators Let 1 Z and 1 _ two warpings
operators. In the most general case, the time varying warping op-
erator may be defined by interpolating the warping functions as for
commutative operators :1 Z d�fe��mvm�m * 1 _ ��� S m d�fe���� 1 Z / d�fe�� 1 _
Unfortunately, we have observed that this technique may create
over-distorted intermediate shapes. We propose an alternative ap-
proach that consists in decomposing the warping correspondence
into simpler sub-problems.

As mentioned in section 1, warps are taken among Barr opera-
tors [1], namely twist, taper and bend. Let us recall that those de-
formations tools are parametrized by a few parameters (e.g. an axis
and a rotation angle for the twist). We proceed as follows. If the
warps 1 Z and 1 _ are of the same type, we define 1 h�iHj�l as the same
type of warping with interpolated parameters. Otherwise, we need
to split the global warp transformation into two simpler morphings
(figure 8).

The evaluation of the time varying warping operator may be writ-
ten as follows :1 Z d�fe��mnm�m * 1 _ � � 1 Z d Z �fe��mm�m>m *.¡�!�¢£ � ¡�! d _ �fe��m�momom * 1 _ ¢

1 Z 1 _
Y[Z Y[_

1 Z Id

Id 1 _
Y Z Y _

Figure 8: Turning the warping correspondence into simpler sub-
problems

4 Metamorphosis sequences

We have implemented our metamorphosis method on Pentium II¤�¥ | Mz workstations running Linux and used it to produce the fol-
lowing animations.

Tower to queen This sequence (figure 9) shows the transforma-
tion of rook into a queen. This animation exhibits the transforma-
tion between two difference operators : the top of the rook defined
as the difference between a cylinder and the union of two boxes has
been matched with the top of the queen whose carvings have been
defined by subtracting eight small spheres from the upper part.

Figure 9: Metamorphosis between a rook and a queen

Cube to cut sphere This metamorphosis (figure 10) illustrates
that our method can hanlde metamorphosis between shapes of com-
pletely different topologies.

Figure 10: Metamorphosis between a cut sphere and a rounded box

Sphere to Helix This sequence (figure 11) shows the transfor-
mation of a sphere into an helix defined by two blended and twisted
rods. During the correspondence process, our method automati-
cally inserts a twisting operator at the root of the Blob-Tree model
of the sphere with a null angle parameter.

Figure 11: Metamorphosis between a propeller and a sphere

5 Conclusion and future work

The key feature of the Blob-Tree is its ability to model complex
objects with a small number of skeletal primitives combined with
blending, warping and boolean operators. In this paper we have pre-
sented an original Blob-Tree morphing technique that provides the
animator with both low and high level tools to achieve coarse and
fine control over the transformation. The overall metamorphosis is
described by a generic Blob-Tree model, whose nodes are charac-
terized as time varying operators. In practice, the user may rely on
pre-defined interpolating operators, or chose its own morphing op-
erators. A global control may be performed by only matching the
upper nodes of the source and target Blob-Trees. A finer control
can be achieved by specifying the trajectory and the transformation
speed of the skeletal elements.

In this paper, we have put the emphasis on Barr operators [1]
that form a restricted class of warpings. Future research could be
pursued to generalize our metamorphosis technique to other mor-
phing operators. We could extend warping operators to the Free
Form Deformations proposed by Sederberg [19] or to Axial Defor-
mations. The integration of those deformation methods in our mod-
eling and morphing environment would require the development of
an extended interactive user interface.

References

[1] A. H. Barr. Global and Local Deformations of Solid Prim-
itives. Computer Graphics (Siggraph’84 Proceedings), Vol.
18 : pages 21–30, July 1984.

[2] T. Beier and S. Neely. Feature Based Image Metamorpho-
sis. Computer Graphics (Siggraph’92 Proceedings), Vol. 26 :
pages 35–42, July 1992.

[3] J. Bloomenthal, C. Bajaj, J. Blinn, M. P Cani-Gascuel, A.
Rockwood, B. Wyvill, and G. Wyvill. Introduction to Implicit
Surfaces, Morgan Kaufmann 1997.

[4] S. Coquillart and P. Jancene. Animated Free Form Defor-
mation. Computer Graphics (Siggraph’91 Proceedings), Vol.
24(4) : pages 23–26, July 1991.

[5] E. Galin and S. Akkouche. Soft Object Metamorphosis
based on Minkowski sums. Proceedings of Eurographics’96,
Vol. 15(3) : pages 143-153, August 1996.

[6] E. Galin and S. Akkouche. Shape Constrained Blob Meta-
morphosis. Proceedings of Implicit Surfaces’96, pages 9–23,
October 1996.

[7] T. He, S. Wang, A. Kaufman. Wavelet-Based Volume Morph-
ing. Proceedings of Visualization’94, pages 85–91, 1994.

[8] J. F. Hughes. Scheduled Fourier Volume Morphing. Computer
Graphics (Siggraph’92), Vol 26,2 : pages 43–46, 1992.

[9] A. Kaul and J. Rossignac. Solid interpolating deformations,
construction and animation of pips. Computer Graphics, Vol
16(1) : pages 107–115, January 1992.

[10] J. R. Kent, R. E. Parent and W. E. Carlson. Shape Trans-
formation for Polyhedral Objects. Computer Graphics (Sig-
graph’92), Vol. 26(2) : pages 47–54, July 1992.

[11] T. Kanai, H. Suzuki and F. Kimura. Three dimensional Geo-
metric Metamorphosis based on Harmonic Maps. The Visual
Computer Vol. 14(4) : pages 166–176, 1998.

[12] T. Kanai, H. Suzuki and F. Kimura. Metamorphosis of Arbi-
trary Triangular Meshes with User-Specified Correspondence.
IEEE Computer Graphics and Applications (to appear).

[13] J. R. Kent, R. E. Parent and W. E. Carlson. Shape Trans-
formation for Polyhedral Objects. Computer Graphics (Sig-
graph’92), Vol. 26(2) : pages 47–54, July 1992.

[14] F. Lazarus and A. Verroust. Metamorphosis of Cylinder-like
Objects. Journal of Vizualisation and Computer Animation,
Vol. 8 : pages 131–146, 1997.

[15] F. Lazarus and A. Verroust. Three-dimensional metamorpho-
sis : a survey. The Visual Computer, Vol. 14(8/9) : pages 373–
389, 1998.

[16] A. Lee, D. Dobkin, W. Sweldens and P. Shröder. Multireso-
lution Mesh Morphing. Computer Graphics (Siggraph’99),
August 1999.

[17] A. Lerios, C.D. Garfinkle and M. Levoy. Feature-Based Vol-
ume Metamorphosis. Computer Graphics (Siggraph’95),
pages 449-456, August 1995.

[18] A. Pasko and V. Savchenko. Constructing functionally defined
surfaces. Proceedings of Implicit Surfaces’95, pages 97–106,
Grenoble, France, 1995.

[19] T. Sederberg and S. Parry. Free Form Deformation of Solid
Geometric Models. Computer Graphics (Siggraph’86), Vol.
23(3) : pages 151–160, August 1986.

[20] B. Wyvill, C. Mc.Pheeters and G. Wyvill. Data Structure for
Soft Objects. The Visual Computer, Vol. 2(4) : pages 227–
234, 1986.

[21] B. Wyvill, A. Guy and E. Galin. Extending the CSG Tree
(Warping, Blending and Boolean Operations in an Implicit
Surface Modeling System). Proceedings of Implicit Sur-
faces’98, pages 113–121, June 1998.

Figure 12: Metamorphosis between a rook and a queen

Figure 13: Metamorphosis between a pierced sphere and a rounded box

Figure 14: Metamorphosis between a propeller and a sphere

