
Volume 0 (1981), Number 0 pp. 1–13 COMPUTER GRAPHICS forum

Environmental Objects for Authoring Procedural Scenes

Francois Grosbellet1 2, Adrien Peytavie1, Eric Guérin1, Eric Galin1, Stephane Mérillou2, and Bedrich Benes3

1Université de Lyon, LIRIS, CNRS UMR 5205, France 2Université de Limoges, XLIM, CNRS UMR 7252, France 3Purdue University, USA

Abstract
We propose a novel approach for authoring large scenes with automatic enhancement of objects to create ge-
ometric decoration details such as snow cover, icicles, fallen leaves, grass tufts, or even trash. We introduce
environmental objects that extend an input object geometry with a set of procedural effects that defines how the
object reacts to the environment, and by a set of scalar fields that defines the influence of the object over of the
environment. The user controls the scene by modifying environmental variables, such as temperature or humidity
fields. The scene definition is hierarchical: objects can be grouped and their behaviors can be set at each level of
the hierarchy. Our per object definition allows us to optimize and accelerate the effects computation, which also
enables us to generate large scenes with many geometric details at a very high level of detail. In our implementa-
tion, a complex urban scene of ten-thousand square meters, represented with details of less than one centimeter,
can be locally modified and entirely re-generated in a few seconds.

1. Introduction

Modeling large detailed scenes is an important and challeng-
ing problem in computer graphics because it involves the
management of an enormous amount of data and complex
interactions between objects. Visual details, changes in ap-
pearance, as well as aging and weathering, play a central
part in the overall realism of a synthetic scene but they are
often treated by using textures. Moreover textures are obvi-
ously limited in terms of visual impact, because they require
tedious work when modifications are needed.

A vast variety of techniques have been proposed for mod-
eling virtual scenes [STBB14] with different kinds of ob-
jects, such as trees [SPK∗14] or buildings [MWHG06]. The
synthetic appearance of generated objects is improved by us-
ing aging and weathering algorithms [DRS08,MG08]. Most
existing techniques either change the geometry of the object,
such as stone erosion [DEJ∗99], or only change the texture
and surface properties, such as patina or stains produced by
flows on surfaces [DPH96,DH96]. Procedural modeling has
been addressed so far only in a limited way, usually by con-
sidering individual natural phenomena separately and with a
global simulation approach which limits the size of the gen-
erated scenes.

In this paper, we focus on the generation of small geo-
metric details such as fallen leaves, snow piles, icicles, grass
and trash that cover objects. These geometric details play an
important part in the overall appearance of a complex scene.

Figure 1: A procedurally decorated city scene. Details such
as grass colonizing the sidewalks, fallen leaves, and trash on
the ground were automatically generated by extending the
geometric objects with environmental properties.

Traditionally, the changes of scene appearance are produced
either by carefully adding details to each object in a static
scene that has been previously edited or generated, or by
performing a global simulation. The composition of a com-
plex scene thus requires either global and computationally
demanding processing of the entire scene, or tedious manual
editing of the affected areas. These approaches are not com-
patible with an industrial pipeline context where artists and
designers need interactive feedback with a high and intuitive
control for authoring effects.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

We introduce a novel approach for authoring large scale
scenes with automatic procedural effects enhancement at a
high level of detail. Inspiration for our work comes from
the observation that objects usually influence each other and
the environment within a limited range. Moving, deleting,
adding objects, or changing their characteristics and param-
eters does not change the entire scene but only impacts a
restricted number of nearby objects.

Instead of applying a global simulation to the entire scene,
we introduce environmental objects. Our environmental ob-
jects are a simple extension of geometry, they are easy to de-
fine and control, and allow for an intuitive scene definition.
The environmental objects’ appearance automatically adapts
to its environment. Each environmental object is character-
ized by a set of scalar fields and a set of procedural effects.
The scalar fields define the impact of the object over the en-
vironment and procedural effects describe how the object re-
acts to the environmental changes by adding geometry to the
scene. The final scene is represented by a hierarchical com-
position of environmental objects and scalar fields.

An example in Fig. 1 shows how procedurally generated
leaves are placed automatically on the sidewalk. The leaf
field attached to the tree defines the regions where leaves fall
to the ground, whereas the pavement reacts to those fields
and defines the way leaves are distributed and accumulated
into piles. The objects with their fields can be either placed
manually during an artistic session or procedurally.

Our main contribution is in developing a novel method
for integrating procedural methods. We also develop sev-
eral fast novel procedural algorithms for snow, icicles, leaves
and grass that are intended only for the integration with the
framework. More precisely the main contributions of our ap-
proach are as follows:

Details Our framework orchestrates heterogeneous object-
specific algorithms for generating many different types of
details, which change the overall appearance of the scene
in a uniform and consistent fashion. Using a per-object def-
inition of effects with instancing mechanisms allows us to
generate small details for different types of objects while
maintaining the ability to process large scenes. Our proce-
dural per-object approach allows the maximum scale factor
between the smallest details and the scene size to reach more
than 104.

Control Our approach allows for several levels of control.
On the lowest level, each individual object and its behavior is
defined and controlled. On the second level, the objects can
be grouped into hierarchies with defined group fields and in-
stanced. Finally, global scalar fields modify the parameters
of the environment and consequently the entire scene behav-
ior. It is important to note that we do not aim for a physically
correct simulation: our effects implementations are approxi-
mations of physical process that produces plausible and be-

lievable results. Instead, we focus on control, interactivity,
predictability, and size of the authored scene.

Scalability Each type of object defines how it reacts to the
environment in a specific manner, which improves the per-
formance of otherwise time-consuming global simulations.
Per-object definition takes into account the objects’ specific
properties, which enables us not only to optimize the gen-
eration of snow, fallen leaves, trash, and grass for different
kinds of objects, but also to produce complex effects and fea-
tures that are difficult to capture with simulations. Different
effects can also be selected according to the distance from
the camera, therefore our method allows for a level-of-detail
generation and partial scene updates.

Our method naturally extends existing scene authoring
and procedural generation techniques, and brings the object-
specific algorithms for simulation of natural phenomena into
a single fast, intuitive, controllable, and unified framework.
Note that although environmental objects react to the en-
vironment, interaction between different effects is not sup-
ported, e.g., our framework does not account for the deposit
of snow on leaves.

2. Related work

We present an overview of the most relevant papers deal-
ing with procedural modeling of natural phenomena that add
details to a given input scene or model. In particular, we
review simulation and generation of snow, leaves, and ice.
For a comprehensive and complete overview of erosion, ag-
ing, weathering, and material appearance we refer readers
to the review [MG08], to the book [DRS08], and for a re-
cent review of procedural methods for virtual worlds to the
paper [STBB14].

Snow generation models can be divided into three cat-
egories: manual methods, particle simulations, and surface
displacement techniques. An early manual model proposed
in [NIDN97] uses meta-balls with user-specified snow dis-
tribution. Muraoka et al. [MC00] used microscopic physical
properties of snow and water to model snowfall, snow cover
shape, and melting. Fearing et al. used particles to represent
larger sets of snowflakes, and a surface stability test is used
to create realistic snow cover [Fea00]. Another bulk particle
simulation method [PTS99] relies on a surface displacement
and texturing approach to create the snow coverage of large-
scale scenes. The dynamic features of snow, such as wind-
driven snow transportation and snowflake animation were
addressed in [FO02] and [LZK∗04]. The method proposed
in [FB07] generates similar scenes by using ambient occlu-
sion. Recently, a voxel-based large-scale winter scenery syn-
thesizer based on a complete thermal simulation was intro-
duced in [MGG∗10]. The two models presented in [vFG09]
and [vFG11] rely on the construction of height span maps to
create snow distribution and produce complex results such
as snow bridges.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

Statue

Heat θ

Lamp Bench

Occlusion α

Group

Group

Lamp Tree

H
ea

t θ

Fountain

H
um

id
ity

 η

Le
af

 L
 Sc

en
e

ev
al

ua
tio

n

Humidity η

Fountain

Environmental object database Environmental object tree Final scenes

In
te

ra
ct

iv
e

au
th

or
in

g

Pr
oc

ed
ur

al
 g

en
er

at
io

n
Figure 2: Overview of our method: given a set of environmental objects in a database, we create a rich construction tree that
hierarchically combines geometric objects with scalar fields and effects (snow, icicles, leaves, grass, and trash) so that the
objects can affect the environment and react to it. The environmental object tree can be either authored by the user or generated
procedurally. During the scene creation step, new scalar fields can be added to the scene graph to allow authoring and special
effects. The objects automatically decorate themselves with details according to the prescribed parameters of the fields.

Leaf modeling was addressed by [MMPP03] who pre-
sented an automatic technique for creating lobed leaves from
images and by Peyrat et al. [PTMG08] who extended this ap-
proach for an aging leaves simulation. Jeong et al. [JPK13]
introduced a method to produce realistic autumn leaves.
Physically-based techniques have been used for animating
leaves in the wind [WH91, WZF∗03], the leaf distribution
results from complex dynamics by combining leaves falling
and floating in the wind, tumbling, rolling, and eventually
colliding and stacking to the ground. Desbenoit et al. pre-
sented a method to model the distribution of thousands of
leaves on the ground in [DGAG06]. The trajectories were
approximated by template-based movements and large piles
were created by using a collision detection and stabilization
technique.

Simulating ice formation is a challenging task, due to
the wide range of involved scales. An approach by [KG93]
uses a random-walk model of icicle growth, where wa-
ter droplets move along the ice surface and freeze with
a certain probability. Kim et al. presented ice formation
algorithms for small-scale ice growth on objects [KL03,
KHL04] and a physically-based algorithm for simulating ici-
cle growth [KAL06] by approximating water solidification
as a thin-film Stefan problem. Gagnon et al. [GP11] pro-
posed a procedural approach for modeling icicles based on a
water flowing and droplet dripping simulation.

Most of the previous techniques deal with a specific natu-
ral phenomena simulation either on a global or a local scale.
Simulation approaches are computationally expensive. Spe-
cific methods that can capture the small geometric details
do not scale for modeling of large scenes with many details
such as hundreds of thousands of leaves, lichens and grass
tufts, or highly detailed snow cover. They can still be used
in our framework as a pre-processing step for obtaining a
particular effect for a given kind of environmental object.

Our work presents a unified approach that defines interac-
tions of various objects and the environment through object-
specific behaviors description. While objects react to the en-
vironment, our system does not support interaction between
effects. Similar to our approach is the method for wind sim-
ulation of [WH91] that composes the scene from simple in-
teracting elements. Various approaches for multi-procedural
modeling exist [KPK10]. Close to our method is the guided
procedural modeling [BSMM11] that generalizes the con-
cept of environment and allows for parallel execution and
communication of multiple procedural models. However, it
allows only a limited inter-influence between elements and
is specific to L-systems. In contrast, our approach encapsu-
lates a virtually arbitrary procedural model. Moreover, our
technique addresses the scalability problem by creating en-
vironmental procedural objects whose geometry and details
in appearance adapt to their environment.

3. Overview and notations

In this section, we present the environmental object tree that
defines the enhanced scene graph managing objects influ-
encing and reacting to the environment.

3.1. Scene

Our framework defines the scene as a construction tree as
shown in Fig. 2. Leaves of the tree store environmental ob-
jects whereas inner nodes are grouping operators that com-
bine them. An environmental object O (See Fig. 4) consists
of a base geometry B, associated effects whose geometry
will be denoted as A(e), and three-dimensional scalar fields
F :

O(e) = (B,A(e),F)

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

In our implementation, the particular effects A(e) are snow,
fallen leaves, grass tuft, trash, and icicles models, which will
be referred to as S(e), L(e), G(e), T (e), and I(e) respec-
tively. Scalar fields F control different effects; for example
the snow thickness is related to the temperature and the oc-
clusion fields.

The scene is computed by hierarchically traversing the
scene tree and combining the base geometry with all the pro-
duced effects. We denote e the environment that corresponds
to the evaluation of the fields on the scene root node. The
base geometry does not depend on fields and thus does not
have to query the environment. On the contrary, the effects
computing process is allowed to query on the fly the envi-
ronment e in order to quantify the considered effect (snow,
ice, leaves, grass) and to adapt it according to temperature,
humidity, and occlusion fields. The scene can be controlled
per-object, by defining the object behavior, per-group, by
defining the behavior of a sub-tree, or globally, by inserting
global scalar fields embedding the whole scene. The object
hierarchies, and the option of replacement of complex ef-
fects by simpler and less computationally expensive ones,
provide a means for speeding up the computations if neces-
sary (Section 6).

Grouping nodes are internal nodes that combine several
sub-trees into the hierarchy. The base geometry, as well
as effects geometries, are combined by a union operation.
Scalar fields are mostly combined additively except for the
occlusion field which is computed by multiplying each sub-
tree contribution. Grouping nodes are used to structure the
scene tree and allow a bounding volume hierarchy to be con-
structed. Different kinds of internal nodes with a modified
behavior can be used to perform level of details as explained
in Section 6.

3.2. Workflow

The overall workflow consists of two main steps: environ-
mental object database creation and scene construction.

Environmental object database creation is performed by
extending an input geometric object B with procedural ef-
fects A(e) that define the behavior of the object i.e., its
change of appearance, and fields F which specify the im-
pact of the object on the environment. Fields are inspired
by [KL05] and they define scalar fields that are combined
together to modify the characteristics of the environment
around the objects. The effects implement the parameterized
details that are added to objects, such as leaves, grass, snow,
icicles, or trash. The particular effects can be defined either
manually by attaching them to the objects, or generated au-
tomatically by augmenting an existing generation process.
For example environmental buildings can be generated with
the CGA Shape Grammars [MWHG06] by adding the defi-
nition of environment scalar fields such as temperature emit-
ters and parameterized effects in the grammar. Once defined,

these objects can either be immediately used in the second
step or stored for later reuse.

Scene creation can be performed either by interactive edit-
ing or procedural generation. Authoring is achieved by se-
lecting the environmental objects from the database, and ar-
ranging them in a scene graph. Environmental objects can be
added, removed, and modified, and the scene can be enriched
at any time. Moreover, objects can be grouped to create hi-
erarchies and a group may have a behavior that overrides
or combines behavior of the objects in the group. During
the scene authoring, objects and groups can be instanced for
further reuse. Global scalar fields can be added in order to
produce the desired effects. This step can be done once the
scene is completely defined but also during the authoring
process to have a preview of the effects.

One example of the scene creation and control is depicted
in Fig. 3. Temperature and occlusion fields allow for a high
level of control over the final scene by locally decreasing the
snow thickness. Occlusion fields can be used to create details
or add features, such as footprints and tire tracks.

4. Environment evaluation

Environmental objects are enhanced with scalar fields that
have an important impact over the environment. In this sec-
tion, we review the definition and the evaluation of the pa-
rameters of the environment. Formally, the environment is
defined as a function e : R3→ Rn that computes a set of
scalar values e(p) at every point in space.

e(p) =
(

s(p), i(p), l(p),g(p), t(p),α(p),η(p),θ(p)
)

In our system, the environment includes the amount of
fallen snow s(p), the density of icicles i(p), leaves l(p),
grass g(p), and trash t(p). It also includes the occlu-
sion α(p), the humidity η(p), and the temperature θ(p)
which affect the resulting shape and distribution of snow
cover, fallen leaves, grass, trash, and icicles.

The environment is computed by recursively traversing
the construction tree and combining the scalar fields of the
environmental objects. Therefore, e can be defined as the
evaluation of the fieldsF of the root node of the construction
tree. Depending on the queried point p, branches of the tree
may be pruned during the traversal due to to the bounding
volume hierarchy.

Modeling with fields is the heart of our system because
it reflects the degree of approximation of the real physics.
While it would be possible in our general framework to com-
pute temperature and occlusion using heat transfer simula-
tions and calculations based on the geometry of the objects
in the entire scene, this evaluation would be costly. In our
implementation, we use a less precise, but faster approach
by using skeleton-based implicit primitives. Although this
approach is not physically correct, it provides the user with

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

1 2 3 4

Footprints

Lamp heat field θ

Occlusion α
Tire tracks

Figure 3: A four step creation of a winter scene. The user defined the initial scene by assembling pavement and road pieces and
adding a tree, and a trash can 1©. The scene was embedded in a global snow field to get a winter scenery. In the next steps the
user added a lamppost 2©, a bench 3© and a bus shelter 4© that prevents the accumulation of snow on the bench. Tracks and
footprints in the snow were produced by a set of user controlled local environment fields.

Icicles models I(e)

Snow patches S(e)

Humidity field η
Leaf stacks L(e)

Occlusion field α

Effects A(e) Object geometry B Fields F

Figure 4: An environmental object O(e) is defined by its
base geometry B (center), procedural effects A(e) (left) and
scalar fields F (right).

an efficient and intuitive tool that allows precise control for
authoring complex scenes (Fig. 5) and allows the creation of
scenes that automatically and interactively adapt to the pa-
rameters of the environment.

1 2

Heat field θ

Humidity field η
Icicles I

Melted snow

Figure 5: Example of a combination of hot and cold temper-
ature fields emanating from pipes and producing complex
snow and icicles distribution by using per-object snow and
icicles effects.

Our approach is inspired by the BlobTree model
[WGG99]. We rely on skeletal primitives organized into the
hierarchical environmental object construction tree to define
the parameters of the environment by combining the influ-
ence of the different objects in the scene. The environmental
objects located at the leaves of the tree define compactly sup-
ported scalar fields, which allow for local field evaluations

and for an efficient evaluation of bounding volume hierar-
chies.

Scalar fields such as snow, icicles, leaves, grass, trash,
temperature, and humidity are combined by using standard
blending as described in [WGG99]. For instance the tem-
perature θ(p) is defined as:

θ(p) =
n

∑
i=1

θi(p).

The occlusion scalar field is computed differently. Recall
that the α(p) is defined as a function mapping onto unit in-
terval. Combination is obtained by multiplying the influence
of occlusion fields αi:

α(p) =
n

∏
i=1

αi(p).

Multiplying values, instead of using a sum as in traditional
implicit surface models, allows us to combine the relative
influence of different occlusion fields while preserving map-
ping onto unit interval.

5. Environmental Objects

Environmental objects are geometric objects enhanced with
two aspects: scalar fields that define the impact of the object
on the environment, and effects defining the way the objects
react to the environment.

Below we review the definition of different effects pro-
duced by environmental objects. We detail our techniques
for snow, icicles, leaves, and grass. It is important to note
that the choice of our methods is in respect to speed and con-
trollability. In theory, any effect implementation that allows
control with scalar fields could be used.

5.1. Snow

Although any method for snow cover generation from Sec-
tion 2 could be used in our framework, we have developed
a novel and fast procedural snow generation technique that

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

adapts the resolution of the snow mesh to the supporting ob-
ject, which enables us to process objects at a high level of
detail.

Our approach for generating snow layers consists of cov-
ering the input geometric object B with snow effects. A snow
effect, denoted by S(e), is a parameterized textured mesh
whose geometry and discretization adapt to the scale and
geometry of its supporting object B. The mesh vertices p
are displaced from the object’s surface by an offset value
that varies according to the amount of fallen snow s(p) and
the geometry of the object. This offset is a function of the
parameters of the environment: occlusion α(p) and temper-
ature θ(p).

1 2

Figure 6: By targeting the snow cover for specific objects,
we can generate snow with a high level of detail and capture
small geometric features.

Snow mesh construction We define two different cate-
gories of snow effects: geometry-controlled and procedu-
ral. Geometry-controlled snow effects are automatically de-
rived from the geometry B and are used for the generation
of snow covering objects with complex geometries, such as
trees (Fig. 6.1) or fences (Fig. 6.2). The vertices of the bor-
der of the snow effects automatically snap to the vertices of
the underlying object, preventing cracks that could appear
between the snow patch and the object geometry. Moreover,
snow effects can be progressively refined to adapt the snow
mesh to the desired precision. This enables us to process
large scenes efficiently or use it for level of detail genera-
tion.

In contrast, procedural snow effects are black box func-
tions that generate meshes according to a set of input pa-
rameters that define their shape and subdivision level. Pro-
cedural snow effects can be optimized for simple geometric
objects, such as boxes, cylinder, spheres, or surfaces of revo-
lution, that are common in architecture design. Such effects
dynamically generate an adaptively refined snow mesh on
the fly.

Snow elevation computation Let pk denote the vertices of
the mesh of the snow surface. The vertices have a snow di-
rection vector vk associated to them. In general, the vector vk
points in the vertical direction, but the direction vectors at the

border of the snow mesh may be edited to allow the creation
of overhangs.

A snow effect defines a displacement function δ(pk) that
characterizes the displacement of the mesh vertices accord-
ing to the amount of fallen snow s(pk). The positions of the
vertices of the displaced mesh are calculated as:

pk(e) = pk +δ(pk)vk.

The elevation function is δ(p) = s(p)g(d(p)) where d(p)
denotes a distance function between the point and the border
of the mesh and g refers to the snow elevation function:

g(d(p)) =

{ (
1− (1−d(p)/d0)

2
)4

d(p)< d0

1 otherwise,

where d0 controls the snow slope near the object’s border.

α (p)

Occlusion field α Temperature field θ

k

Initial snow profile

p
k

δ (p)
k

δ (p)
k

α (p)
k

δ (p)
k

d(p) k
p k

− θ (p)

S (e)

Figure 7: The influence of the environment is captured by
the occlusion (center) and temperature fields (right) that are
applied to the initial displacement δ(pk).

Fig. 7 illustrates how the lower object snow mesh is in-
fluenced by an occlusion field and a temperature field. The
final position of the snow vertex accounts for the snow thick-
ness s(pk), occlusion field value α(pk), and temperature
field value θ(pk) obtained by querying the environment:

p′k(e) = pk +(α(pk)δ(pk)−θ(pk))vk.

The term (α(pk)δ(pk)−θ(pk)) is clamped to zero to avoid
negative snow displacements. The occlusion field 0≤ α≤ 1
acts as a multiplicative factor, whereas the temperature
field θ diminishes the snow height in an absolute way.

5.2. Icicles

Icicles are point-based skeletal implicit surfaces whose size
and shape are computed according to the parameters of the
environment. Given an input object B, we create a collec-
tion of m candidate icicles I = {I j, j ∈ [0,m− 1]} that is
attached to the object. Each icicle I j = (p j,S j(θ,η)) has
an anchor position p j and a parameterized shape S j(θ,η)
where θ is the temperature field and η is the humidity field.
The icicle positions can be set manually along object edges,
or computed automatically by using a water flow and droplet
dripping simulation as described in [GP11].

We use a particle-based representation generated by Blob-
Trees [WGG99]. A list of sphere primitives is generated

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

p j
j

Humidity field η

Anchor points

Cold field θ

Candidate positions Procedural icicle model

I (e) h
(θ

 (p
),

 η
 (p

))

j
j

Figure 8: Icicle anchor positions p j are attached to the ob-
jects (left). The dimension of the icicles depend on the value
of η(p j) and θ(p j) (right).

along the vertical axis of the icicle (Fig. 8) from the upper
part of the icicle downward. The sphere radius is continu-
ously decreasing as well as the spacing between them. A
horizontal perturbation is also applied to introduce random-
ness.

The presence of an icicle is determined by evaluating the
ice field i(p j) and temperature field θ(p j) at its anchor posi-
tion p j. If the ice value i(p j) is positive and the temperature
value θ(p j) is below freezing point then an icicle will be
generated:

I(e) = {I j|θ(p j)< 0∧ i(p j)> 0}.

The height h(θ(p),η(p)) of the icicles varies according to
the humidity and temperature fields. To speed up the ici-
cle geometry calculation we generate a reduced set of ici-
cles models during an offline pre-processing step, and we
store them and their properties. Icicles are then instantiated
from the precomputed model whose parameters are the clos-
est (Fig. 9).

5.3. Leaves, petals, and trash

Leaves can be distributed by using a simulation as presented
in [DGAG06] and by recording the final positions and ori-
entation of the leaves as well as their number in the obtained
leaf pile structure. This approach becomes more computa-
tionally demanding as the size of the supporting object O,
such as terrain patches, increases.

We introduce a two-step procedural method for generating
fallen leaves. First, we construct a collection of candidate
leaves organized and stored into a leaf pile structure. Leaf
effects are attached to their supporting objects B and define
a set of virtual leaves instances for the corresponding object.
The final distribution of leaves L(e) for a given object is
generated by selecting and instancing some of its candidates
leaves according to the field value of the leaf field l(p) and
the environment as described below.

We define a leaf effect as a set of n leaf models {Li, i ∈
[0,n− 1]}. Every leaf model Li = {pi,Ri,di,ai} is defined

1 2

4 3

Figure 9: Example of procedural icicles formed on a fountain
(1©, 2©) and on a lamp post (3©, 4©).

Candidate leaves Leaf models

p i R i

d i
a i a i

Object
Humidity field η

L (e) i

Figure 10: A leaf effect uses predefined leaf models that
are aperiodically tiled. The texture and deformation are
parametrized by the humidity field η and leaf field l.

by its position pi, its rotation matrix Ri, its distance di to the
underlying object geometry, and its index ai referring to a
textured geometric leaf model (Fig. 10) whose characteris-
tics depend on the leaf type and humidity field η.

The construction of the candidate leaves distribution is
performed during a pre-processing step that defines the posi-
tions pi, the orientations Ri and the distances di. We use two
techniques to generate candidate leaves information: a pro-
cedural 3D tiling approach for fast and automatic generation
of large leaf piles, and manual editing for fine tuning of the
leaf distribution.

Our 3D aperiodic tiling approach is inspired by the rock
pile generation algorithm of [PGGM09]. First, a set of cu-
bic tiles that contain layers of leaves that aperiodically tile
the space is generated. The cells are created by incremen-
tally filling tiles with different layers of leaves. Every layer
is then created by using Poisson-disk distribution of points
with a radius proportional to the size of leaf models to avoid
intersections. This approach is used to distribute leaves on

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

large surfaces and to model leaves piles, as it can be seen in
Fig. 20 and 21.

1 2

Figure 11: Procedural leaf effects generated the leaves on
the ground 1© whereas some specific positions were edited
to allow the instantiation of leaves pinned on the fence 2©.

Manual editing allows the user to store candidates leaves
information corresponding to a specific leaf distribution.
This approach allows for the tuning of leaves effects, which
is a mandatory step for the fine tuning of the final leaves
distribution. It made specific distribution patterns possible,
including distributions extremely difficult to achieve with
physical simulations, such as leaves pinned on the fence in
Fig. 11.

During the scene effects computation, a candidate leaf Li
is instantiated if the field value l(pi) is greater than the dis-
tance di from the object (Fig. 10). The set of instantiated
leaves is defined as:

L(e) = {Li |α(pi) l(pi)> di}.

The occlusion field is taken into account as a multiplica-
tive factor, so that neighboring objects may prevent the ac-
cumulation of leaves. In practice, only the upper layer of
leaf piles needs to be generated as the other leaves will
not be visible, which can be easily obtained by checking
di > α(pi) l(pi)− ε.

1 2

Humidity field η

Figure 12: Leaves on a partially wet sidewalk. Leaves out-
side the water puddle are dry and wrinkled, whereas the
leaves inside and near the puddle are wet and flat.

By taking humidity fields η into account at the instanti-
ation of the candidates leaves, we determine the leaf model
associated to a given candidate leaf Li. If Li doesn’t lie in a

humidity field, so if η(pi)< 0,Li will be instantiated using a
wrinkled version of its geometric model ai. Otherwise, when
Li lies in a humidity field, we then instantiate a decayed ver-
sion of ai (see Fig. 12).

The tiling method to distributes leaves is easily generaliz-
able to a wide range of other objects, and we use it for petals
and trash generation. It also could be used for various kinds
of other objects such as twigs, rocks, sea shells, etc.

5.4. Grass

Another procedural effect used in our framework allows for
covering objects with grass. Grass could be computed using
ecosystem simulation like the one presented in [DHL∗98],
but this kind of approach is computationally demanding, and
is not well suited for the fast generation and easily control-
lable generation process we are aiming at.

A grass effect is a collection of n grass tufts G = {G j, j ∈
[0,n−1]}. A grass tuft G j = (p j,a j) is defined by its anchor
position p j and its index a j referring to a textured geometric
grass model whose characteristics depend on the grass field
g, the humidity and temperature field η and θ respectively.
Grass tuft anchors on their supporting objects are computed
using a Poisson-disk sampling with the radius of the grass
tuft (Fig. 13).

Candidate grass Grass models

p j

a j a j

Object
R j

Heat field θ

G (e) j

Figure 13: Grass tufts distribution on the surface of an ob-
ject, tiled with a Poisson-disk sampling. The texture of the
grass tufts are parametrized by the humidity field η and tem-
perature field θ.

Occlusion fields are taken into account as a multiplica-
tive factor during the computation of grass tufts, allowing us
to create features such as trampled trails in parks. Tempera-
ture fields are taken into account as shape modification: grass
tufts under the influence of heat will be represented with a
dried model.

The grass effect is shown in Fig. 14. A simple scene is en-
hanced by procedurally generated grass. The dry grass grow-
ing on the sidewalk in Fig. 14.1 is created by a combination
of grass fields and temperature fields. The appearance of the
half-dried grass that can be seen in Fig. 14.2 is achieved by
combining grass fields with temperature fields and occlusion
fields.

6. Scene evaluation

Recall that a scene is defined as a construction tree com-
bining environmental objects with effects and scalar fields

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

1 2

Figure 14: Procedural grass grows on soil, but also in the
cracks on and between tiles 1©. The occlusion field created
by the tree decrease the density of grass between its roots 2©.

(Section 3). Environmental objects can be grouped into dif-
ferent kinds of operators to optimize the evaluation of the
scene. In this section we present two techniques: level of de-
tail nodes that modify and optimize the traversal of the tree
during the scene evaluation in order to speed-up its computa-
tion, and effects instancing which generates a more compact
representation of the final scene.

6.1. Level of detail nodes

Level of details (LOD) nodes are used to speed-up the eval-
uation of the environment. Let N denote a node and F its
corresponding scalar fields. The children of N will be de-
noted asNi and their scalar fields as Fi respectively.

Grouping

Tree Tree

LOD Node

Tree Tree

l (p) l (p) = l (p) i Σ
i=1

n 1 2

Figure 15: Comparison of the evaluation of the leaf field
l(p) between a grouping node 1© and level of detail node

2© which simplifies the recursive evaluation and speeds up
queries.

The recursive evaluation of F is more computationally
demanding as N has more children, particularly if the set
of Fi are computationally demanding. Therefore, we intro-
duce LOD nodes that are specific nodes whose set of scalar
fields are computed locally. Instead of recursively traversing
its sub-tree, the node defines its ownF (Fig. 15). When care-
fully set, the visual difference produced by the original node
and the LOD node is negligible, while evaluation speed can
increase by an order of magnitude in complex cases.

The higher level hierarchy LOD should be designed such

that it approximates the collection of the lower LODs. Al-
though it could be done automatically by approximating the
bounding volumes of the fields, in our implementation it is
done manually by the designer. An example in Fig. 16.1
shows three trees shedding leaves and Fig. 16.2 shows the
same scene, where the trees are grouped in a level of de-
tail node. There is a negligible visual difference between the
two images, but the second scene is easier to control and is
evaluated three times as fast as the first one.

1 2

Figure 16: Leaf distribution by using per-object leaf field
produced by three trees 1© and the per-group 2©.

6.2. Effects instancing

Multiple occurrences of a same type of environmental object
often exist multiple times in a given scene. During the scene
evaluation, effects of this type of object are computed once
for each occurrence. To optimize the evaluation, our frame-
work traverses the scene graph and detects environmental
objects of the same type that have the same environmental
parameters. Effect generation is called only once for all ob-
jects sharing the same environmental parameters, and the re-
sulting effects are then instantiated for each of those objects
(Fig. 17).

There are two ways the environmental objects with the
same parameters can appear. They can be generated proce-
durally, in which case the system automatically keeps track
of each instance, as is the case of the windows in Fig. 18. If
the field is a combination of other fields, we regularly sample
them and compare if their L2 distance is under a user-defined
threshold value.

Heat field θ Specific
snow patches

Snow instantiation

Figure 17: Window instances that have the same environ-
mental parameters call the generation of snow once and the
resulting snow effects are duplicated.

An example of instantiated windows and balcony on a

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

1 2

Lamp heat fields θ

Figure 18: Multiple occurrences of a single object, such as
the lamp post and the windows 1© and the balconies 2© are
represented by their instances. Moreover, the snow effects
with similar environmental conditions are instantiated.

building produced by enriched a CGA shape grammar is
shown in Fig. 18. The complete building features 70 win-
dows and balcony, as well as four lampposts on its front fa-
cade. The 70 windows and balcony are instantiated, and their
effects only need to be computed six times: once for each of
the five lower windows of the front facade that are under the
influence of the temperature fields created by the lampposts,
and only once for all the others.

7. Results and discussion

Our framework has been implemented in C++ and
MentalRay R© was used to produce photo-realistic images.
Results were calculated on a desktop computer equipped
with Intel Core i7, clocked at 3 GHz, with 16GB of RAM,
and NVIDIA GTX 670 with 2GB of RAM.

7.1. Procedural generation

The scene hierarchy lends itself for procedurally generated
models such as buildings or trees. By replacing the standard
geometric models used as terminal leaves in the generation
process by our environmental objects, we create environ-
mental procedural objects that react and participate in the
environment. The CGA shape grammars and L-systems can
naturally be enriched with our environment objects in or-
der to produce the buildings and trees shown in Fig. 19. It
took us one hour to completely parameterize the city build-
ing generation framework, including the time to augment the
different assets that were used to produce Fig. 22. The scene
consists of 4, 110 groups and over 19, 000 environmental
objects. The Paris Montmartre-inspired scene (Fig. 22) and
the park (Fig. 19) were created using CGA shape grammars
combined with our environmental object framework.

7.2. Authoring and control

We claim a contribution in control of the procedural scenes.
This control is simple, efficient, and allows for a fast and in-
tuitive creation and editing of complex scenes. Our models

allow the user to control the placement and density of fea-
tures such as grass between pavement blocks, trash around
trash cans, leaf and snow piles, or areas where snow melts
or turns into ice. In Fig. 20 global leaf fields have been
placed to produce a fall scenery. The tree has associated a
large spherical leaf field which modifies the appearance of
the road and pavement blocks. Those environmental objects
automatically generate leaves over their geometry. Leaf piles
are controlled in a similar fashion and it is possible to add
piles of leaves or accumulations produced by wind. These
sequences demonstrate that scene authoring is easy and once
objects are aware of the environment, the manipulation of
the fields that affect the scene is predictable and intuitive.

7.3. Scalability

Our procedural approach can generate geometric details for
large scenes with a high level of detail and allows local
editing at interactive rates. In our implementation, our per-
object approach allows the maximum scale factor between
the smallest details and the size of scene to reach more than
104 (Table 1). Because our fields are defined on continuous
domains, virtually infinite precision on effects could even be
reached.

Our description of the generated geometry has native
multi-resolution support. We can visualize the scenes at mul-
tiple scales, and we can use view-dependent clipping algo-
rithms or resource-dependent strategies. Examples in Fig. 19
and Fig. 22 show different city scenes composed from ob-
jects with details varying from 5cm (bumps on road and
pavement) to 1cm (carvings at window corners, and details
on stairs and the lamp post model).

7.4. Performance

Our parametrized per-object effect description provides a
scalable representation of large scenes with many details. Ta-
ble 1 reports detailed statistics of the number of environmen-
tal objects in each scene, number of instances, and groups. A
scene of several thousands of square meters, such as Fig. 19
and Fig. 22, can be generated in a few seconds. Our phe-
nomenological approach for controlling the distributions of
snow, leaves, grass, and icicles does not rely on computa-
tionally demanding physically-based simulations and allows
for interactive editing.

The road scene (Fig. 21) shows another example of a hier-
archical grouping and instancing applied to a large scene. It
was created by combining a terrain and 24 trees, which are
instances of two groups of approximately 110 environmental
objects yielding a total equivalent of 2, 653 environmental
objects.

Authoring time for the most complicated scene (Fig. 19)
consisting of almost 20k generated instances took approx-
imately one hour. The interaction with the scenes for fine-
tuning environmental and ambient fields for special effects

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

1 2 3

Figure 19: A North American inspired square park. Approximately 980k leaves were generated on the ground, the benches and
fountain from the 18 trees.

1 2 3 4

Figure 20: By changing the global environment parameters, the road, the pavement, and the tree generated their own leaves.
Images 1© and 2© demonstrate user control when two small leaf fields were specified to create two leaf piles on the pavement.
Images 3© and 4© show a table and bench which cast occlusion fields that limit the number of leaves on the ground.

1 2

Figure 21: A countryside road in fall 1© and in winter 2©.

such as large leaf piles or pedestrian steps in the snow was
performed at interactive rates (less 0.1 second per local up-
date). The time needed to create a new environmental object
is related to the overall object complexity in terms of size
(number of polygons) and expected behavior. The amount
of time needed varied from a few minutes for simple objects,
such as the lamppost or the bench, to approximately fifteen
minutes for balconies, which contain many complex parts.

The entire scene recalculation for all examples was in gen-
eral under 7.0 seconds. The most time-demanding part was
the generation of large leaf piles. The road scene (Fig.21)
has more than 1.4 millions leaves selected among more than
20 million virtual candidate leaves. By using level of details
nodes and instancing, we were able to reduce the computa-
tion time from 24.0 to 4.5 seconds for Fig. 19 (see Table 1).

There is a negligible memory overhead for enhancing ob-
jects with environmental properties. In our implementation,

the scalar fields are defined as skeletal implicit primitives
which are a compact representation characterized by only a
few parameters. In contrast, each effect can potentially gen-
erate additional geometry such as a snow mesh or leaves.
For complex meshes, such as trees, it is beneficial to cache
the snow geometry and only define its changes when neces-
sary. For simpler objects, it is more efficient to generate the
procedural geometry on the fly. Our instancing technique for
representing some effects allows us to reduce the size of the
generated detailed models.

7.5. Discussion

Our framework is focused on fast generation of various ef-
fects with many small scale details. Scalar fields and proce-
dural effects provide a very efficient and intuitive framework
to control and author complex scenes. A limitation of this ap-
proach lies in the lack of physical accuracy of the different
effects produced. Unlike biologically-inspired or physically-
based natural phenomena simulations in which features nat-
urally emerge, complex features like snow bridges or ice col-
umn formation between different objects can only occur if
they have been anticipated in the effects’ algorithms.

Another limitation of our model is its inability to simulate
interaction between effects. While the environmental objects
react to the environment, the interaction between effects is
not supported. Although different effects can be generated
at the same time, e.g., fallen leaves on dry grass, or icicles
and snow, those effects do not influence each other.

Our per-object representation allows us to optimize the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

Scene Size Objects Snow Leaves Grass

Models Instances Time Triangles Time Instances Time Instances

Street (Fig. 20) 10×10 13 191 0.13 0.5M 0.12 36k 0.01 1k

Road (Fig. 21) 70×70 5 2563 4.01 20.2M 6.73 1461k 4.76 3020k

Montmartre (Fig. 22) 33×100 85 10519 2.09 78.8M 0.54 221k 0.18 78k

Park (Fig. 19) 115×90 68 19855 1.60 22.0M 4.53 839k 1.86 1050k

Table 1: Statistics for different scenes presented throughout the paper. Each row reports the size of the scene (in meters), the
number of environmental objects and their instances, the snow generation time (in seconds), the number of triangles of the snow
cover, the leaves and grass generation time (in seconds) and the number of instances for the corresponding effect.

1 2 3

Figure 22: View of a Montmartre-like street in winter, covered by snow. Event though the scene is bigger than 3, 000 square
meters, it contains a lot of small details, such as footprints 1© 2© or wheel tracks 3©.

generation of details. New effects can be easily added in our
framework by implementing the corresponding effects pa-
rameterized by scalar fields. In practice, this means adding a
new type into the list of fields of influence, which is rather
straightforward, and defining for every kind of environmen-
tal object the corresponding effect. For example, rust could
be integrated in our system in two steps. First, a rust field
combined with the humidity field and accessibility fields
would control the rust generation. Then, metallic environ-
mental objects would implement the rust effect, whereas
the appearance of other environmental objects would not be
modified. Contrary to the global simulation methods, a lim-
itation of the per-object approach is that effects should be
optimized and implemented for different kinds of objects.

8. Conclusion

We have presented a novel model for the representation of
large scenes with geometric details, guided by environmen-
tal factors. Objects are extended by effects and fields, mak-
ing them environmental objects. Environmental objects react
to the environment and change their appearance accordingly.
Our approach has several advantages over existing appear-
ance modeling techniques: it is intuitive, predictable, highly
controllable, easy to implement, and fast. Our per-object ap-
proach allows for the creation of large scenes with a high
level of details. Our framework allows for quick local and
global changes that permits the interactive design of scenes.
We have shown a variety of examples and provided several

novel algorithms for generation of snow, icicles, leaf piles,
grass, and trash; and new effects can be easily added in our
framework.

There are several weaknesses of our method and possi-
ble avenues for future work. Our scenes are static and they
are defined in a state of equilibrium. An improvement would
be to combine our approach with techniques for dynamic
simulations, such as those that can account for leaf move-
ment and snowdrift in the wind. The environmental objects
creation process could be partially or entirely automatized,
based on an analysis of the object’s geometry. Because our
model addresses changes per object with techniques opti-
mized for different effects, various algorithms such as aging,
cracks and fractures or corrosion can also be implemented.
Using a combination of effects, such as leaves falling on
snow, or snow depositing on leaves, would also be an inter-
esting way to enhance the framework. Another disadvantage
to our method is that the effects are executed at the same
time. However, there may be further hidden dependencies,
for example snow could melt and produce water. This would
require an entire simulation loop with a timeline that is not
currently considered. Our environmental fields are approxi-
mations and it would be possible to calculate them precisely,
for example shadows and other effects could be provided by
global illumination algorithms.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Grosbellet, A. Peytavie , E. Guérin, E. Galin, S. Mérillou & B. Benes / Environmental Objects for Authoring Procedural Scenes

References
[BSMM11] BENES B., STAVA O., MĚCH R., MILLER G.:

Guided procedural modeling. Comp. Graph. Forum 21, 3 (2011),
325–334.

[DEJ∗99] DORSEY J., EDELMAN A., JENSEN H. W., LEGAKIS
J., PEDERSEN H. K.: Modeling and rendering of weath-
ered stone. In Proceedings Siggraph (1999), SIGGRAPH ’99,
pp. 225–234.

[DGAG06] DESBENOIT B., GALIN E., AKKOUCHE S., GROS-
JEAN J.: Modeling autumn sceneries. In Eurographics Short
Papers (2006), pp. 107–110.

[DH96] DORSEY J., HANRAHAN P.: Modeling and rendering
of metallic patinas. In Proceedings SIGGRAPH ’96 (1996),
pp. 387–396.

[DHL∗98] DEUSSEN O., HANRAHAN P., LINTERMANN B.,
MĚCH R., PHARR M., PRUSINKIEWICZ P.: Realistic model-
ing and rendering of plant ecosystems. Conference on Computer
Graphics and Interactive Techniques (1998), 275–286.

[DPH96] DORSEY J., PEDERSEN H. K., HANRAHAN P.: Flow
and changes in appearance. In Proceedings Siggraph (1996),
SIGGRAPH ’96, pp. 411–420.

[DRS08] DORSEY J., RUSHMEIER H., SILLION F.: Digital Mod-
eling of Material Appearance. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

[FB07] FOLDES D., BENES B.: Occlusion-based snow accumu-
lation simulation. In Workshop on Virtual Reality Interactions
and Physical Simulation (2007), pp. 35–41.

[Fea00] FEARING P.: Computer modelling of fallen snow. In Pro-
ceedings of the 27th Annual Conference on Computer Graphics
andInteractive Techniques (2000), SIGGRAPH ’00, pp. 37–46.

[FO02] FELDMAN B., O’BRIEN J.: Modeling the accumulation
of wind-driven snow. In Proceedings of Siggraph 2002, Technical
Sketch (2002), p. 218.

[GP11] GAGNON J., PAQUETTE E.: Procedural and interactive
icicle modeling. The Visual Computer 27, 6-8 (2011), 451–461.

[JPK13] JEONG S., PARK S.-H., KIM C.-H.: Simulation of mor-
phology changes in drying leaves. Comp. Graph. Forum 32, 1
(2013), 204–215.

[KAL06] KIM T., ADALSTEINSSON D., LIN M.: Modeling ice
dynamics as a thin-film Stefan problem. In Proceedings of ACM
SIGGRAPH / Eurographics Symposium on Computer animation
(2006), pp. 167–176.

[KG93] KHARITONSKY D., GONCZAROWSK J.: A physically
based model for icicle growth. The Visual Computer 32, 1 (1993),
88–100.

[KHL04] KIM T., HENSON M., LIN M.: A hybrid algorithm
for modeling ice formation. In ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (2004), pp. 305–314.

[KL03] KIM T., LIN M.: Visual simulation of ice crystal growth.
In ACM SIGGRAPH / Eurographics Symposium on Computer
Animation (2003), pp. 86–97.

[KL05] KONTKANEN J., LAINE S.: Ambient occlusion fields.
Proceedings of the 2005 Symposium on Interactive 3D Graphics
and Games - SI3D ’05 (2005), 41.

[KPK10] KRECKLAU L., PAVIC D., KOBBELT L.: Generalized
use of non-terminal symbols for procedural modeling. Computer
Graphics Forum 29, 8 (2010), 2291–2303.

[LZK∗04] LANGER M., ZHANG L., KLEIN A., BHATIA A.,
PEREIR J., REKHI D.: A spectral-particle hybrid method for ren-
dering falling snow. In Proceedings of Eurographics Symposium
on Rendering (2004), pp. 217–226.

[MC00] MURAOKA K., CHIBA N.: Visual simulation of snow-
fall, snow cover and snowmelt. In Proceedings Seventh Inter-
national Conference on Parallel and Distributed Systems: Work-
shops (2000), pp. 187–194.

[MG08] MÉRILLOU S., GHAZANFARPOUR D.: A survey of ag-
ing and weathering phenomena in computer graphics. Computer
and Graphics 32, 2 (2008), 159–174.

[MGG∗10] MARÉCHAL N., GUÉRIN E., GALIN E., MÉRILLOU
S., MÉRILLOU N.: Heat transfer simulation for modeling realis-
tic winter sceneries. Comp. Graph. Forum 29, 2 (2010), 449–458.

[MMPP03] MUNDERMANN L., MACMURCHY P., PIVOVAROV
J., PRUSINKIEWICZ P.: Modeling lobed leaves. In Proceed-
ings of the Computer Graphics International Conference (2003),
pp. 60–65.

[MWHG06] MUELLER P., WONKA P., HAEGLER S., GOOL A.
U. L. V.: Procedural modeling of buildings. In ACM Transac-
tions on Graphics (2006), vol. 25, pp. 614–623.

[NIDN97] NISHITA T., IWASAKI H., DOBASHI Y., NAKAMAE
E.: A modeling and rendering method for snow by using meta-
balls. Comp. Graph. Forum 16, 3 (1997), 357–364.

[PGGM09] PEYTAVIE A., GALIN E., GROSJEAN J., MERILLOU
S.: Procedural generation of rock piles using aperiodic tiling.
Comp. Graph. Forum 28, 3 (2009), 1801–1809.

[PTMG08] PEYRAT A., TERRAZ O., MÉRILLOU S., GALIN
E.: Generating vast varieties of realistic leaves with parametric
2Gmap L-Systems. The Visual Computer 24, 7-9 (2008), 807–
816.

[PTS99] PREMOZE S., THOMPSON W., SHIRLEY P.: Geospe-
cific rendering of alpine terrain. In Eurographics Workshop on
Rendering (1999), pp. 107–118.

[SPK∗14] STAVA O., PIRK S., KRATT J., CHEN B., MĚCH R.,
DEUSSEN O., BENES B.: Inverse Procedural Modelling of
Trees. Computer Graphics Forum 33, 6 (2014), 118–131.

[STBB14] SMELIK R. M., TUTENEL T., BIDARRA R., BENES
B.: A survey on procedural modelling for virtual worlds. Com-
puter Graphics Forum (2014), 31–50.

[vFG09] VON FESTENBERG N., GUMHOLD S.: A geometric al-
gorithm for snow distribution in virtual scenes. In Proc. of the
Fifth Eurographics conference on Natural Phenomena (2009),
pp. 17–25.

[vFG11] VON FESTENBERG N., GUMHOLD S.: Diffusion based
snow cover generation. Comp. Graph. Forum 30, 6 (2011), 1837–
1849.

[WGG99] WYVILL B., GUY A., GALIN E.: Extending the
CSG Tree. Warping, blending and boolean operations in an im-
plicit surface modeling system. Computer Graphics Forum 18, 2
(1999), 149–158.

[WH91] WEJCHERT J., HAUMANN D.: Animation aerodynam-
ics. ACM SIGGRAPH Computer Graphics 25, 4 (1991), 19–22.

[WZF∗03] WEI X., ZHAO Y., FAN Z., WEI L., YOAKUM-
STOVER S., KAUFMAN A.: Blowing in the wind. In Proceed-
ings of ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation (2003), pp. 75–85.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

