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Abstract
A method for approximating smooth or rough surfaces defined in R

3 is introduced. A fractal model called projected
IFS model allows the extension of the iteration space to a barycentric space R

n2
by enriching the classical IFS

model with a set of control points (m2 points). This flexible model has good fitting properties for recovering
surfaces. The input for the model is single viewpoint range data defined on a fixed grid and also 2D grey-level
images considered as surfaces. The model recovery is formulated as a non-linear fitting problem and resolved
using a modified LEVENBERG-MARQUARDT minimization method. During the iterative fitting algorithm, all
the parameters of the projected IFS model are adjusted simultaneously in order to minimize the overall distance
between the model’s surface and the original data. The final model is very compact and gives satisfactory results on
synthetic range data and real geological surfaces. The main applications are surface modeling, shape description
and geometric surface compression.

1. Introduction

Basically, the problem of approximating the surface of 3D
objects consists in finding a model that represents a set of
data points:

(xi,yi,zi) ∈ R
3, ∀i = 0, . . . ,n

A wide variety of representation methods have been pro-
posed for modeling these surfaces1. Basically, they can be
classified into three categories depending on the data source
and the target application: mesh representation, parametric
representation and implicit representation. For a simple vi-
sualization of smooth surfaces, the model widely used is the
mesh approximation2. When the data is issued from sensors
and the model should be suitable to a CAD use, paramet-
ric approximation seems to be well adapted using a standard
model such as NURBS or B-splines2. If the approximation
should be used for a more semantic description of an ob-
ject, implicit models can be chosen like superquadrics3 4.
Each application domain has a preferred model that relies on
its specificities. Unfortunately, these models do not recover
rough surfaces, i.e. surfaces defined by continuous functions
that are nowhere differentiable.

In order to propose an efficient solution to the problem of
rough surface approximation, the current study proposes a
parametric model based on a fractal model. In 5 and 6, we
have proposed a model for fractal curve and surfaces. This
model combines the classical Iterated Function System (IFS)
model and the free form approximation theory based on a
set of control points. These points allow an easy and flexible
control of the fractal shape generated by the IFS model and
provide a high quality fitting, even for surfaces with sharp
transitions. This model is called the projected IFS model.
In 7 and 8, we have proposed an approximation method for
curves based on this model. In this paper, we give the exten-
sion of this method to surfaces.

2. Approximation model

2.1. Iterated Function Systems (IFS)

Introduced by BARNSLEY9 in 1988, the IFS model gener-
ates a geometrical shape or an image 10 with an iterative pro-
cess. An IFS-based modeling system is defined by a triple
(X ,d,S) where:

• (X ,d) is a complete metric space, X is called iteration
space;
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• S is a semigroup acting on points of X such that: p 7→ T p
where T is a contractive operator, S is called iteration
semigroup.

An IFS I (Iterative Function System) is a finite subset of S :
I = {T0, ...,TN−1} with operators Ti ∈S. We note H(X ) the
set of non-empty compacts of X . The associated HUTCHIN-
SON operator is:

K ∈H(X ) 7→ IK = T0K ∪ ...∪TN−1K

This operator is contractive in the new complete metric spa-
ce H(X ) and admits a fixed point, called attractor 9:

A(I) = lim
n→∞

InK with K ∈H(X )

When operators match joining conditions11, this attractor is
a surface:

A(I) =
{

φ(s, t) |(s, t) ∈ [0,1]2
}

where φ is a function φ : [0,1]2 →X .

2.2. Projected IFS attractors

In classical fractal interpolation 9 or fractal compression 10,
the complete metric space X used is R or R

2, and the it-
eration semigroup is constituted of contractive affine opera-
tors. Our work consists in enlarging iteration spaces 5 6. This
model uses a barycentric space X = BJ :

BJ = {(λ j) j∈J | ∑
j∈J

λ j = 1}

For surfaces, this barycentric space is used with:

J = {0, . . . ,m}×{0, . . . ,m}

Then, the iteration semigroup is constituted of matrices with
barycentric columns:

SJ = {T | ∑
j∈J

Ti j = 1, ∀i ∈ J}

This choice leads to the generalization of IFS attractors na-
med projected IFS attractors:

PA(I) = {Pλ |λ ∈ A(I)}

where P is a grid of control points:

P = (p j) j∈J

and Pλ = ∑ j∈J λ j p j . In this way, we can construct a fractal
function 6 11 using the projection:

F(s, t) = Pφ(s, t) = ∑
j∈J

φ j(s, t)p j

where φ(s, t) is a vector of functions:

φ(s, t) = (φ j(s, t)) j∈J

and J = {0, . . . ,m}×{0, . . . ,m}.

2.3. Parametric representation of the surface

The model allows to calculate theoritically the exact value
φ(s, t) for any value of the parameters s and t. This means
that we are able to recover the surface value F(s, t) =
Pφ(s, t). Let consider the number of transformations N of
I is b2. To each value of s and t can be associated a devel-
opment α(s) and α(t) in a b-base such that12:

s =
∞

∑
i=1

1
bi αi(s)

where αi(s) = 0 . . .(b−1).

Classically, we use the PEANO combination of the devel-
opment of α(s) and α(t). Here is an example of a 3×3 sub-
division scheme of square with the PEANO indexing of the
transformations:

T2

T1

T0 T6T3

T4 T7

T8T5

Let us denote βi(s, t) = αi(s)\αi(t) this index for notation
simplifications:

β : [0,1]2 → {0, . . . ,b2 −1}ω

(s, t) 7→ β1(s, t) . . .βn(s, t) . . .

where \ is the following mapping:

\ : {0, . . . ,b−1}×{0, . . . ,b−1}→ {0, . . . ,b2 −1}

and {0, . . . ,b2 − 1}ω is the set of infinite words of
{0, . . . ,b2 −1}.

Then, the value of φ(s, t) is computed iteratively9:

φ(s, t) = lim
k→∞

Tα1(s)\α1(t) . . .Tαk(s)\αk(t)λ ∀λ ∈ X

Note that βi(s, t) is the index of the operator T applied on
the ith iteration in the process of recovering φ(s, t).

In this way, we can construct a fractal parametric surface
characterized by a grid of control points P using the projec-
tion. Fig. 4 and 5 show two surfaces generated with the same
IFS model using two different 4×4 control grids.

2.4. Tabulation of the parametric surface

With a tabulation process, considering only the values of s
and t multiple of 1

bp leads to a simplification in the comput-
ing without any loss of information. The surface tabulation
is a grid defined by:

F(
i

bp ,
j

bp ) = P lim
k→∞

Tβ1(
i

bp , j
bp ) . . .Tβk(

i
bp , j

bp ) λ, ∀λ ∈ BJ

We know the development of i
bp :

For i = 0, . . . ,bp −1:

α(
i

bp ) = α1(
i

bp ) . . .αp(
i

bp )00 . . .
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Then, F( i
bp , j

bp ) simplifies in12:

F(
i

bp ,
j

bp ) = PTβ1(
i

bp , j
bp ) . . .Tβp(

i
bp , j

bp ) φ(0,0)

We choose φ(0,0) = e00 where e00 is the first base vector
of BJ :

e00 = (1,0, . . . ,0)T

In this way, the surface tabulation can be generated comput-
ing only p iterations without any loss of information:

F(
i

bp ,
j

bp ) = PTβ1(
i

bp , j
bp ) . . .Tβp(

i
bp , j

bp ) e00

∀(i, j) ∈ 0, . . . ,(bp −1)2.

Note that for i = bp or/and j = bp the development can
not be expressed as a word that ends with an infinite suite
of zeros, but with an infinite suite of (b− 1). Therefore, we
have to make other choices such as φ(0,1) = e0(b−1) in order
to simplify expressions.

3. Approximation method

Given a sampled surface (si, ti,Qi j)∈ R
3, the challenge is to

determine the projected IFS model which provides a high
quality approximation of this surface. The approach pro-
posed in the current study is similar to the one we introduced
in 7 8 for curves. It is based on a non-linear fitting formal-
ism. In this section, the way to construct a fractal surface
family is detailed. Then, we show how the approximation
problem can be seen as a standard non-linear fitting problem.
Finally, we propose a resolution based on the LEVENBERG-
MARQUARDT algorithm.

3.1. Projected IFS for surface modeling

In order to illustrate our method and also to provide a com-
pact descriptor for the shape, some restrictions are applied to
the model. IFS transformations are reduced to a 3×3 square
subdivision, i.e. b = 3. Control points constitute a 4×4 grid,
i.e. J = {0,1,2,3}×{0,1,2,3}.

The fractal function is a grey-level function defined by a
4×4 grid P = (z j) j∈J of control scalar values:

(s, t) ∈ [0,1]2 7→ F(s, t) = ∑
j∈J

φ j(s, t)z j ∈ R

Each transformation Ti acts locally on a subset of control
points. It means that (Ti)kl 6= 0 only for a few values of k
and l depending of the transformation Ti considered. Further-
more, joining conditions of IFS I = {T0, . . . ,TN−1} imply
identification of columns:

(Ti)e j = (Ti′)e j′

Then, the IFS is described by a subdivision scheme. Fig. 1
summarizes this local subdivision scheme. It also details

Combination of
points from the
same line (vertical
or horizontal)

Combination of

square around
points from the

Same point

Figure 1: Subdivision scheme based on a 4×4 control grid.

how each control point is transformed depending on its spa-
tial position on the grid. Fig. 2 shows three iterations of the
construction process. Fig. 3 shows the same process present-
ing the surfaces as 2D grey-level images.

3.2. Surface family

Considering the coefficients of the operators Tj and the coor-
dinates of the control grid P as elements of a parameter vec-
tor a allows us to construct a fractal surface family. Thanks
to the simplifications detailed in the previous section, only
a few number of parameters is needed for representing the
projected IFS model:

• 4× 4 = 16 for the control grid (containing only the z co-
ordinates).

• 4− 1 = 3 coefficients per new point defined as a combi-
nation of 4 aligned points (small points in Fig. 1). There
is a total of 36 points in this category.

• 4− 1 = 3 coefficients per new point defined as a combi-
nation of 4 points around (small circles in Fig. 1). There
is also a total of 36 points in this category.

Then, a vector a of 232 parameters is constructed to code
the fractal model. Let Fa be the surface generated with the
model described with the parameter vector a.

3.3. Non linear fitting

Let Qi j(i=0,... ,bp j=0,... ,bp) be a given surface to approximate.
The approximation problem consists in determining the pa-
rameter vector a that minimizes the distance between the
sampled surface Q = {( i

bp , j
bp ,Qi j)} and the function Fa:

aopt = argmin
a

d(Q,Fa)

where:

d(Q,Fa) = ∑
i j

(Qi j −Fa(
i

bp ,
j

bp ))2
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3.4. Solving the non-linear fitting problem

Our resolution method is based on the LEVENBERG-MAR-
QUARDT algorithm 13. This algorithm is a numerical resolu-
tion of the following fitting problem:

aopt = argmin
a

M

∑
i=0

(vi − f (a,ui))
2

where vectors v and u are the fitting data and f is the fitting
model.

In order to resolve our approximation problem using this
algorithm, we have to consider the following data:

v = (v0, . . . ,vM) = (0, . . . ,0)

u = (u0, . . . ,uM) = (0, . . . ,M)

where M = (bp +1)2.

Then, the fitting model is:

f (a,k) = Qik jk −Fa(
ik
bp ,

jk
bp )

where:

ik = k mod bp

jk = k/bp

∀k = 0, . . . ,(bp +1)2.

The LEVENBERG-MARQUARDT method combines two
types of approximation for minimizing the square dis-
tance. The first consists in a quadratic approximation. When
this fails, the method tries a simple linear approximation.
These approximations are computed with the provided par-
tial derivatives of the fitting model. In our case, these partial
derivatives are numerically computed by a perturbation vec-
tor 7:

δai = (0, . . . ,0,ε
︸ ︷︷ ︸

i

,0, . . . ,0)

Then, the computation of partial derivatives is approximated
by:

∂ f
∂ai

(a,u) '
f (a+δai,u)− f (a,u)

ε

4. Results

The approximation method has been tested on three sur-
faces:

• A smooth surface: elliptic paraboloid shape
• A synthetic surface generated with our model
• A natural surface

4.1. Approximation of a smooth shape

Fig. 6 shows the original elliptic paraboloid shape and the
approximated surface reconstructed with our method. The
equation of this shape is:

z = z0 − (
x− x0

σx
)2 − (

y− y0
σy

)2

Note that the original and the approximated shapes are very
similar. Our model allows to reconstruct smooth surfaces5,
and not only rough surfaces.

4.2. Approximation of a synthetic surface generated
with our model

For this example, we have fixed a shape model (IFS and
control points). This model has been used to generate a 3D
shape. Then, the challenge is to recover exactly the origi-
nal model only using the synthetic shape. Fig. 7 shows the
original synthetic surface that has been generated with our
model and the approximated surface reconstructed with our
method. The model is successfully reconstituted. This vali-
dates our method. The original surface and the approximated
one are very similar.

4.3. Approximation of a natural surface

Fig. 8 shows our first experiments on a natural surface.
The original surface has been extracted from a geologi-
cal database (found at the United States Geological Sur-
vey Home page http://www.usgs.org). The general
aspect of the approximated surface is similar to the origi-
nal one. Fig. 9 shows the convergence of the approximation
process. The first column contains the 3D view of the sur-
face at a given step. The second column gives the error sur-
face between the original surface and the approximated one.
The last column shows information about the iteration step,
the global distance between the surfaces, and the comput-
ing time. We can see that few iterations is needed to obtain
convergence (only seven in our example) and a total of 132
seconds computing time on Pentium III 450 MHz 64 Mo
hardware.

5. Conclusion

We presented a new approach based on a fractal model
named projected IFS model for approximating both smooth
and rough surfaces. This is a hybrid model: IFS opera-
tors yield self-similar, complex surfaces; the control points
project these surfaces on the original one in order to min-
imize the approximation error. The projected IFS model is
in fact a parametric description which has the advantage of
compactly describing the surface shape, making it useful for
surface compression and reconstruction (grey-level image,
range data).
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Step 0 Step 1 Step 2 Step 3

Figure 2: Three first iterations of the construction process beginning with the initial 4×4 control grid (Step 0).

Step 0 Step 1 Step 2 Step 3

Figure 3: Three first iterations of the construction process beginning with the initial 4×4 image (image point of view).

With control grid 1 With control grid 2

Figure 4: Deformation of surfaces using the control grid.

With control grid 1 With control grid 2

Figure 5: Deformation of surfaces using the control grid (image point of view).
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Original smooth shape Approximated surface Control grid

Figure 6: Result on a smooth shape.

Original surface Approximated surface Control grid

Figure 7: Result on a synthetic surface generated with our model.

Original geological surface Approximated surface Control grid

Figure 8: Result on a geological surface.
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Approximated surface Error surface Information

Initialization
d(Q,Fainit) = 12.34

First iteration
d(Q,Fa1) = 7.192

t = 28 s

Second iteration
d(Q,Fa2) = 0.285

t = 43 s

Third iteration
d(Q,Fa3) = 0.084

t = 57 s

Seventh iteration
d(Q,Fa7) = 0.063

t = 132 s

Figure 9: Convergence of the approximation.
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