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Abstract This paper presents an
interactive method for modeling
cracks and fractures over a variety
of materials such as glass, metal,
wood, and stone. Existing physically
based techniques are computationally
demanding and lack control over the
fracture propagation. Our approach
consists in editing 2D fracture pattern
and profile curves which are stored
in an atlas according to material
type. The fracture model is then
automatically mapped onto the

surface of the object and fractures are
created by carving out a procedurally
generated swept volume. Because
the objects need not be voxelized or
tetrahedralized as with physically
based techniques, we are not limited
in resolution when creating the
geometry of cracks, which enables us
to model small or very thin fractures.

Keywords Modeling · Fractures ·
Cracks

1 Introduction

Modeling complex and realistic shapes is still a challeng-
ing and important problem in computer graphics. The
challenge stems not only from the complexity of the
geometry and texture of the shapes, but also from the
many surface details such as cracks, erosion, or patina
produced by the aging and weathering of objects inter-
acting together and with their environment. Beautiful and
realistic images of complex natural environments have
been produced by many computer graphics researchers
and artists in the film industry. Unfortunately, the rendered
models are often too perfect, which betrays the synthetic
nature of the scene.

Several techniques simulating the physical and chem-
ical phenomena that age stone [2, 7] and metallic struc-
tures [5, 6] in a natural environment have been proposed.
In this paper, we present an interactive technique for mod-
eling cracks and fractures over solid objects. Cracks and
fractures are conspicuous in nature and may be found on
wood, tree bark, stone, glass, ice, or dried clay. They play
an important role in the realism of a natural scene, as their

presence provides the viewer with a hint about the age of
an object as well as indirect indications about the weather
and the characteristics of the environment. Our approach
is phenomenological: by observing real-world fractures
and cracks, we identify some simple patterns and param-
eters that will guide our procedural techniques and will
provide an interactive control to the designer.

1.1 Related work

Realistic animation of breaking objects is a challenging
task in computer animation. Breaking an object often cre-
ates many small and interlocking pieces. The complexity
of these fragments makes modeling by hand impossible.
Consequently, the simulation of cracking, breaking, and
shattering has received some attention in the computer
graphics community.

Animating and simulating fractures. Most existing tech-
niques for animating and simulating fractures rely on in-
volved and computationally demanding physically based
simulations to compute crack propagation and create frag-
ments [18, 21, 22]. Such methods are indispensable for
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Fig. 1. Cracks on a wood bench

correct and accurate simulation of shattering and breaking
and have produced animations of striking realism.

O’Brien and Hodgins [21] proposed a method for mod-
eling and animating brittle fracture by analyzing the
stress tensors computed over a finite element model. This
model was extended in [22] to model ductile fractures
for a wider range of materials. Smith et al. [23] presented
a technique for shattering brittle objects using a set of
point masses connected by distance-preserving linear con-
straints. Mûller et al. [18] used a hybrid implicit–explicit
integration scheme to compute deformations and fracture
of stiff materials in real time.

Several specific techniques have been proposed to ad-
dress the fragmentation of solid objects induced by explo-
sions. Mazarak et al. [16] used a voxel-based approach to
model solid objects that break apart when they encounter
a blast wave. Nef and Fiume [19] proposed a recursive
pattern generator to divide a planar region into polygon
shards.

Modeling static crack patterns. Several techniques have
been proposed for modeling static crack patterns on dry
mud, tree bark or even ceramics. Gobron et al. [10] de-
scribed a method for modeling the propagation of cracks
on the surface of objects using a cellular automata. Hirota
et al. [11, 12] developed a mass-spring system for simulat-
ing the static crack and fracture patterns created by drying
mud. Mass-spring techniques have also been used to sim-
ulate cracks on tree bark [8]. While those methods can
create small cracks, they cannot represent large open frac-
tures. Hybrid approaches combining procedural and phys-
ically based techniques have been proposed as well [14].

Some recent research addresses fracture pattern for-
mation induced by growth or shrinkage [9], which occurs
in bark formation or drying clay. The proposed method
improves finite element methods to efficiently capture
growth and fracture. Wang et al. [25] proposed an alter-
native image-based technique to model cracks in bark as
a textured height field after processing an input image.

Modeling and rendering scratches. In the same area of
surface defects, several methods have been proposed for
modeling and rendering scratches [1, 17]. Those methods
do not explicitly model the true microgeometry of a crack.
Physically based simulations often require the discretiza-
tion of objects into voxels or tetrahedral cells to compute
internal forces. This discretization often leads to some ar-
tifacts in the crack pattern, which makes fragments look
rather unrealistic. Those artifacts are the more visible as
fractures are propagated along the boundaries of the ini-
tial mesh or voxel grid. Moreover, it is difficult to control
a simulation so that breaking should occur only in a given
region and so that some fragments should have a specific
user-defined shape. Therefore, their usage may be cumber-
some for interactive modeling applications.

1.2 Overview of our method

Our technique may be split into two steps:

Modeling template fracture models. First, template frac-
ture models are edited after real-world images and stored
into an atlas of generic models according to their cor-
responding type of material. Fractures are characterized
by a 2D fracture pattern defining their branching structure
and by a set of profile curves that defines the cross sections
of the cracks.

In our interactive template fracture editor, the de-
signer simply needs to specify a few control points for the
crack pattern and some control profile curves. The final
crack pattern is generated automatically by perturbing or
smoothing the coarse crack pattern according to the type
of the material, whereas the intermediate profile curves
are automatically generated by a simple curve interpola-
tion scheme.

Creating cracks and fractures. The designer first selects
a fracture model in the atlas. This model is automatically
mapped onto the surface of the original object to create
a 3D crack volume that adapts to the surface of the object.

The designer can control the orientation of the frac-
ture on the object, edit its profile curve, or change some
of its shape parameters with interactive feedback. Cracks
are created by using a Boolean difference operation be-
tween the original input model and the carving volume as
presented in [15].

1.3 Contributions

The main contributions of this paper are as follows.

Template fracture models. Our approach enables us to
capture the complexity and diversity of crack patterns and
profiles. Template fracture models are stored in an atlas
according to material type. The designer can quickly se-



719

Fig. 2. Overview of structure of a fracture model. The arrows illus-
trate the traversal of the graph

lect and apply fracture models and interactively edit com-
plex shapes.

Fracture geometry. Because the objects need not be vox-
elized or tetrahedralized as with physically based tech-
niques, we are not limited in precision or resolution when
creating fragments. Therefore, we avoid shape artifacts re-
sulting from the discretization preprocessing step required
by physically based techniques and we can easily create
the true geometry of small or very thin fractures such as
cracks in glass (Fig. 12).

Animating cracks. We propose a technique for animating
the propagation of a fracture over a surface by parameter-
izing the crack pattern by time steps that trigger and stop
crack growth. This method enables us to control the propa-
gation speed easily and efficiently.

The remainder of this paper is organized as follows.
Section 2 describes the structure of our template fracture
models. Section 3 addresses the creation of the carving
volume. Section 4 describes a technique for animating the
propagation of a fracture over an object. We conclude the
paper by a presentation of several images illustrating real-
istic cracks over a variety of objects of different materials
in Sect. 5, followed by a discussion of our results and open
problems for future research.

2 Template crack models

A template crack model F = {P , C} is characterized by
a crack pattern P and a set of profile curves C that repre-
sent the cross sections of the crack (Fig. 2).

2.1 Crack patterns

The crack pattern is implemented as an oriented graph, de-
noted as G. The connectivity of the graph represents the
branching structure of the crack pattern. The nodes of the

graph, denoted as N , store the profile curves that define
the cross section of the crack. The corresponding theoret-
ical crack volume is produced by recursively traversing the
graph and interpolating the crack profile curves along the
arcs of the graph. This step will be addressed in detail in
Sect. 3.

Every node in the graph stores two or more profile
curves, depending on its connectivity. More precisely,
unary nodes, i.e., leaf nodes, and binary nodes store two
profile curves, whereas n-ary nodes store n profile curves
(Fig. 2). The profile curves at the nodes may be of a differ-
ent geometry, which enables us to model a vast variety of
crack patterns for different types of materials.

Let Nj denote a leaf node and Ni its parent node. Nj
stores two profile curves which will be denoted as Cij and
Cji (Fig. 2). Otherwise, in the general case, Cijk will refer
to the profile curve at node Nj when traversing the graph
from Ni to Nk.

The arc between two nodes Ni and Nj will be referred
to as Aij . The relative angle between the directions of two
consecutive arcs Aij and Ajk will be denoted as αijk. The
arcs Aij are valuated by the distance between two nodes
Ni and Nj denoted as δij . The distance between two nodes
in the graph is obtained by traversing the graph and evalu-
ating the minimum distance.

2.2 Crack profile curves

A profile curve is defined as a piecewise cubic spline curve
whose control points will be referred to as pi , i ∈ [0, n −
1], where n denotes the number of control points. The pro-
file curves may be of any type and may define nonconvex
or even more complex cross sections (Fig. 3).

Interpolating profile curves. The theoretical crack volume
is produced by recursively traversing the graph and in-
terpolating the crack profile curves along the arcs of the
graph. Therefore, we need to be able to compute a set of
curves interpolating an initial and final profile curve Ci
and Cj . In our system, we rely on the curve morphing
technique described in [3]. This method enables us to cre-
ate nonintersecting curves interpolating an initial and final
control curve easily.

Fig. 3. Some crack profile curves



720

Fig. 4. Overview of crack modeling pipeline

3 Modeling fractures onto objects

In this section, we describe our method for creating cracks
on an object. Given an initial object O and a crack model
F , the overall algorithm may be outlined as illustrated in
Fig. 4. First, we map the crack pattern P onto the surface
of the object so as to create a 3D skeleton S. Then, we
create the profile curves at the vertices of the skeleton by
interpolating the profile curves Ci of the crack model and
orienting them according to the local normal of the surface
of the object. We define the crack volume V as a piecewise
generalized cylinder produced by sweeping the interpolat-
ing profile curves along the skeleton. Eventually, we carve
the crack volume V out of the original object by comput-
ing the Boolean difference O −V. In our system, we use
standard techniques for computing the Boolean operations
between two meshes.

3.1 Creation of 3D skeleton

The creation of the 3D skeleton is performed by mapping
the crack pattern P onto the surface of the object. Given
an anchor point on the object c0 and an initial direction
u0, the algorithm progressively marches along the trian-
gle mesh and simultaneously traverses the graph G using
the distance and angle parameters δij and αijk stored at the
nodes and the arcs to compute the shape of the skeleton.

The nodes Ni of the crack pattern are transformed
into vertices ci . The arcs Aij are transformed into a set of
n line segments [sk, sk+1], k ∈ [0, n −1], where s0 ≡ ci
and sn ≡ cj . Vertices sk are the intersections between the
edges of the triangle mesh of the object and the crack pat-
tern propagating over the object (Fig. 5).

For every vertex sk of the skeleton we compute a local
reference frame Rk = (sk, dk, tk, nk) according to the

Fig. 5. Structure of 3D skeleton produced by mapping crack pattern
onto surface

local curvature of the surface and according to the direc-
tion of the propagation of the crack. Vector dk denotes the
direction of the propagation of the crack at vertex sk, and
nk denotes the normal of the surface at this point. If sk
lies inside a triangle, then nk is the normal of the triangle.
Otherwise, if sk is on an edge or a vertex, then nk is the
average of the normals of the neighboring triangles. The
surface tangent vector is defined as tk = nk ∧uk.

3.2 Creation of profile curves

The cross sections Xk of the crack volume at vertices sk
of the skeleton are obtained by interpolating the profile
curves located at vertices s0 ≡ ci and sn ≡ cj and locating
them in the local reference frame Rk (Fig. 5). Recall that
the length of the skeleton between ci and cj is equal to δij .
We define δik as the sum of the lengths of the line segments
between vertices s0 = ci and sk:

δik =
j=k−1∑

j=0

‖sj+1 − sj‖

Thus, for all vertices sk, we define its corresponding cross
section as the linear interpolation:

Xk = δik

δij
Ci +

(
1− δik

δij

)
Cj

3.3 Carving volume generation

The overall carving volume is obtained by traversing the
skeleton structure and generating swept volumes for every
line segment and every terminating vertex.

For every line segment [sk, sk+1] of the skeleton, the
carving volume is defined as the generalized cylinder con-
necting the corresponding cross sections Xk and Xk+1
(Fig. 6). We generate the carving volume at the end ver-
tices of the skeleton by sweeping and interpolating the two
cross sections around the axis passing by the end vertex sk
and with a direction nk (Fig. 6).

3.4 Adaptive resampling of skeleton

In some cases two consecutive cross sections Xk and
Xk+1 located at vertices sk and sk+1 of the skeleton
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Fig. 6. Swept volumes defining carving volumes

Fig. 7. Intersecting cross sections that may occur in high curvature
regions

may self intersect, which produces an inconsistent swept
volume for the corresponding segment [sk, sk +1]. Such
cases arise in particular whenever the local curvature of
the surface is too high compared to the size of the cross
sections, or whenever the crack pattern makes a sharp turn
(Fig. 7).

Inconsistent swept volumes should be avoided as they
prevent the correct computation of Boolean differences.
Therefore, we propose a technique that adapts the skeleton
to the local curvature of the object to avoid self intersect-
ing cross sections.

We perform an adaptive resampling of the skeleton by
merging or splitting vertices so as to adapt the local dens-
ity of vertices to the curvature of the mesh.

Merging process. This step aims at adapting the number of
vertices on the skeleton to the size of the cross sections.
Let ri and rj denote the radius of the circle centered at
vertices si and sj on the skeleton and enclosing the corres-
ponding cross sections Xi and Xj . The two cross sections
may intersect if

δij < ri +rj

Thus, if δij < ri +rj , we merge the two vertices si and sj
into a single new vertex sk. The corresponding cross sec-
tion is evaluated as a linear interpolation:

sk = ri si +rj sj

ri +rj
Xk = ri Xi +rj Xj

ri +rj

Splitting process. The splitting process aims at inserting
new vertices in the skeleton if the length of a line seg-
ment δij is too large compared to the size of the cross

sections. This process produces more regular skeletons,
which in turn results in more evenly sampled carving vol-
umes. A line segment between two vertices si and sj is
split if

ri +rj < 2 δij

In that case, we insert a new vertex sk and a corresponding
cross section Xk over the line segment as for the merging
process.

3.5 Handling noisy bumpy surfaces

Although our previous technique can handle surfaces with
varying triangle densities and regions of high curvature,
they may fail at creating a consistent carving volume for
very rough or noisy surfaces. Such cases arise when cre-
ating fractures over highly bumped surfaces such as tree
bark or rough stone. In those cases, mapping the crack pat-
tern onto the exact surface of the object produces a very
complex skeleton with many interlocking segments which
cannot be simplified by the split and merge algorithm de-
scribed in the previous paragraphs.

Our approach consists in using a smooth carrier sur-
face, denoted as Õ, that approximates the surface of
the original object (Fig. 8). The new skeleton S̃ is gen-
erated by mapping the crack pattern P onto the car-
rier surface. The carving volume Ṽ is generated as de-
scribed in Sect. 3.2 by sweeping the profile curves along
the skeleton, and the final cracked object is defined as
O − Ṽ.

The approximating surface should be smooth and
should embed the original object so as to avoid the forma-
tion of tunnels when carving the crack volume out of the
object. The carrier surface is created after the original ob-
ject by using standard mesh smoothing techniques [4, 13].
The vertices of the new mesh located inside the original
object are relocated toward the original surface so that Õ
should embed O.

Fig. 8. Mapping crack pattern on approximating smooth mesh em-
bedding original Aphrodite stone statue
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Figure 8 illustrates this process. To create cracks on
the highly detailed and bumped mesh of the stone statue
(92188 triangles), we first created a corresponding smooth
carrier surface (blue transparent mesh with only 3042 tri-
angles). The carving volume (pink shaded) was generated
by projecting the crack pattern on the carrier surface.

4 Animating crack propagation

In this section, we present a technique for animating the
propagation of a fracture over the surface of an object.
Given a static fracture model F = {P , C}, we define
the time-varying fracture model F (t) = {P (t), C(t)} that
characterizes the propagation of the crack. The overall
animation is simply defined by instantiating the generic
fracture model at given time steps t0.

4.1 Crack propagation model

Our approach consists in parameterizing the nodes Ni of
the graph by a tuple (ti, ∆ ti). The parameter ti represents
the time step at which a crack starts growing at node Ni ,
whereas ∆ ti denotes the amount of time needed for this
crack to grow and reach its final size (Fig. 9).

In our implementation, the time steps can be automati-
cally computed as follows. Let v denote the constant crack
propagation velocity and τ the time needed for a cross sec-
tion to start growing and achieve its final state. Recall that
δij denotes the distance between node Ni and node Nj , and
the time intervals are incrementally defined as

tj = ti + δij

v
∆ t j = τ

Time parameters ti and ∆ ti can be edited for every node
of the graph so as to control the speed on propagation of
the fracture on its different parts. In our system, we have
implemented some higher-level control tools for editing
the crack propagation process.

The formation of a whole subtree can be delayed
(or anticipated) by incrementing (or decrementing) the
growth-starting time steps ti by a user-defined constant
amount of time. In a similar way, the crack formation can

Fig. 9. Simplified representation of generic fracture propagation
model

Fig. 10. An instance of generic fracture model in Fig. 9 with time
step t0 = 6

be accelerated or slowed by increasing or decreasing the
parameters ∆ ti of a whole subtree.

4.2 Instantiation scheme

The creation of a crack is performed by instantiating the
generic fracture model at a given time step. The creation
of F (t0) is performed in two steps. First, we create the
subgraph G(t0) only keeping the nodes Ni whose starting
time satisfies the condition ai > t0. The arcs Aij that sat-
isfy t0 > aj are preserved, whereas the arcs Aij that satisfy
ai < t0 and t0 < aj are cut (Fig. 10).

Thus, for every arc Aij that satisfies the condition ai <
t0 < bj , we create a new leaf node Nk(t0) in the subgraph
G(t0). The arc Aik stores the same relative angle αik = αij
and the distance δik is computed as follows:

δik(t0) = t0 −ai

aj −ai
δij

The profile curves Ci(t0) at the nodes of G(t0) are com-
puted as follows. For every node Ni :
1. If t0 < ai , then the propagation has not reached node

Ni ; thus Ni(t0) is not added to G(t0).
2. If ai < t0 < bi , then the propagation has reached node

Ni but the formation of the crack at this point is not
finished. We define the modified profile of the node by
scaling it as follows:

Ci(t0) = t0 −ai

bi −ai
Ci

3. Otherwise, t0 > bi , so the node has stopped growing
and Ni(t0) = Ni .
The profile curves at the leaf nodes of G(t0) are defined

as single-point profile curves.

5 Results

We have applied our method to create cracks and fractures
over a variety of objects of different materials including
stone, wood, glass, ice, or clay. The corresponding images
are shown throughout this paper.
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Almost all the template crack patterns presented
throughout this paper were created in less than 5 min by
using our interactive editor. Thus, it took us only a few
hours to create an atlas including different types of cracks
and fractures for stone, wood, glass, ice, or clay.

All the final cracked models presented through out
this paper were created in less than 5 min. This amount
of time includes the selection of the crack pattern in the
atlas and the application of the fracture model to the ori-
ginal object. The complex scene (Fig. 18), which includes
many different models including several cracked stone
walls (Fig. 17), a fractured wood bench (Fig. 1) and gate
(Fig. 19), and broken glass light bulbs, was created in ap-
proximatively 2 h.

Eggshell. The crack pattern on the eggshell was created
after a stone crack pattern. We modified its shape by in-
serting twice as many nodes and adding a random dis-
placement so as to get a very irregular crack.

Mushroom. The crack pattern of the fairy ring model
(Fig. 14) was created procedurally by generating radial
and logitudinal cracks over the cap and the stem. The
cracks follow the direction of the fibers of the mush-
room.

Fig. 11. Broken eggshell

Fig. 12. Broken wine glass

Wine glass and vase. The fracture pattern on the wine
glass (Fig. 12) was created by first editing a coarse pat-
tern and progressively smoothing some of its parts while
preserving some obtuse sharp angles. The crack profiles
are very thin rectangular shapes whose width is less than
10 microns. The very thin geometry of the crack enabled
us to capture the complex reflection and refraction phe-
nomena and to produce very realistic lighting effects. The
cracks in the glass vase (Fig. 13) were created using the
same technique.

Pan glass. The original pan glass of the Mona Lisa paint-
ing was composed of 12 triangles. The star-shaped crack
pattern on the pan glass covering the Mona Lisa paint-
ing (Fig. 20) was made of 6776 control nodes. Only 50 of
theses were edited by hand; the others were automatically
generated using our procedural smoothing technique that
captured the curved geometric shapes of the crack. The
generated crack pan glass is made of 95, 618 triangles.
This example demonstrates that our method can correctly
handle objects and fracture models with very different
resolutions.

Wood. The cracks on the wood ramp (Fig. 17), the gate
(Fig. 19), and the bench (Fig. 1) were created after the tex-

Fig. 13. Broken glass vase

Fig. 14. Mushrooms with cracked steps and stems
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Fig. 15. Synthetic character (© Laurence Boissieux, INRIA) strikes and breaks icefield with staff

Fig. 16. Cracked chessboard

Fig. 17. Wood ramp with some fractures produced by dilatation of
wood

ture pattern of the wood so that the fractures would follow
the wood fibers.

Stone. The fracture patterns for the stone objects were cre-
ated procedurally by perturbing an otherwise coarse crack
pattern by inserting new nodes and modifying their loca-
tion using small random displacements. Figure 17 shows
a closeup of cracks produced by a wood ramp on a con-
crete wall.

Fig. 18. Complex scene with many cracked objects

Fig. 19. Wood gate with cracks created by weathering of nails

The marble crack pattern of the chessboard (Fig. 16)
was created procedurally by successively perturbing and
smoothing an initial random coarse crack pattern.

Ice. Figure 15 shows a synthetic character standing on an
icefield and striking it with a staff. The cracks appear at the
impact point and quickly propagate over the surface of the
icefield. The creation of the static crack pattern took 5 min.
An extra 5 min were necessary to tune the parameteriza-
tion of the nodes.
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Fig. 20. Cracked pan glass covering Mona Lisa

6 Conclusion

We have presented an efficient interactive technique for
modeling a variety of cracks and fractures over objects of
different materials. Our fracture model can handle very
large or very thin fractures with a complex pattern and
geometry easily. Our cracking algorithm can handle tri-
angle meshes of different resolutions without producing
artefacts.

We have developed a crack pattern editor that gen-
erates realistic complex models after real-world im-
ages. Fracture models can be archived into an atlas of

Fig. 21. Stone statue of Aphrodite with cracks

shapes and interactively applied to any kind of object.
The designer can control the shape of the cracks easily
and with interactive feedback using our cracking edi-
tor.

In the near future, we plan to further investigate the
creation of cracks with different levels of detail. Instead
of creating the true geometry of the cracks, which would
generate many triangles to capture the small details of the
crack pattern, our method could directly generate a texture
map and a corresponding bump map after the description
of the crack pattern. This approach would enable us to cre-
ate realistic approximations of cracks for models that only
need a coarse representation with a low level of detail.
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