
The Visual Computer (2012) 28:809-818

Procedural Generation of Villages on Arbitrary Terrains

Arnaud Emilien · Adrien Bernhardt · Adrien Peytavie

Marie-Paule Cani · Eric Galin

Published online: 18 April 2012
c©Springer-Verlag 2012

Abstract Although procedural modeling of cities has

attracted a lot of attention for the past decade, popu-

lating arbitrary landscapes with non-urban settlements

remains an open problem. In this work, we focus on the

modeling of small, European villages that took bene-

fit of terrain features to settle in safe, sunny or simply

convenient places. We introduce a three step procedural

generation method. First, an iterative process based on

interest maps is used to progressively generate settle-

ment seeds and the roads that connect them. The fact

that a new road attracts settlers while a new house of-

ten leads to some extension of the road network is taken

into account. Then, an anisotropic conquest method is

introduced to segment the land into parcels around set-

tlement seeds. Finally, we introduce open shape gram-

mar to generate 3D geometry that adapts to the local
slope. We demonstrate the effectiveness of our method

by generating different kinds of villages on arbitrary ter-

rains, from a mountain hamlet to a fisherman village,

and validate through comparison with real data.

Keywords Procedural generation · Open Shape

Grammars · Villages · 3D modeling

Arnaud Emilien · Adrien Bernhardt · Marie-Paule Cani
E-mail: firstname.surname@inria.fr
LJK (U. Grenoble, CNRS) and Inria, Grenoble, France

Adrien Peytavie
E-mail: adrien.peytavie@liris.cnrs.fr
Université Lyon 1, LIRIS, UMR5205, F-69622, France

Eric Galin
E-mail: eric.galin@liris.cnrs.fr
Université Lyon 2, LIRIS, UMR5205, F-69622, France

Fig. 1 A highland settlement generated by our system

1 Introduction

Offering the richest possible user experience in flight

simulators, video games and 3D movies, requires the

creation of an increasing amount of complex, textured

3D models. Modeling a large number of these by hand

using standard software is a tedious task. This is es-

pecially true for landscapes, which should ideally com-

bine arbitrary terrains with rivers, lakes, forests, and

adapted human settlement. Several procedural model-

ing techniques have been developed to automatically

generate such complex content. However, the modeling

of human settlement has been restricted, up to now,

to the generation of large cities, where building blocks

are used to populate regular street networks. Adapta-

tion to rough terrain has been scarcely studied, and no

previous work was conducted, to our knowledge, on the

generation sparser settlements.

This paper addresses the procedural modeling of

small villages on arbitrary terrains, where bodies of wa-

ter have possibly been predefined. Our method gener-

ates all the elements defining a village, from the road

network to the individual parcels of land and to 3D

houses adapted to the local slope.

2 Arnaud Emilien et al.

Contrary to the large cities usually studied in Com-

puter Graphics, most human settlements did not result

from some pre-defined land-use plan, but from people

progressively settling in safe, well served, sunny or con-

venient location for farming or fishing. Meanwhile, the

road networks progressively grew and in turn attracted

new settlers [2]. The result of such progressive settle-

ment can still be observed in many regions over the

world. For instance, it is the cause of the unique look

of typical highland hamlets in the European Alps or

of ancient villages on the banks of the Mediterranean

Sea. Generating scattered settlements is a challenging

problem that requires stepping away from the stan-

dard modeling paradigm used for cities [15]. In addi-

tion, modeling villages on hilly terrains requires gener-

ating complex land parcels, driven by both curved roads

and un-even terrain slopes, and houses with non-regular

doors and windows positions.

Our main contributions are as follows. First, we pro-

pose a new, hybrid settlement/road generation process

that progressively creates a village layout on arbitrary

terrain based on a growth scenario and on dynamic

interest maps (Section 4). Secondly, we introduce an

anisotropic conquest process that creates plausible in-

dividual parcels of land (Section 5). Finally, we present

an open shape grammar able to adapt the geometry

of houses to the local terrain slope (Section 6). Our

method is illustrated by the generation of a variety of

typical villages, validated through comparison with real

layouts and pictures (Section 7).

2 Related work

Generating villages requires the generation of road net-

works, land tessellation into parcels and the creation

of 3D buildings. This section reviews previous work in

these domains. A complete survey on procedural city

modeling can be found in [17].

Road networks Several interactive techniques have been

introduced for editing or sketching road networks on

arbitrary terrains. Roads were either represented by

Bezier curves [3], or by clothoids enabling to express

curvature constraints [12]. Closer to our concerns, au-

tomatic generation of roads on rough terrains was ad-

dressed by Galin [7,6]. Finding a path from a starting

point to an end point subject to maximal slope and

curvature constraints was expressed as an anisotropic

shortest path problem. It enabled to take into account

the environment, such as the presence of vegetation or

water. Our method extends this approach to the case

of road networks between hamlets or houses, leading us

to a new, road re-use strategy.

Procedural modeling of cities Existing methods for mod-

eling cities start by generating a street network. The cy-

cles formed by neighboring streets are tessellated into

blocks serving as footprints for buildings. Inspired from

L-Systems [14], Parish pioneer work for street network

generation was fully automatic [15]. User control through

interactive editing was later allowed [9,11]. In paral-

lel, other approaches were introduced such as tensor

fields based or example-based city layout generation [4,

1]. Those methods first define the road network and

then create the parcels in a second step. Therefore, they

cannot be applied in the case of scattered settlement,

where modeling the interaction between progressive set-

tlement and road network extension is mandatory. Al-

though not addressing the same problem, our progres-

sive generation approach is closer to resource manage-

ment methods introduced to simulate city growth or

optimize land use [18,16].

When a city layout defining footprints for buildings

is set, grammars such as L-Systems [15], split grammars

[19] or shape grammars [13] are used for automatically

generating their geometry. Our method for generating

houses on hilly terrains extends existing grammar-based

approaches: we define an open shape grammar enabling

façade elements to self adapt to external constraints.

Non-urban settlements To our knowledge, the only work

addressing the generation of non-urban settlements was

dedicated to South African informal settlements [8]. Af-

ter using a particle system to generate settlement seeds,

different combinations of Voronöı diagrams were used

to tessellate the terrain. This inspired our work on land

parcels generation, although we had to develop a new,

anisotropic land conquest method to account for align-

ments with road paths and terrain features, observed

on real village layouts.

Lastly, progressive growth of non-urban settlements

based on environmental constraints is somewhat sim-

ilar to the spread of biological species. Inspiring from

a model for lichen spreading on a support [5], we rely

on particles to progressively seed settlement based on

interest maps. However, villages develop in more struc-

tured ways, requiring us to take the road network into

account in the simulation loop.

3 Overview and Notations

In this work, we call village any non-urban, sparse set-

tlement, for instance a group of terraced houses around

a church, a couple of remote hamlets and a few isolated

farms between them. We define the region of interest on

which the village is to be created as a compact Ω ∈ R2.

Ω is supposed to be connected to the outside world

Procedural Generation of Villages on Arbitrary Terrains 3

Fig. 2 Overview of our method: given an input terrain, we first generate the skeleton of the village (roads and settlement
seeds), then we add parcels to the village layout, and finally generate 3D geometry for houses.

through a set of connection points Ψ , located at the

edges of Ω, and that will serve as extremities for the

future road network. The nature of the environment is

pre-defined using functions over Ω. h(p), w(p) and v(p)

respectively denote the elevation, the water height and

the vegetation density at a given point p.

To enable the creation on the same terrain, of vari-

ous villages, we use a village type V (e.g. high-land set-

tlement, defensive village, fisherman village). A growth

scenario sets V over time and launches the creation of

settlement seeds Bi – marking the future locations of

buildings, and of the roads Rj that serve them. We

call Village Skeleton S = ({Bi}, {Rj}) the result of

this step. A settlement seed is defined as Bi = (B,p),

where B is the building type (e.g. castle, church, ter-

raced house or farm), and p ∈ Ω is a position. A road

Rj is defined by a set of nodes positions {pk} control-

ling its central curve. During the generation process,

we call building encyclopedia a function that returns,

for each pair (V,B), the set of parameters used to seed

a building.

The village layout we need to compute is not only

composed of the village skeleton, but also includes a

tessellation of Ω into individual land parcels Pi around

buildings. We call Fi the footprint of the building Bi,

defined as a sub-part of Pi. This footprint will serve as

foundation for the geometry of the building.

Our algorithm for generating villages on arbitrary

terrains is summarized in Figure 2. Given Ω, a few en-

vironment maps and a user-defined growth scenario,

we first grow the village skeleton, then generate land

parcels and building footprints to get the village lay-

out, and finally create 3D geometry. These three steps

are detailed in Sections 4 to 6.

4 Growth of a village skeleton

In this section, we explain how we generate the build-

ing seeds and the road network that form the village

skeleton. We use an iterative particle-based method for

seeding buildings while considering environmental con-

straints and interest functions depending on the build-

ing type. The key feature of our simulation loop is to

alternate seeding steps with creation of road segments

connecting newly created buildings to the network (Fig-

ure 3). This approach allows for dynamic update of in-

terest regions when new roads are created.

Fig. 3 Algorithm for the village skeleton growth.

4.1 Growth scenario

The growth scenario allows the user to control the evo-

lution of a village by defining a list of temporal events

which can either be a change of village type or the seed-

ing of several buildings of a given type.

Change of village type The village type V sets some of

the parameters used for seeding buildings, and thus af-

fects the way a village will grow. Modeling a change of

the environment or a change of the population needs

over time is done by changing the village type. For in-

stance, we can simulate a peaceful period following war

by first choosing a defensive village type, followed by a

prosperous, farming type.

Generation of building lots A vast majority of events in

the growth scenario concern the creation of n buildings

of a given type B. During the execution of the scenario,

the creation of a new building seed is immediately fol-

lowed by its connection to the road network.

4.2 Building seeding

The way human settlements spread over a terrain is

somewhat similar to the growth of natural species.

4 Arnaud Emilien et al.

Fig. 4 Functions used to compute interests. From left to right: Attraction-repulsion function (sociability and worship), balance
function (roads and slope), close distance function (water), open distance function (fortifications).

Our approach resembles the Open Diffuse Limited

Aggregation model presented in [5] and adapts it in sev-

eral original ways. Instead of moving particles over the

land randomly to set the location of a new building, we

rely on a stochastic positioning process followed by a

local interest-based aggregation.

Seeding algorithm A position p for the building B to

be positioned is randomly selected, and the conditions

for constructing at p are checked (for instance, a farm

cannot be built in the middle of a lake). If construction

is possible, we compute a local interest value I(B) that

measures the advantage for the building to be at its

current location. The parameters of the interest func-

tion, extracted from the building encyclopedia, depend

on the village and building types. Then, we perform a

random choice, called the aggregation test, for decid-

ing whether the position p should be kept or not for

B, with a probability of success depending on I(B). In

case of failure, we randomly select a new position and

iterate the process until a good position is found.

Interest function When a building B = (B,p) tries to

seed at a given location, we need to analyze the inter-

est of this location in a consistent manner, while taking

the village and building types into account and checking

constructibility conditions. This is done by combining,

with coefficients depending on the village and building

types, n independent functions fi(B) ∈ [−1, 1] repre-

senting different interest criteria. A negative value is

given if the location is undesired (−1 if impossible),

while a positive value indicates a positive evaluation of

the criterion at p. The combination is controlled by the

building encyclopedia, where a set of n weighing factors

{wi} is predefined for each couple (V,B). The interest

function is then given by:

I(B)

{
0 if ∃i such that fi(B) = −1

max (0,
∑
wi.fi(B)) in the other cases.

This method is general: it can combine a variety of cri-

teria according to the desired result. We list below a

few relevant functions for fi (Figure 4). Some of them,

stored as static 2D maps, are pre-computed before vil-

lage generation starts. Others, such as sociability and

accessibility, are dynamically updated when a new build-

ing (resp. road) is created. The values of these interest

functions can be displayed on the ground by the user

using a color-map based visualization, as shown in Fig-

ure 5.

Sociability This criterion measures the interest of build-

ings to be clustered. Since being too close to a neighbor

is generally less attractive than being at a short dis-

tance, we thus use a sum of attraction-repulsion func-

tions fatt(d) where d is the distance between B and

the surrounding buildings. The parameters λmin,λ0 and

λmax are predefined for each couple of building types,

and stored in the building encyclopedia. This enables

us to set distinct preferred distances values between

terraced houses and between farms.

Worship This function models the attraction of houses

to religious elements such as temples, churches, statues,

or monasteries. These elements, often at the very center

of villages, are those around which the houses were ini-

tially constructed. We use the same kind of attraction

function than for sociability, but computed only for the

surrounding buildings of religious type.

Accessibility This function expresses both that building

close to an existing road is easier, and that settlers usu-

ally prefer to create their house in a well served place.

We use a non-symmetric bell-shaped function (Figure

4) of the distance d to the closest road. The parame-

ters λ0 (preferred distance to a road) and λmin, λmax

(defining the interval outside which construction is pro-

hibited), depend on the building type.

Slope We use a bell-shaped function depending on build-

ing type to express preference to a given slope value,

and to prohibit construction outside of a given slope

range. This can be used to attract corn farms to flat

areas and vineyards to hills.

Water Being able to attract houses to the sea shore,

a lake or a river is important. We use a close distance

function (Figure 4), a decreasing function of distance to

the nearest water body. Minimum and maximum dis-

tances λmin and λmax depend on the building type.

Procedural Generation of Villages on Arbitrary Terrains 5

Fig. 5 Visualization of interest maps for the village type
V = fortified and the building type B = house. Current vil-
lage, current village skeleton, geographical domination, slope,
accessibility, sociability, fortification, worship.

Fortification During wartime, building within a forti-

fication or close enough to a castle, is important for

houses. This interest is computed using an open dis-

tance function (Figure 4) (with λmin = 0), a decreasing

function of the shortest distance to the nearest fortified

enclosure. fopen is equal to 1 inside fortifications.

Geographical domination Either an indicator of social

superiority or as necessity for defense, being at a higher

spot than surrounding buildings is important factor.

Churches and monasteries are often built in overlooking

places so that they can be seen from afar. The impor-

tance of height decreases with the distance to the point

of interest. We use the following function:

f(x) =
∑

p|‖x−p‖<r

h(x)− h(p)

1 + ‖x− p‖2

p denotes sample points on the terrain, ‖x − p‖ the

Euclidean distance between p and x, r the influence

radius and h(p) the height of the terrain at p.

4.3 Connection to the road network

For the accessibility criteria to be correctly updated, we

need to create the roads that connect a new building to

the network just after placing the later.

Road construction We use a shortest path algorithm

similar to the one in [7] to connect every new building

to Ψ , the set of predefined connections to the outside

world. The construction cost of a road is the sum of the

costs of its road segments R, expressed as a weighted

sum of different cost functions gi:

C(R) =

m∑
j=0

wj .gj(R)

In addition to slope, curvature and water costs, we use

another function g expressing the cost for a road seg-

ment of crossing an existing building. This cost is set

to a high constant to prevent collisions. To prevent the

method from generating a fully ramified road networks,

we note that, as in real life, the less costly connection

to the existing network should be looked for (road re-

use coming for free). This is modeled by introducing a

new re-use weight wex � 1, used to reduce the cost of

traversing existing road segments:

C′(R) =

{
wex.C(R) if R belongs to a road

C(R) otherwise

This way, a new segment is correctly connected to the

network, as illustrated in Figure 6.

Road cycles Real road networks often include cycles

providing shortcuts. We thus add a cycle construction

step (Figure 6). Once a first road to a new building is

computed, we try to extend it by looking for the closest

road node p in a cone of angle θ from B, centered on the

current road direction. We then use of usual method

for generating a road between B and p. This road is

created, leading to a new cycle, whenever it is not too

close to the other road serving B (the later may occur

due to slope constraints forcing roads to turn around

obstacles).

5 Land parcels generation

Computing a village skeleton (roads trajectories and

building seeds) is not sufficient for generating the lay-

out of a village: we also need to tessellate the terrain

into individual parcels of land, where houses, gardens

or fields will be defined. A first approach, investigated

in [8], is to rely on Voronoi diagrams to define a parcel

of land around each building seed. This approach leads

to rather isotropic parcels that lack structure and are

not aligned with roads.

After carefully analyzing the layout of parcels in

real villages, we observed that most parcels have one

side neighboring a road and two sides perpendicular

to it, the shape of the last side being driven by other

6 Arnaud Emilien et al.

Fig. 6 Creating new roads. From left to right: without and with road re-use, with road cycle generation.

constraints such as the presence of neighbors or large

changes in terrain slope. Therefore, we rely on a three

steps, anisotropic land conquest method to define adapted

land parcels. First seeds conquer their road territory.

Then, they expand from the road using anisotropic con-

quest. Lastly, the resulting parcel is simplified to avoid

sharp angles (Figure 7).

5.1 Road conquest

Since each building seed is served by roads, we first

define the part of the roads belonging to each parcel

(Figure 7). Let the source point Si of parcel Pi be the

projections of Bi on the closest road. We perform the

road conquest by propagating Pi on both sides of Si

along the road, until collision with a neighboring parcel

or until a maximum distance from Si is reached.

5.2 Corner conquest

When two building are at the same distance from a

junction, road conquest leads to a collision at the angle,

resulting into non-plausible land parcels with sharp an-

gles (Figure 8). Observing from real layouts that land

at a corner between two roads generally belongs to a

single owner, we use a corner conquest pass to resolve

these conflicts: we allow the parcel Pi arrived first at a

junction to annex a part of its neighborhood. Building

seeds that lose access to roads are suppressed.

Fig. 7 Land parcels generation algorithm. From left to right:
village skeleton, road conquest, corner conquest, region con-
quest, parcel simplification, building generation.

Fig. 8 Without (left) and with (right) corner conquest pass.

5.3 Anisotropic land conquest

Once building seeds own parts of the roads, their land

parcel is grown using grid-based propagation. Each road

cell belonging to Pi is marked in the grid as a source

S, and each of these sources is associated a fund cmax.

Then the sources iteratively spread. The process stops

when the total cost of conquest from S reaches cmax.

In general, land parcels are orthogonal to the road,

with a shape depending on other constraints such as

slope. We thus use an anisotropic function to model

spreading cost. The cost dcs for conquering a non-occupied

cell ds is set to:

dcs(ds,n) =

n−1∑
i=0

ωi ci(ds,n)

where ci are independent cost functions modeling ex-

ternal constraints, all depending on the conquest direc-

tion n, defined as the normal to the road at the source.

The weights ωi, set through the building encyclopedia,

depend on the village and building types (V,B). They

enable us to ensure, for instance, that a castle or a farm

will get more land than a terraced house. We present

below several useful cost functions.

Conquest cost This cost is set to the distance from the

current cell to the source S. We use the Euclidean

distance for farming fields, and the infinite distance

d(p,n, t) =| max(p ·n,p · t) | for the houses and villas,

to get quasi-quadrilateral parcels for them.

Water, wall and road cost The conquest cost for water,

wall or roads cells is +∞. This allows us to constraint

the parcel shape with the road curvature, and to pre-

vent the parcel to cross a wall or water bodies.

Procedural Generation of Villages on Arbitrary Terrains 7

Slope cost As observed in real village layouts, the shape

of land parcels (especially those with fields) is sensible

to local slope, almost enabling to guess the main terrain

features from them. We model this using an anisotropic

cost function, for which spread in the main slope direc-

tion is difficult. Slope cost is computed as a quadratic

function of the directional gradient of the terrain height,

to reduce the influence of little slope variations and in-

crease those of bigger ones.

5.4 Parcels simplification

Once the grid cells belonging to Pi are computed, we

extract a poly-line representing its contour. Meanwhile,

the shape of Pi is simplified, to account for the fact that

even in small villages, parcel boundaries mainly consist

of straight lines. This simplification is done in two steps,

inspired from mesh simplification methods:

First, we remove vertices that have a little influ-

ence on the contour shape. Let e0 = (p0,p1) and e1 =

(p1,p2) denote two edges. If the angle ∠(n0,n1), where

n0 = p1−p0 and n1 = p2−p1, is lower than a constant

threshold ε we replace the two edges by e2 = (p0,p2). In

the second step, we removing non-plausible acute angles

that appear at some T-vertices of the parcel boundary

mesh (Figure 7).

5.5 Building footprints computation

Because it is the most frequently observed shape for

buildings (Figure 12), we decided to illustrate our method

with only quadrilateral footprints for houses and villas.

We initialize a quad in each parcel, at the closest po-

sition to the road, and oriented according to the clos-

est normal to the road. The quad grows until it either

reaches the maximal size for its building type, or col-

lides with the contour of the parcel. If one of the seg-

ments is close to the contour, its vertices are projected

onto it, enabling the generation of terraced houses when

several neighboring houses use this strategy.

6 Geometry generation

The final step of our method is the creation of the three-

dimensional geometry of the village, including roads,

buildings and vegetation. While existing methods such

as [7] can be used to generate accurate road geometry,

existing methods for generating houses from their foot-

print [10] need to be extended to allow the generation

of plausible houses on hilly terrain. In small mountain

villages, windows and doors often have unusual shapes

and façades often have complex layouts so as to con-

form to architectural constraints such as non-collision

with the ground, alignment with floors whenever possi-

ble, and guaranteeing at least a door and a window per

room. In this section, we introduce Open Shape Gram-

mar to adapt geometry generation to such constraints.

6.1 Open shape grammar

We extend the concept of CGA shape grammar rules

[13] by enabling the on the flight adaptation of newly

created façade elements so that various plausibility con-

straints are met. In our work, this process is imple-

mented for doors, windows and stairs.

We define an Open Shape Grammar as a grammar

where the application of a selected rule can be can-

celed if some external constraints are not met, such as

non-collision with the ground or with other buildings.

Open Shape Grammar rules also incorporate adapta-

tion mechanisms: each rule selection yields a series of

attempts to create the output shape according to con-

straints of the environment. The element is created (and

then the rule outputs success) as soon as a valid config-

uration is found. The application of the rule is canceled

(and it outputs failure) if a maximum number of at-

tempts is reached, and all have failed. See Appendix A

for an example of Open Shape Grammar rule, showing

the compatibility with standard grammars.

6.2 Geometry generation algorithm

The geometry of a building is generated from the build-

ing footprint using a standard method [13]: first we gen-

erate the floors and the roof, then we add façade ele-

ments, such as doors and windows. The latter is done

using an open shape grammar, with the two kinds of

adaptations detailed below.

Position adaptation Each element is first positioned at

the most plausible location: aligned with a floor and

centered on the wall for a window; centered horizontally

on the first floor for a door. Next, we move the element

on the wall surface with a displacement cost kernel K
until the element has a valid position (Figure 10). The

kernel enables us to set preferences on the correction di-

rection, such as favoring horizontal displacements over

vertical ones.

Let p be the position of the element on the surface and

c(p) its cost. If the position is not valid, the unexplored

neighborhood of the current position p is added to a

priority queue with a cost equal to K(dx, dy)+c(p). The

position of lower cost is evaluated next. The creation of

8 Arnaud Emilien et al.

Fig. 9 Example of houses created by our system using Open Shape Grammars

the element is canceled after a user controlled number

of failed tests. Figure 10 depicts the priority map for a

window.

Fig. 10 Adaptation of window location: collision, priority
map, result, displacement cost kernel.

Shape adaptation The second level of adaptation is to

change the geometry of the façade element that we try

to create (Figure 11). The candidate shapes are stored

in a predefined priority queue, depending on the build-

ing type. To position an object, we initialize its shape

to the top of the priority queue. If all positioning at-

tempts fail, the shape is changed and the process starts

again. If no shape is appropriate, the object is not built.

Fig. 11 Shape adaptation using an open shape grammar.
For each window type we test for position (here, with only
horizontal moves and a minimum distance between windows),
and change shape if construction is not possible.

7 Results

Our village modeling system is coded in C++. Ren-

derings were performed by using Mental Ray on the

textured meshes we output.

Parcels generation To validate our parcel generation

method, we compared the shapes of the parcels we cre-

ate with those of real village layouts, with similar build-

ing distributions and road networks. One of our results

is depicted in Figure 12. Parcels have similar shapes and

the mean number of neighbors (2.873 with our model,

2.812 in the real data) and of contour edges (4.29 with

our model, 4.068 in the real data) are similar.

Fig. 12 Comparison of real versus generated land parcels on
terrains with similar roads and building distributions.

Geometry generation Our method of buildings genera-

tion with an Open Shape Grammar allows us to create

homes on steep slopes without the doors and windows

that are in collision with the ground. Note on the Figure

9 the change of position and shape of these elements.

Appendix A details the rules we use to generate win-

dows on building façades, and compare them to stan-

dard grammar rules.

Village diversity Figures 14, 13, 15 and 1 show differ-

ent kinds of villages generated by our method. Figure 14

shows mountain villages, for which geographical domi-

nation was the main factor influencing seeding. Figure

13 shows a fortified village on a top of cliff where the

main criteria were geographical domination and being

protected by fortifications. These results demonstrate

the effectiveness of our approach for generating settle-

ments that conform to European layout styles. We be-

lieve that non-European village types could be created

as well by modifying and tuning the growth scenario

and the cost functions. A complete comparison and val-

idation is beyond the scope of this paper.

Influence of parameters Figure 15 shows the influence

of parameters during seeding. Distance to the sea was

the main criterion for the creation of the first village,

whereas the second was seeking for domination.

Performance Table 1 gives the time spent in each phase

of the generation process. Land parcel generation is the

most compute intensive part of our algorithm, due to

the size of the grid used to perform the spread (we used

a 4096×4096 grid). Note that depending on the desired

output (with or without individual gardens around houses),

this step can be skipped.

Procedural Generation of Villages on Arbitrary Terrains 9

Fig. 13 Fortified village at the top of a cliff, using a war-time
growth scenario followed by farming style settlement.

Fig. 14 A real (top left) and a procedurally generated high-
land hamlet (top right, bottom).

Fisherman Mountain Fortified

Skeleton 4:00 5:00 7:00

Parcels 7:00 11:00 13:00

Geometry 0:20 0:30 0:30

Table 1 Computation time (in minutes) for generating the
villages shown in Figure 13, 14 and 15

Limitations The main limitation of our method is the

number of user-set parameters, currently 150 per vil-

lage type. Fortunately, these parameters, stored in the

building encyclopedia, can be reused to create a large

variety of villages, depending on the terrain and on

easily specified growth scenario typically created in 2

minutes. Displaying the interest values on the terrain

helps users understand and parameterize the method,

although their goals may still be obtained after a long

series of trials and errors, as in every procedural gener-

ation method.

8 Conclusion

This paper presented an original method for generat-

ing scattered settlements on arbitrary terrains, enabling

villages and hamlets, with the associated roads, forests

and fields to be built on arbitrary landscapes. We demon-

strated that our method can generate different types of

villages with a coherent and adapted geometry. We val-

idated our results through comparison with real layouts

and pictures. In the future, we would like to focus on

a user-controlled generation framework allowing real-

time editing of villages. Our target application is an

interactive system to enabling quick authoring of land-

scapes rather than a fully automated system. As it is,

our method provides a very good starting point to de-

velop such a system.

Acknowledgements This work was funded by the ERC ad-
vanced grant EXPRESSIVE.

References

1. Aliaga, D.G., Vanegas, C.A., Beneš, B.: Interactive
example-based urban layout synthesis. SIGGRAPH Asia,
pp. 160:1–160:10 (2008)

2. Barry, T. (ed.): A story of settlement in Ireland. Rout-
ledge (1999)

3. Bruneton, E., Neyret, F.: Real-time rendering and edit-
ing of vector-based terrains. Computer Graphics Forum
(Eurographics) (2008)

4. Chen, G., Esch, G., Wonka, P., Müller, P., Zhang, E.:
Interactive procedural street modeling. ACM Trans.
Graph. 27(3) (2008)

5. Desbenoit, B., Galin, E., Akkouche, S.: Simulating and
modeling lichen growth. Computer Graphics Forum (Eu-
rograhics) 23(3), 341–350 (2004)

6. Galin, E., Peytavie, A., Guérin, E., Benes, B.: Authoring
hierachical road networks. Computer Graphics Forum
(Pacific Graphics) 29(7), 2021–2030 (2011)

7. Galin, E., Peytavie, A., Guérin, E., Marechal, N.: Proce-
dural Generation of Roads . Computer Graphics Forum
(Eurographics) 29(2), 429–438 (2010)

8. Glass, K.R., Morkel, C., Bangay, S.D.: Duplicating road
patterns in south african informal settlements using pro-
cedural techniques. In: Proceedings AFRIGRAPH (2006)

9. Kelly, G., McCabe, H.: Citygen: An interactive system
for procedural city generation. In: Game Design & Tech-
nology Workshop (2006)

10. Kelly, T., Wonka, P.: Interactive architectural modeling
with procedural extrusions. ACM Trans. Graph. 30,
14:1–14:15 (2011)

11. Lipp, M., Scherzer, D., Wonka, P., Wimmer, M.: Inter-
active modeling of city layouts using layers of procedu-
ral content. Computer Graphics Forum (Eurographics)
30(2), 345–354 (2011)

12. McCrae, J., Singh, K.: Sketch-based path design. In: Pro-
ceedings of Graphics Interface 2009, pp. 95–102 (2009)

13. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool,
L.: Procedural modeling of buildings. In: Proceedings of
SIGGRAPH, pp. 614–623 (2006)

10 Arnaud Emilien et al.

Fig. 15 Settlement on a coast. The left and middle pictures show a fisherman village, favoring distance to the sea; on right
picture is a defensive village, which prefer geographical domination.

14. Měch, R., Prusinkiewicz, P.: Visual models of plants in-
teracting with their environment. SIGGRAPH, pp. 397–
410 (1996)

15. Parish, Y.I.H., Müller, P.: Procedural modeling of cities.
In: E. Fiume (ed.) Proceedings of SIGGRAPH, pp. 301–
308 (2001)

16. Vanegas, C.A., Aliaga, D.G., Beneš, B., Waddell, P.A.:
Interactive design of urban spaces using geometrical and
behavioral modeling. ACM Trans. Graph. 28, 111:1–
111:10 (2009)

17. Vanegas, C.A., Aliaga, D.G., Wonka, P., Müller, P., Wad-
dell, P., Watson, B.: Modeling the appearance and behav-
ior of urban spaces. Computer Graphics forum 29(1),
25–42 (2010)

18. Weber, B., Müller, P., Wonka, P., Gross, M.H.: Interac-
tive geometric simulation of 4d cities. Comput. Graph.
Forum 28(2), 481–492 (2009)

19. Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: In-
stant architecture. ACM Trans. Graph. 22, 669–677
(2003)

Appendix A: Example of Open Shape Grammar rules

WindowFacade → while (∃ shape in shapes priority queue)
while (∃ pos in positions priority queue)

if (try (Window(pos, shape))
{Walls} = { extract Window

from WindowFacade }
throw success

throw failure

Window (pos, shape) → if (external constraints (pos, shape))
{Woodent parts | Shutters | ... }
throw success

else
throw failure

Arnaud Emilien is a doctoral student
at LJK, University of Grenoble, France,
and at LIGUM, University of Montreal,
Canada. He completed his Master degree
in Computer Science at Grenoble Institute
of Technology - Ensimag in 2011. His re-
search interests range from real-time ren-
dering to the procedural modeling of vir-
tual worlds.

Adrien Bernhardt is a doctoral student
at LJK, University of Grenoble, France.
He received a Master degree in Com-
puter Science at Grenoble Institute of
Technology - Ensimag in 2006. His re-
search interests include implicit modeling,
sketch-based interfaces, and terrain mod-
eling software.

Adrien Peytavie is an Assistant Profes-
sor of Computer Science at the Univer-
sité Claude Bernard Lyon 1, France. He
received a PhD in Computer Science from
Université Claude Bernard Lyon 1 in Com-
puter Science in 2010. His research inter-
ests include procedural modeling of vir-
tual worlds and simulating natural phe-
nomena.

Eric Galin is Professor of Computer Sci-
ence at the Université Lumière Lyon 2,
France. He received an engineering degree
from Ecole Centrale de Lyon in 1993 and
a PhD in Computer Science from Univer-
sité Claude Bernard Lyon 1 in 1997. His
research interests include procedural mod-
elling of virtual worlds, simulating natural
phenomena and modelling with implicit
surfaces.

Marie-Paule Cani is Professor of Com-
puter Science at Grenoble Institute of
Technology. A graduate from the Ecole
Normale Supérieure, she received a PhD
from the University Paris 11 in 1990. Her
research focus is making the creation of
animated virtual worlds more intuitive,
thanks to sketch-based interfaces, proce-
dural models and interactive animation
methods.

