
The Visual Computer manuscript No.
(will be inserted by the editor)

Alexandre Peyrat · Olivier Terraz · Stéphane Mérillou · Eric Galin

Generating Vast Varieties of Realistic Leaves with Parametric
2Gmap L-Systems

Abstract Creating realistic plants and trees require the abil-
ity to generate thousands of leaves with different shapes and
textures for different given species. This paper presents an
original method to generate large atlases of leaves with many
details from a single formal grammar. Leaves are described
by a parameterized 2Gmap L-System that describes their
evolution in shape and texture through out their entire life
cycle. Our approach automatically synthesizes the deforma-
tions as well as the color and texture changes as the leaves
age, as well as defects such as holes or cracks produced by
insects attacks or accidents.

Keywords Leaves · Formal Grammar · L-Systems · Aging.

1 Introduction

Modeling complex and realistic synthetic landscapes cov-
ered with vegetation such as forests, meadows or gardens
is a challenging and important problem in computer graph-
ics. The challenge stems not only from the complexity and
diversity of biological species that exhibit different shapes
and textures, but also from the huge number of elements that
need to be modeled and rendered to create realistic images.
In particular leaves, which are conspicuous in nature, play a
very important part in the creation of a complex scene.

The complexity and diversity of leaf patterns, shapes and
textures makes modeling every single leaf by hand impossi-
ble, whereas the replication of the same graphical elements
results in a very unrealistic natural scene. Thus, there is a
need for procedural techniques for generating thousands of
different leaves and create realistic tree foliages. In this pa-
per, we present an efficient procedural method to generate

Alexandre Peyrat
E-mail: alexandre.peyrat@xlim.fr

Olivier Terraz
E-mail: olivier.terraz@xlim.fr

Stéphane Mérillou
E-mail: stephane.merillou@xlim.fr

Eric Galin
E-mail: eric.galin@liris.cnrs.fr

a vast variety of different leaves with a simple and compact
grammar characterization. Leaves are defined by an origi-
nal parameterized 2Gmap L-System that describes the char-
acteristics of their species and their evolution in shape and
texture through out their entire life cycle. Our 2Gmap L-
System builds on classical L-System [15] and 2-dimensional
generalized maps (2Gmap) [9] and operates on faces rather
than on segments to automatically generate a triangle mesh
representing the leaves. We extend the base grammar of L-
systems so that it can handle parameters and introduce in-
line declarations of special actions via scripting and specific
case rules.

Fig. 1 Overview of the system.

Given an input set of production rules and an age param-
eter, our method automatically generates the venation pat-
tern, and creates the triangle mesh and the texture of the leaf
from the venation pattern as outlined in Figure 1. This ap-
proach enables us to generate complex foliages with differ-
ent leaves easily. This paper is organized as follows: sec-
tion 2 recalls related work on leaf generation, leaf render-
ing and leaf aging techniques. Section 3 presents the 2Gmap
L-System and details the leaf generation process. Section 4
explains how the textures are generated to simulate aging.
Finally, section 5 presents results and discusses future work.



2 Alexandre Peyrat et al.

2 Related Works

Leaves modeling:Many methods for leaves modeling exist:
image-based modeling, particle systems, implicit contours
and L-systems.

A first field for modeling leaves uses image-based mod-
eling. Such methods propose to reproduce the real shape
of the leaf provided by the user. Quan et al. proposed a
semi-automatic way for modeling leaves [17]. The user pro-
vides several pictures taken at different angles, then a points
cloud is built and the segmentation of individual leaves (via
a graph) is done with the pictures information. Finally the
user can manually refine the segmentation in order to bypass
errors due to overlapping leaves. A generic and deformable
leaf model is then applied.

In order to build venation patterns Rodkaew et al. in [18]
use a particle system. The shape of the leaf and the base
point of veins (petiole) must be given. Particles are then ap-
plied randomly on the blade of the leaf and move through
it, creating a trail, to reach the petiole. Runions et al. de-
signed a biological algorithm in order to build leaves [20];
they use the shape of the leaf, then build veins via simula-
tion of hormones distribution inside the leave. The user must
provide the shape of the leaf and the position of the petiole.
Hormone sources are applied on the blade of the leaf via
a dart-throwing algorithm and then migrate to the nearest
vein point. When a hormone point is close enough to a vein
point a new vein point is generated. This method gives bi-
ologically plausible results based on the growth of leaves.
Compound and lobed leaves have also been well studied. A
method designed by Hammel et al. in [8] proposed to model
compound leaves with implicit contours. The skeleton, gen-
erated using an L-system, is used to build the implicit surface
around the leaf. Moreover Hammel et al. can modify the ra-
dius of influence of each segment to build a more realistic
contour. Pivovarov et al. in [12] designed a method to model
lobed leaves via a skeleton. A 2D shape of the border of the
leaf must be provided, and then a skeleton is built to fit this
given shape. This method uses sticky splines [13] so that the
skeleton has topological relations. Once this step has been
done, the final mesh is built by scanning in the same way the
skeleton and the shape.

One of the most noticeable contributions in plants mod-
eling are L-systems which are commonly used. These meth-
ods are very efficient to design plants organs and growing
structures. Prusinkiewicz and Lindenmayer in [15] describes
a large amount of methods based on L-systems. Many im-
provements have been proposed to increase realism and flex-
ibility of L-systems. Prusinkiewicz and Hanan [14], build
parametric L-system to handle numerical parameters. An-
other way to build branching structures by fitting them to a
given shape is proposed by Rodkaew et al. [19] based on ge-
netic algorithm. In order to make plants grow depending on
the later steps, Prusinkiewicz and Lindenmayer [15] design
context-sensitive L-systems.

String L-systems are of 1 topological dimension even if
3D shapes can be used instead of segments ([16] and [7]).

But many botanical structures need 2 or 3 topological di-
mensions to be modeled. Lindenmayer and Prusinkiewicz
in [15] introduced Map L-systems and Cellwork L-systems.
Map L-systems were introduced to work on subdivisions of
surfaces such as cellular structures. A map is a set of regions
constituted of borders made of segments. In the first phase,
Map L-systems build segments and in the second one, they
create regions with these segments. Cellwork L-systems work
on 3 topological dimensions. These methods give realistic
results but induce a heavy and hard to built grammar. Exten-
sion of L-systems based on 3-dimensional generalized maps
that allows an easier control of the internal structure of 3D
objects is proposed in [21].

In this paper, we introduce a new kind of L-system, which
contrary to the models previously developed makes it possi-
ble to easily describe operations on subdivisions of surfaces.
The direct use of high level operations on surfaces makes
it possible to control more intuitively and more simply the
evolution process. The main drawback of image-based and
particles system methods is that the user must provide a pic-
ture or a shape of the leaves. Our method is free from pic-
tures or shape input, the shape of the leaf is totally defined
via rules in the L-system grammar.

Leaves rendering:Leaves are composed of several layers that
behave differently when exposed to light. Bousquet et al.
have studied reflectance and transmittance of leaves [3]. The
authors provide several BRDF and BTDF parameters suited
to leaves rendering. A method proposed by Rodkaew et al.
[18] generates colors using particles previously used to also
generate the veins of the leaf. A vector field is modified by
moving particles and is used to fill the blade of the leaf with
colors via the petiole.

Subsurface scattering is also well-suited to render leaves,
due to their multiple-layered structure. Baranoski et al. [1]
have proposed an “Algorithmic BSSDF Model” (ABM) where
BSSDF stands for “bidirectional subsurface scattering dis-
tribution function”. The ABM model consists in four lay-
ers that can absorb, transmit, or reflect the ray of light via
Snell-Descartes laws. Baranoski et al. [2] also proposed an
improvement of the ABM. They assume that the surface of
the plant is not totally flat, thus they apply a perturbation on
the rays of light. These perturbations depend on the layer
crossed by the ray as well as the layer the ray comes from.
Wang et al. in [22] proposed a method to render leaves with
real time subsurface scattering based on a parametric leaf
model. This model is a slab with rough surfaces and uses
spatially-variant BRDFs and BTDFs. It also contains thick-
ness variations and an albedo map. Subsurface propagation
is insured by an experimentally validated model.

Leaves aging:Aging has been mainly studied via the con-
centration of pigments. In [5], Chiba et al. have studied col-
ors of leaves getting old. The authors determine pigment
concentrations against time, distance between veins and the
petiole, and light. Mochizuki et al [11] also studied colors of



Generating Vast Varieties of Realistic Leaves with Parametric 2Gmap L-Systems 3

leaves with a method accounting for solar light and exper-
imental information on the coloration of leaves. They pro-
pose both biological and fractal models for autumn leaves.
In [4], Braitmaier et al. have also proposed to characterize
colors of leaves with pigments concentrations against solar
light and pigments. A stochastic model, proposed by Des-
benoit et al. in [6], uses an atlas of leaves built from scanned
images to distribute them in a scene.

3 Leaves Generation

Leaves consist in an almost flat structure, so a 2 topologi-
cal dimension structure is well suited to represent them. Our
method is based on a 2Gmap L-system which builds up a
2 dimensional generalized map including operations asso-
ciated with production rules. The 2Gmap is a topological
model which allows to represent the topology of any 2 di-
mensional subdivision. This model uses a single type of el-
ement: Dart (which can be seen as half-edges) on which 3
bijections are defined: connect 2 darts to form edges, con-
nect edges to form faces and finally sew a face to another.
However, technical aspects of the implementation of gener-
alized maps will not be describe here, all topological opera-
tions used bellow (creation, face glueing and face splitting)
are traditional and formally defined in the corresponding lit-
erature (for more details readers can refer to [9]). In our
method, the formal L-system grammar is used to build faces
which represent veins of the leaf; this grammar has been en-
hanced in order to accurately design venation patterns. Then
the leaf body is filled through the iteration process. More-
over, tools are added to the grammar to make designing rules
simpler and permit to control the evolution more precisely.
Our main goal is to be able to generate a collection of differ-
ent leaves for a given species with the same grammar. The
user can build a grammar using variables and random val-
ues, this grammar will give different leaves at the end of the
iterative process.

3.1 2Gmap L-system

In our model, faces will be characterized by a label and will
be referred to as an upper case letter. Each edge has an au-
tomatically assigned label (figure 2). E edge represents the
extremity of a face, O edge represents its origin and Cx edges
represent its side edges. We use the following notation : AC1
for a C1 edge of a A face. The grammar consists in the de-
scription of faces used, an axiom, definitions of variables
used and finally production rules.

Faces are defined with their number of edges N, their
translation coefficient t, three angles defining their orienta-
tion, denoted as α , β , γ , length l and width w. The axiom
of the grammar must be specified to determine the first face
where other faces will be glued. Finally the list of rules is
given. The 2GMap L-system rules will shape faces rather
than build segments or word as in classical L-systems. Our

system is built on three production rules: growing, glueing,
splitting.

Growing:The first base rule is the growing operation. It cre-
ates a new face and glues it on another one using a given
edge label: A→ A[B]E . Here a face B is created and glued
on AE (figure 2). New faces are always glued using their O
edge.

Glueing:Labels provide the user with the ability to glue one
edge with a given label to another one. Glueing can be ap-
plied to two existing edges. This operation consists in glue-
ing two adjacent edges: A : AC1 < BC2 → AC1|BC2. In this
rule, if an edge AC1 is adjacent to an edge BC2 , then these
two edges are glued (figure 2). This also allows us to intro-
duce a context-sensitive aspect on our rules.

Fig. 2 On the left, face B grows from edge AE . On the right, if AC1 is
adjacent to BC2 , they are glued.

Splitting:A face can be split in two other faces. The face is
cut parallel to the desired edge A→ OBC. Here A is split into
B and C parallel to AO (figure 3).

Fig. 3 Face A is divided into face B and C parallel to AO.

3.2 2Gmap parametric L-system

We extend the previously described 2Gmap L-systems by in-
troducing new features: scripting inside the grammar, over-
loading faces attributes, declaring conditional actions and
reusing attributes of faces.

Scripting system:Variable can be initialised and can then
be used in the rules. In order to use a variable, we intro-
duce scripting blocks providing the ability to get values from
arithmetical operations on variables.



4 Alexandre Peyrat et al.

Overloading faces attributes:To enhance control on faces
we include three tools which allow us to build a more pre-
cise structure. Our first improvement is the ability to modify
faces attributes from inside the rules. This overload of face
attributes is directly used when we create a new face; all the
attributes can be defined with values different from the ones
used in the face definition.

Grammar 1

@Faces, variables and axiom definition :@
#define A(4,1,0,0,−90,1,1)
#define B(4,1,0,0,0,1,1)
#define C(4,1,0,0,0,1,1)
#define nl = 2
#define nw = 1

#axiome : A

@Rules :@
p01 A→ A[B(,,,,,2,)]E
p02 B→ B[C(,,,,,< nl >,)]C1
p03 C {nw = nw + 1} {step > f inalstep} {nl = nl + 1}
→ C[B(,,,,,< nl >,< nw >)]C1
p04 B(nbe,t,rotx,roty,rotz,l,w) { } {l < 10} {nl = nl + l}
→ B[C(,,,,,< nl >,)]C1

We can see in (Grammar 1 : p01) how overloading is
conducted. B length is changed from 1 to 2. Every param-
eter, presented in the face definition, can be altered. More-
over a scripting block can be set in place of an attribute so
that variables and functions can be used in the overloading
(between < and >) as shown in (Grammar 1 : p02).

Conditional actions:We introduce three blocks, the first one
contains an action done every time, the second one con-
tains a conditional rule and the last one contains an action
done only if the condition is met. These blocks are simi-
lar to the ones used in CPFG syntax ([10]). This improve-
ment is shown in (Grammar 1 : p03). If step is greater than
f inalstep then we increment nl and the rule is applied. Re-
gardless of the condition satisfaction, we increment nw. We
can also see two undeclared global variables used to know
current and final step of the iteration.

Reusing attributes of faces:Our last improvement in the rules
is the possibility to reuse attribute of the mother face. In or-
der to get the attributes of the face, we have to specify names
for these attributes as shown in (Grammar 1 : p04). If the
length l of the mother face is lower than 10 then newlength
is increased by l and applied to the glued face.

3.3 Leave generation process

All this rules and enhancements allow us to build the faces
structure used to simulate veins. Modifying variables and
random values allows building a collection of different leaves
from the same species with only one grammar. Nevertheless,
random values must be defined in a range fitting attributes of

the species. For example veins with an angle of 45 degrees
may be defined between 40 and 50 degrees in order to re-
spect the shape of the species. The number of steps allows
building leaves with various levels of details in order to have
a lot of polygons in the foreground and less in the back-
ground. However, the leaf body is empty and we must now
build faces between veins to simulate the limb.

During the iteration process, our method fills holes be-
tween veins by glueing faces. Building the limb with rules
inside the grammar can be done but leads to heavy and com-
plex grammars. Therefore, we proposed to fill in the limb of
the leaf with an automatic process.

This filling is done at each step of the iteration, when
faces have been glued and/or divided. Firstly we find an
extremity (free edges with label ”E”) and then we travel
through the border of the veins from one extremity to an-
other using the 2Gmap topology. While doing so we save
each found edge to build a new face and we topologically
sew them to the border. The new face is then completed with
an edge between the two free extremities.

Figure 4 shows result of leaves generation for a given
species with only one grammar.

Fig. 4 This figure shows a family of leaves from the same species
(lime tree) generated from the same grammar. We can see from left to
right an increase in veins angles and from top to bottom an increase
of the veins length. These parameters can be used randomly inside the
grammar to generate the intra-class variation.

We are now able to generate efficiently a large amount
of different leaves for a given species. These leaves can be
finely designed and thus fit the real leaves shapes. There-
fore, a natural scene can be filled with leaves using only one
grammar by species. We also have veins and body informa-
tion embedded in our faces structure.

The user has the possibility to design leaves at chosen
steps of the iteration, this feature enables to generate leaves
with low details (figure 5). Therefore, scenes can be gener-
ated with level of detail for shorter rendering times.

In order to have realistic looking leaves we need to ap-
ply colors and deformations on them. Moreover, we need to
build textures that will fit the leaf and take in account veins
information. In addition these textures must be generated to
present the leaf at a given time of its life cycle.



Generating Vast Varieties of Realistic Leaves with Parametric 2Gmap L-Systems 5

Fig. 5 A clover leaf at step 4, 5, 6, 7 and 8 of the iteration. Low
level of detail will be used in the background and high level of detail
in the foreground. Rendering engines which use our method to gener-
ate leaves can adapt the level of detail for each leaf according to the
camera.

4 Textures generation and aging simulation

When leaves get old, their pigment concentrations roughly
change. The color of the leaf changes from green to red
as the concentration in chlorophyll diminishes. In addition,
leaves shapes are deformed through time due to their drying
(this process is even accelerated after leaves have fallen off).
In our method we handle both these geometric and color per-
turbations. We also introduce damage on leaves body from
insects attack. Information given by the faces are essential
because they permit to change colors in a botanic-inspired
way and to damage the leaf body while preserving the veins
structure.

4.1 Geometric aspect of aging

We propose to characterize the age of leaves using the fol-
lowing characteristics, that are parameters of the grammar:

– The number of veins the leaf contains. This specific point
is a rough approximation of the biological growth pro-
cess as real primary veins are all created inside the bud.
However, the controls provided by our grammar permits
to concentrate on leaves shape by using only a few rele-
vant veins. Thus, we empirically assimilate young leaves
as leaves containing only a few veins. This parameter is
directly controlled by the number of iterations.

– The mean length of these veins. The growth process of
leaves makes primary veins length increase to reach the
adult leaves size. This parameter is function of both the
number of iterations and the face length l (see 3.2);

– The rotation of each vein. From their adult state, leaves
start to wither and deteriorate. This aging cycle implies
a shrinking process. After a certain amount of time (that
depends on environmental factors such as moisture), the
whole leaf curls up. Veins are not made of the same
material as the leaf body. Therefore, these changes in
shape follow the veins structure: the curling process oc-
curs around the main veins. Vein rotation is a function
of the previously defined angles α (twisting angle), β

(curvature), γ (curling angle).

These characteristics permit to handle the full life-cycle
of leaves: young leaves have a few short veins, adult leaves
have the maximum number of veins (corresponding to their
species), and old leaves are deformed, as illustrated on figure
6.

Fig. 6 This figure present the life-cycle of an European chestnut leaf.
Angles and length are defined in the grammar by the user in order to
give the different aspects of the leaf.

4.2 Colours generation and aging

Another aspect of leaves aging is the colors modification.
Leaves are known to be mainly green, however, in autumn
they will have a brown or red color. These changes are caused
by the decomposition of chlorophyll which makes leaves
look green. The other pigments are red anthocyanins and
yellow or orange carotenoids. They protect the leaf from
light at lower temperatures while chlorophyll is decomposed.
Chlorophyll quickly disappears near the veins because of the
flowing sap but disappears slowly inside the body. Neverthe-
less it can happen in random regions of the leaf.

Our method is based on a few parameters and user’s in-
puts. We used:

– Two colors provided by the user. These colors are used to
define the old and the young state in the color aging pro-
cess. Specifying a young and an old color permits to gen-
erate any color of leaves at any time of their life. More-
over, the user can set colors depending on the species he
wants to generate;

– A blending parameter depending on the desired age of
the leaf. This parameter is used to determine the amount
of blending between the young and the old color pro-
vided;

– Distance to the veins. The age of the color is directly
linked to this distance as the sap in the veins slowly mi-
grates into the tree. We can see on figure 7 how the dis-
tance acts to blend provided colors;

– Blending masks. These masks are automatically com-
puted during generation and are applied during the ren-
dering phase. They permit to produce more complex col-
ors via mixing multiple colors in order to have different
local ages inside the leaf (as shown on figures 7 and 11).

In order to simplify the use of the previous parameters,
we use a variable age that acts as an input to simple functions
that computes gemoetrical and colors aging. This variable is
used to determine angles, length (inside the grammar) and
the blending parameter.

4.3 Leaves damage

During their life leaves may experience some damage to
their tissues. Insects, diseases, parasites, all these problems



6 Alexandre Peyrat et al.

Fig. 7 Evolution of autumn’s colors. We can see the transition be-
tween younger (right) and older (left) leaves. On the second line, masks
are used to mix generated color textures in order to have local variation
in the colors aging process.

have repercussion on the appearance of the leaf. With the
numerous nutrient inside the leaf body, caterpillars and more
generally larva attack leaves (figure 8). However they avoid
eating veins because of the lack of nutrients and the hard
fibre they are made of.

We produce an alpha channel texture to make holes; this
texture is calculated with random values in order to have
realistic holes as larva spread out on the leaf and eat at their
current positions. Holes parameters are computed with three
parameters :

– The radius of the hole which is relevant of the size of the
larva;

– A direction where the larva will next move to eat the leaf;
– The number of time the larva will eat the leaf;

Fig. 8 Insects eat the leaf body and avoid veins. Leaves can be more
or less damaged by insects.

The user can define extreme for all these values so that
he can influence size of the holes. In figure 8 we can see
an old leaf which has been eaten by several insects and one
totally eaten so that only veins remains (figure 8).

5 Results

The output from our method gives a satisfying mesh and sev-
eral textures in order to render leaves. Leaves from a same
species can be also generated with the same grammar and
will produce a realistic family. Figure 9 shows a CG image
generated by applying textures of colors and veins on our
output meshes. This figure shows two models of plants, one
with the same shapes of leaves and one with all different
leaves. The right plant looks more realistic because of the

Fig. 9 Young, healthy leaves of rose tree. The left leaves have all the
same shape, the right ones have all a different shape.

differences between leaves. The left plant looks less realistic
because of the ”perfection“ of its leaves.

Moreover, our method permit to build leaves at various
ages. Figure 10 shows the aging simulation of a rose tree
through time. We can see from the left to the right (clock-
wise) different steps in leaves colors. This figure also shows
insect attacks which can have any intensity through time and
can be light or heavy. All these details added to the leaf in-
crease realism.

Fig. 10 Degradation of leaves from a rose tree. From left to right,
leaves are affected by color changes, insects attacks, and geometry
shrinking.

We can see in figure 11 a table showing various leaves
and their representation with our method. The first column
shows a picture of the desired leaf, the second column shows
the output faces generated by the grammar, the third column
contains the output mesh, alpha channel texture, bump map,
young/old colors and the blending mask. Finally the last col-
umn show rendered leaves within a 3D engine.

Variety of leaves is a key component of realistic scenes.
In figure 12 we can see the same scene with diminishing
number of different leaves. The left picture is obtained with
a set of 40 different leaves, the one in the middle has a set
of 10 different leaves and the right one has only 2 different



Generating Vast Varieties of Realistic Leaves with Parametric 2Gmap L-Systems 7

Fig. 11 Results of our method with various leaves. Grammars are easily written once operations on faces are mastered, moreover generic
grammar depending on the number of main veins can be used.

Fig. 12 Variety results. This scenes have (from left to right) 40, 10 and 2 different leaves.

leaves. Realism is increased in the first picture because of
the large number of different leaves.

Figure 13 shows a realistic scene populated with leaves.
The lime tree and ivy are shown at four ages of their lives,
the first picture represents spring and summer, the second
one represents autumn and the two next pictures represent
the aging process through winter. Moreover, we used leaves
with less details than these shown in figure 11 because of
the large number of leaves in the scene (over 6500 leaves for
the whole scene), we used the level of detail aspect of our

method in order to have leaves with less faces. These pic-
tures show that even if there are fewer details for leaves, the
main shape is respected and gives a realistic result depend-
ing on the distance of the point of view.

6 Conclusion and perspectives.

We proposed a method to model leaves and then to handle
aging and damage aspects. This method based on a 2Gmap



8 Alexandre Peyrat et al.

Fig. 13 A realistic scene through seasons.

L-system offers a powerful and easy to create grammar in or-
der to build leaves veins. The grammar is also very efficient
to precisely design the shape of the leaf; scripting blocks and
mathematical functions give a great field of shapes and struc-
tures (examples of grammars are available on-line1). We also
provide the user with the possibility to render leaves within
any rendering program by exporting the textures and the
generated mesh. A key feature of our method is the ability
to create a large collection of leaves from the same species
at any age from a single grammar. This allows the genera-
tion of large scenes composed of a large number of leaves
with a minimum work on the grammar. One limitation of
the current method is that only two colors are specified to
generate textures. A possible improvement consists in giv-
ing a texture describing colors of the leaf instead and to
age it with veins information and global pigments concen-
tration. Another functionality yet to be implemented is to
give the ability to generate a texture with fine veins; this will
be useful to render more realistic leaves without including
high level veins in the grammar. For degradation purpose,
diseases should be a great improvement to geometrical de-
formation and colors. Finally leaves generation may be sim-
plified by creating a grammar designer where the grammar
is automatically built from some given data. The number of
iterations needed to have a good level of detail may also be
defined automatically so that leaves can be generated on the
fly during the rendering of the scene. Regarding our model,
all these additional features can be applied to it.

Acknowledgements This research is supported by the French Na-
tional Agency for Research (ANR) under agreement ANR-06-MDCA-
004-01.

References

1. Baranoski, G.V.G., Rokne, J.G.: An algorithmic reflectance and
transmittance model for plant tissue. Computer Graphics Forum
16, 141–150 (1997)

2. Baranoski, G.V.G., Roknef, J.G.: Efficiently simulating scattering
of light by leaves. In: The Visual Computer, vol. 17, pp. 491–505
(2001)

3. Bousquet, L., Lavergne, T., Deroin, T., Widlowski, J., Moya, I.,
Jacquemoud, S.: Multispectral and multiangular measurement and
modeling of leaf reflectance and transmittance. Second interna-
tional symposium on Recent Advances in Quantitative Remote
Sensing (RAQRS 2) (2006)

1 http://www.msi.unilim.fr/~peyrat/GreenLeaves/

4. Braitmaier, M., Diepstraten, J., Ertl, T.: Real-time rendering of
seasonal influenced trees. In: Procceedings of Theory and Prac-
tice of Computer Graphics 2004, pp. 152–159. Eurographics UK
(2004)

5. Chiba, N., Ohshida, K., Muroaka, K., Saito, N.: Visual simulation
of leaf arrangement and autumn colors. The Journal of Visualiza-
tion and Computer Animation 7, 79–93 (1996)

6. Desbenoit, B., Galin, E., Akkouche, S., Grosjean, J.: Modeling au-
tumn sceneries. In: 26th International Conference on Eurograph-
ics, pp. 107–110. Eurographics Association (2006)

7. Fuhrer, M., Jensen, H., Prusinkiewicz, P.: Modeling hairy plants.
Computer Graphics and Applications. 12th Pacific Conference on
pp. 217–225 (2004)

8. Hammel, M., Prusinkiewicz, P., Wyvill, B.: Modelling compound
leaves using implicit contours. Proceedings of Computer Graphics
International ’92 pp. 119–212 (1992)

9. Lienhardt, P.: N-dimensional generalized combinatorial maps and
cellular quasi-manifolds. International Journal on Computational
Geometry and Applications 4(3), 275–324 (1994)

10. Mech, R.: CPFG version 3.4 user’s manual. Department of Com-
puter Science, University of Calgary (1998)

11. Mochizuki, S., Cai, D., Komiri, T., Kimura, H., Hori, R.: Virtual
autumn coloring system based on biological and fractal model. In:
Proceedings of the 9th Pacific Conference on Computer Graphics
and Applications, p. 348. IEEE Computer Society (2001)

12. Mundermann, L., MacMurchy, P., Pivovarov, J., Prusinkiewicz, P.:
Modeling lobed leaves. In: CGI ’03: Proceedings of Computer
Graphics International, pp. 60–65 (2003)

13. van Overveld, C.W.A.M., Viaud, M.L.: Sticky splines: definition
and manipulation of spline structures with maintained topological
relations. ACM Trans. Graph. 15(1), 72–98 (1996)

14. Prusinkiewicz, P., Hanan, J.: Visualization of botanical structures
and processes using parametric l-systems. In: S. Visualization,
G. Simulation (eds.) D. Thalmann, pp. 183–201. J. Wiley and Sons
(1990)

15. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of
plants. Springer-Verlag New York, Inc. (1996)

16. Prusinkiewicz, P., Mundermann, L., Karwowski, R., Lane, B.: The
use of positional information in the modeling of plants. Proceed-
ings of SIGGRAPH’01 pp. 289–300 (2001)

17. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., Kang, S.B.: Image-
based plant modeling. In: SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, pp. 599–604 (2006)

18. Rodkaew, Y., Chongstitvatana, P., Siripant, S., Lursinsap, C.:
Modeling plant leaves in marble-patterned colours with parti-
cle transportation system. In: 4th International Workshop on
Functional-Structural Plant Models, pp. 391–397. C. Godin et al.
(2004)

19. Rodkaew, Y., Lursinsap, C., Fujimoto, T., Siripant, S.: Modeling
leaf shapes using l-systems and genetic algorithms (2002)

20. Runions, A., Fuhrer, M., Lane, B., Federl, P., Rolland-Lagan, A.,
Prusinkiewicz, P.: Modeling and visualization of leaf venation pat-
terns. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pp.
702–711 (2005)

21. Terraz, O., Guimberteau, G., Mérillou, S., Plemenos, D., Ghazan-
farpour, D.: 3gmap l-systems: An application to the modeling of
wood. The Visual Computer To appear (2008)

22. Wang, L., Wang, W., Dorsey, J., Yang, X., Guo, B., Shum, H.:
Real-time rendering of plant leaves. pp. 712–719. ACM Transac-
tions on Graphics (TOG) (2005)


