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Figure 1: Our Sparse Construction Tree model compactly represents large scale terrains at a very fine resolution by combining terrain
patch primitives organized and stored in a dictionary. Among other applications, our framework lends itself for inverse procedural modeling,
terrain synthesis (left and center) and amplification (right).

Abstract
In this paper, we present a simple and efficient method to represent terrains as elevation functions built from linear combinations
of landform features (atoms). These features can be extracted either from real world data-sets or procedural primitives, or
from any combination of multiple terrain models. Our approach consists in representing the elevation function as a sparse
combination of primitives, a concept which we call Sparse Construction Tree, which blends the different landform features
stored in a dictionary. The sparse representation allows us to represent complex terrains using combinations of atoms from a
small dictionary, yielding a powerful and compact terrain representation and synthesis tool. Moreover, we present a method
for automatically learning the dictionary and generating the Sparse Construction Tree model. We demonstrate the efficiency of
our method in several applications: inverse procedural modeling of terrains, terrain amplification and synthesis from a coarse
sketch.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Modeling – Natural Phenomena—
Modeling – Procedural Modeling

1. Introduction

Despite the considerable progress towards efficient methods for
modeling realistic terrains, generating large terrains with a high
level of detail remains an open problem in Computer Graphics.

Existing terrain modeling techniques can be categorized into
procedural, erosion-based, sketch-based, and example-based ap-
proaches. Erosion simulation and hydrology-based algorithms gen-
erate geologically correct models, but often do not provide user-
control and are computationally demanding. Sketch-based methods
involve manual editing that can be tedious while example-based al-
gorithms are limited by the provided input exemplars. Furthermore,
all those methods share a common major drawback: their scalabil-

ity. Indeed, the generated terrains usually represent only features at
a single scale that are stored in a discrete regular heightfield.

In contrast, fractal-based and function-based methods are com-
putationally efficient as they define the elevation of the terrain using
a continuous procedural function. Yet they fail to provide control
over the terrain features.

A fundamental aspect of our work is coming from the observa-
tion that real landscapes can be described as a combination of a
small set of landform features at different scales. This observation
lies also at the foundation the sparse modeling theory, which has
gathered a tremendous amount of research effort in various disci-
plines over the past ten years. The key idea of sparse modeling bor-
rows from the compressive sensing theory [CRT06] which can be

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Eric Guérin & Julie Digne & Eric Galin & Adrien Peytavie / Sparse representation of terrains for procedural modeling

roughly summarized as follows: Given a set of signals there exists
a space with low dimension especially well suited for their analy-
sis. The goal of this theory is to find such a subspace, or, simply
put, find a solution to some problem, denoising for example, while
enforcing this solution to lie in the small subspace. By means of
this theoretical framework, we propose a method to design realistic
terrains from a well-chosen set of primitives.

For this purpose, we introduce a novel compact hierarchical
sparse terrain model, called Sparse Construction Tree, that com-
bines atoms taken in a dictionary that stores the different charac-
teristic landform features. Our representation extends the function
based model presented in [GGP∗15] and defines continuous ter-
rains with varying level of detail. It is based on a tree structure that
combines different kinds of primitives using operators. Instead of
authoring the terrain interactively by editing and combining land-
form primitives by hand, we propose a generic inverse procedural
modeling approach that automatically learns and creates the dic-
tionary of atoms, optimizes it with a view to reducing its memory
footprint, and builds a Sparse Construction Tree from input eleva-
tion maps. Our method can handle synthetic (procedural) and real
datasets, and any combination of multiple terrain models.

Our framework allows us not only to solve the inverse procedural
modeling of terrain problem, but also to propose amplification tech-
niques that can be applied to sketched input terrain or real world
data-sets to automatically generate large scale and highly detailed
terrain models. Although we do not focus on terrain compression,
a benefit of our representation is the ability to generate large ter-
rains with a high level of details with a small memory footprint.
Finally, our sparse terrain representation lends itself for interactive
editing of large terrains with a high level of detail. Combined with
intuitive editing tools that focus on placement and distribution of
specific landform features, the Sparse Construction Tree represen-
tation provides global and local control (Figure 1).

2. Related work

In this section, we review the existing approaches for terrain mod-
eling and focus on the level of user-control, efficiency, realism
and scale range. For a complete overview of recent approaches
and representations used in terrain modeling we refer the reader
to [NLP∗13].

Erosion simulation was introduced by [MKM89] and is often
used as a post processing step to fractal and procedural genera-
tion methods with a view to adding realism. This work was later
extended and refined in [Nag98, CMF98]. The majority of those
techniques rely on discrete regular heightfields [CBC∗16], layered
data structures [BF01] or a volumetric data [BTHB06]. A major
limitation of erosion-based techniques is their scalability due to
the use of a discrete regular grid to represent the terrain. Because
of high computational demands, these methods cannot be used to
simulate large terrains with a high level of detail, even using the
GPU [MDH07, VBHŠ11].

Various volumetric approaches apply small-scale erosion
models such as Voronoi-based block erosion for modeling
cliffs [PGMG09], and spheroidal erosion for modeling of gob-
lins [BFO∗07]. Those methods rely on three dimensional structures

such as voxels or material stacks, are computationally demanding
and do not lend themselves for modeling large scenes.

Interactive editing techniques rely on high-level control tools to
allow the generation of a complete terrain from a limited set of
user-defined constraints. Sketching approaches [GMS09,HGA∗10,
TGM12, TEC∗14] and interactive terrain editing [PGMG09] pro-
vide good control over the resulting terrain, but can lead to re-
sults that are not geologically correct. Hybrid approaches that
attempt to combine interactive editing with physics-based algo-
rithms [ŠBBK08, VBHŠ11] are also limited to small scenes and
to editing existing terrains.

Synthesis by example approaches borrow from texture synthesis
and combine realism and high-level user-control by generating new
terrains from patches extracted from exemplars. A first method pro-
posed in [ZSTR07] extract heightfield patches from a terrain exem-
plar and combines them according to a user-painted coarse map.
These approaches were later improved to enable the combination
of user-defined maps with silhouette strokes defining roughness
and [GMS09, GMM15]. Sketched terrain silhouettes were used to
deform an existing terrain to conform to a view from a certain view-
point [TEC∗14].

A common limitation of erosion simulation, sketch- and
example-based methods is that they rely on a discrete regular grid
and cannot create large terrains with details. Additionally, they do
not allow for a precise user-control. In contrast, terrains that are
mathematically defined as a combination of simple functions can
be processed efficiently and have a theoretical infinite precision.
Moreover, their representation and storage is compact.

Procedural models are generally based either on fractals or on
a combination of noise-based functions and exploit the observa-
tion that terrain landform features repeat at different scales and dif-
ferent positions in space [EMP∗98]. Several procedural subdivi-
son techniques were proposed to automatically generate river net-
works [KMN88, PH93, BA05, DGGK11].

Although those algorithms can generate infinite landscapes with
unlimited precision, they only provide an indirect global con-
trol and produce terrains without any underlying geographical
structure. To improve user control of fractal-based methods, sev-
eral algorithms generate terrains from feature curves that specify
ridges and river networks [KMN88, HGA∗10, GGG∗13]. Another
function-based approach [GGP∗15] was recently proposed to de-
fine terrains as a hierarchical construction tree combining primi-
tives with blending, carving and warping operators.

A major limitation of those procedural models is that there is
no algorithm that would allow for simple and efficient editing of
large scale complex terrains with high level of detail. The hierar-
chical construction tree described in [GGP∗15] requires the user
to focus on the definition and distribution of many different prim-
itives by hand to create large terrains. In contrast, our sparse tree
representation provides us with a means to automatically define a
set of primitives by learning a dictionary from a set of exemplars,
and automatically distribute them to generate large scenes.
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Figure 2: Given input terrain models T which can be either digital elevation maps or procedurally generated terrains, we automatically cre-
ate a Sparse Construction Tree S by generating a dictionary D of compactly supported atomic landform features. The terrain is reconstructed
as a hierarchical tree combining those atoms in a sparse way which makes our representation compact and computationally efficient.

Sparse Modeling. In our work, we propose to rely on sparse mod-
eling to define a versatile model able to address the previous limita-
tions. Sparse modeling aims at representing complex signals such
as natural image patches as linear combinations over a small dic-
tionary. These linear combinations are forced to be sparse, which
means that each patch will only need a few subset of the dictio-
nary atoms in its linear combination. Recent advances in sparse
modeling led, among others, to new denoising methods [EA06],
as well as texture synthesis [Pey09]. In geometry processing, the
sparse approach also led to new developments such as surface re-
construction [XZZ∗14] or surface compression [DCV14]. Sparse
representation can also be linked to local surface representation and
parameterization [ZDL∗14, JBPS11].

Our method relies on the same tools that have been designed
for signal processing and adapted to image and surface process-
ing. Such tools had never been used for terrain modeling before. In
this paper, we show that sparse models provide an efficient math-
ematical framework for solving complex problems such as inverse
procedural modeling and terrain synthesis and amplification.

3. Overview

Breaking with usual terrain modeling methods, we propose a ver-
satile framework that addresses several complex problems in a uni-
fied way. This framework is based on a novel concept, the Sparse
Construction Tree, a description of the terrain generation process
by sparsely combining a well-chosen small set of terrain dictionary
atoms (Figure 2). To the best of our knowledge, it is the first time
that the sparsity principle is used for terrain representation and syn-
thesis. Armed with this Sparse Construction Tree, we can represent
any kind of terrain in a compact way and handle large scale areas
at a high precision. Moreover, our model lends itself for a variety
of applications such as inverse procedural modeling, terrain ampli-
fication as well as multi-resolution terrain editing and control, in a
unified manner.

The remainder of this paper is organized as follows. Section 4
defines the Sparse Construction Tree model and presents its con-

struction. Section 5 presents several applications of this concept
to inverse procedural modeling, terrain synthesis and amplification
and compression. Finally Section 6 gives implementation details
and shows the results of our novel terrain modeling framework.

4. The Sparse Construction Tree

Our terrain model is defined by a construction tree which extends
the model presented in [GGP∗15] by introducing several important
new features. The leaves of the tree act like primitives, each gen-
erating a portion of the terrain containing similar landforms fea-
tures on a compact support. The internal nodes are operators that
combine and aggregate their sub-trees. Therefore a terrain is rep-
resented by a continuous functions f : Ω→ R and the elevation of
a point p depends on the evaluation of the hierarchical combina-
tion of every primitive in the tree. The tree representation allows to
adapt the evaluation of the elevation function f according to a con-
tinuous level of detail. Finally, the construction tree implements a
bounding volume hierarchy that allows for efficient processing of
elevation queries. We first give the formal definition of the Sparse
Construction Tree, then we explain how to build it from an input
terrain T .

4.1. Model definition

A Sparse Construction Tree is organized as a weighted Directed
Acyclic Graph (DAG) structure (Figure 3) whose edge weights rep-
resent coefficients in linear combination. The upper nodes of the
tree consist in blending operators, whereas the n leaves of the tree
are sparse primitives.

Primitives are entirely constructed from atoms at the bottom
layer which represent the N atoms of a dictionary denoted as D.
Each primitive has only a few children corresponding to a sparse
linear combination of the dictionary atoms. Such a primitive will
be called Sparse Primitive. Let Ω⊂R2 denote a compact subset of
R2. A terrain is formally defined as a global elevation function f
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Figure 3: The construction tree is composed of blending operators
that combine sparse primitives, which are in turn defined as sparse
linear combinations of only a few atoms selected in a dictionary.

defined on Ω with values in R:

f (p) =
n−1

∑
i=0

fi(p)αi(p)/
n−1

∑
i=0

αi(p) p ∈Ω

where the fi are the n sparse primitives with the corresponding
weighting functions αi.

Sparse primitives are characterized by their elevation function fi
and corresponding weighting function αi defined over a compact
support Ωi as a sparse linear combination of dictionary atom func-
tions. In our system, the ith sparse primitive is defined as a portion
of terrain defined over a disk-shaped support parametrized by its
center ci ∈ R2, the elevation at its center zi and a vector of co-
efficients denoted as Xi = {x j

i }, with j = 1, . . . ,n (Figure 3). The
coefficients are used to define the elevation function fi as a linear
combination of atomic elements, referred to as di:

fi(p) = zi +
N−1

∑
j=0

x j
i d j(p− ci)

The functions αi are defined as C1 continuous decreasing radial
functions over a disc-shaped compact support of constant radius R,
denoted as Ωi = B(ci,R). They limit the influence of the primitive
and control the way they are combined by operators in the con-
struction tree. We define the weight function as a composition of
the distance to the center ci with a smooth fall-off filter function g:

αi(p) = g(‖p− ci‖/R) g(r) =

{ (
1− r2

)3
if r < 1

0 otherwise

A Dictionary is a set of terrain atoms, i.e. portions of terrains that
define the functions di. Atoms are defined as core continuous ele-
vation functions that are linearly combined together to define the
elevation of a primitive. They can be either data-based or function-
based. In the first case, each atom represents a vectorized patch of
an image. Data-based atoms are implemented as discrete regular
grids of elevation values and their corresponding elevation func-
tions are computed using bi-cubic interpolation. Function-based
atoms they are expressed in a functional space as a linear com-
bination of basis functions from R2 to R (Figure 4). In our system
function-based atoms are defined as sums of ridged noise as de-
scribed in [EMP∗98]. In both cases, they can be expressed as a vec-

tor of coefficients of dimension K that represents respectively the
number of elevations samples, and the dimension of the function
space. Recall that N denotes the number of dictionary atoms rep-
resented as vectors. The dictionary can be represented as a K×N
matrix D where each column di represents the parameters charac-
terizing the atom.

In this work we will further assume that the vectors (resp. func-
tions) di are normalized with respect to the L2 norm of vectors
(resp. functions). Importantly enough, there is no constraint on the
orthogonality of the dictionary atoms. Moreover, the fact that our
model can work with either analytic or discretized atoms further
increases the pliability of our model and will be exploited in partic-
ular for solving the inverse procedural modeling problem.

A multi-resolution dictionary is a set of a two dictionaries de-
noted as (H,L), high- and low-resolution, with the exact same
number of atoms and such that there exists a one-to-one correspon-
dence between the atoms of both dictionaries. Thus, given a decom-
position over the low resolution dictionary L, the decomposition on
the high resolution dictionary H can be obtained simply by keeping
the decomposition coefficients X and replacing the atoms through
the one-to-one correspondence.

4.2. Sparse terrain construction

Given an input terrain denoted as T , the goal is to build the corre-
sponding sparse representation. This step is performed by extract-
ing patches from the terrain, followed by a dictionary generation
step. Recall that the elevation function f of the terrain is defined as
the weighted sum of sparse primitives fi. We need to decompose the
domain of the terrain into overlapping patches. The patches can be
placed at different positions over the terrain, as long as they cover
it completely. In our algorithm, we rely on disc-shaped primitives
distributed over a regular grid (Figure 5). The distribution guaran-
tees that the weighting function never vanishes onto the domain of
the terrain:

∀p ∈Ω,
n−1

∑
i=0

αi(p) =
n−1

∑
i=0

α(p− ci) 6= 0

Every primitive can use only a subset of the dictionary atoms:
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Figure 4: Examples of atoms used in our system: analytic atoms
are defined as a parametrized sum of ridge noise functions (here
K = 2×8= 16 coefficients), whereas data-based atoms are derived
from elevation data (K = 8×8 = 64 coefficients).
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Figure 5: In our model, overlapping disk-based primitives cover
the whole domain and blend into each other.

||Xi||0 represents the number of nonzero coefficients, also called
sparsity and later referred to as s. Although sparsity is traditionally
referred to as the `0 norm, it is important to remember that it is not
a norm, since it is not absolute homogeneous. By convention, we
normalize the energy of each atom of the dictionary and remove its
constant component.

Because only a few sparse primitives overlap for every point in
the support Ω, the sparse construction tree lends itself for efficient
acceleration schemes such as bounding volume hierarchies that al-
lows for efficient elevation queries.

From a given input terrain T , building a sparse construction tree
consists first in extracting terrain patches and describing each of
these patches using the dictionary and a given sparsity constraint s.

Patch extraction. We want to express a small part of the terrain at
a given position ci based on a weighting function αi whose compact
support is Ωi. We first extract the constant elevation component of
the local patch by computing its average value:

zi =
∫

Ωi

T (p)dxdy/
∫

Ωi

dxdy

We define the patch Ti as: Ti(p) = T (p+ ci)− zi which guarantees
that the patches are all defined in the same local frame. The patch
is centered so that the constant component is not encoded on the
dictionary.

4.3. Sparse decomposition

Given a dictionary D, representing a terrain involves extracting the
patches Ti and computing their decompositions on the dictionary.
More precisely, we want to express Ti as a linear combination of
s dictionary atoms, where s in the target sparsity constraint, while
minimizing the representation error. Since such least-squares prob-
lems with `0 penalty are known to be NP-hard, we must use an
approximate algorithm to solve this problem.

Orthogonal Matching Pursuit. In this paper, we rely on the Or-
thogonal Matching Pursuit (OMP) algorithm [MZ93]. In a nutshell,
the method consists in finding the atom that maximizes the projec-
tion, removing its projection and iterating until the target sparsity
is obtained. Formally, the algorithm processes each signal Ti inde-
pendently. For each Ti, a set of used atoms indices Γ is initialized
to ∅. At each iteration, the following steps are performed:

1. Select the coordinate k̂ leading to the smallest residual:

(k̂, β̂) = argmin
k∈Γ̄,β∈R|Γ|+1

‖Ti−DΓ∪{k}β‖
2
2.

2. Update the active set Γ and the solution Xi: Γ = Γ∪{k̂}; XΓ
i = β̂

and XΓ̄
i = 0, where XΓ

i (resp. XΓ̄
i ) are the coefficients of vector

Xi with indices in Γ (resp. Γ̄).

The iterations stop when Γ has reached the desired size, i.e.
|Γ| = s. The output of the OMP algorithm process is depicted in
Figure 6. The error decreases as the number of atoms increases
which allows the algorithm to better reconstruct the input signal.
At the end of this process, we have a decomposition of each signal
on the given dictionary with the specified sparsity, and the terrain
can be reconstructed from this decomposition.

|Γ| e=
 ||

 T
i −

 D
Γ 

β 
|| 

2 2 

5 10 15 20 25 30 

Target patch 
|Γ| = 2 

|Γ| = 4 
|Γ| = 8 

|Γ| = 32 

Figure 6: Overview of the Orthogonal Matching Pursuit algo-
rithm: the error e decreases as the number of atoms |Γ| increases.

Exact reconstruction. By choosing a sparsity constraint of s = 1
and a dictionary extracted from the initial terrain, the reconstruc-
tion is exact. Assuming that we have n = N, i.e. that the number of
atoms in the dictionary is equal to the number of primitives used to
describe the terrain, and that the atoms are exactly the terrain prim-
itives, i.e. di = Ti/||Ti||2, the decomposition matches the terrain. In
fact every primitive has an exact decomposition on a single dictio-
nary atom (itself) and the reconstruction is thus trivially exact.

4.4. Dictionary learning

The previous decomposition does not account for the possible re-
dundancy in the initial terrain since N = n. To optimize the dictio-
nary with respect to a given terrain, we consider N < n and s < N.
In this setting, the dictionary contains a reduced number of atoms
and each patch of the terrain is described as a linear combination of
a reduced number of atoms.

For the sake of readability, we will identify the signals and dic-
tionary atoms to their vector of coordinates: di =(dik) and fi =( fik)
with i = 1, . . . ,N,k = 1, . . . ,K. The dictionary learning problem is
formally defined as a minimization problem:

min
D∈RK,N,X∈RN,n

‖F−D ·X‖2
F

such that ∀i = 1, . . . ,n ,‖Xi‖0 ≤ s
(1)

F is the K× n matrix whose columns are the primitives of the ter-
rain to represent, X is the matrix of the decomposition coefficients
and Xi is the i th column of X, i.e. the coefficients of the decompo-
sition of fi on D. The constraint ensures that each fi uses at most s
dictionary atoms for its decomposition.

Several algorithms exist for solving approximately problem 1.
Among those, we rely on the K-SVD algorithm [AEB06]. Starting

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



Eric Guérin & Julie Digne & Eric Galin & Adrien Peytavie / Sparse representation of terrains for procedural modeling

with an initial dictionary composed of randomly selected primi-
tives in the set of n primitives, the algorithm alternates between the
following two steps until the error converges or a given number of
iteration has been reached.

1. Given the dictionary D, find the best sparse representation X
2. Given the sparse representation X find the best dictionary D

while ensuring that the maximum sparsity constraint is met.

The first step can be solved using the OMP algorithm described
in section 4.3. The second step aims at finding a better dictionary
while ensuring that each patch is decomposed on the same subset
of dictionary atoms. To do so, D is updated atom by atom start-
ing from the dictionary obtained at the previous iteration. Given an
atom di ∈ D, all signals using di in their current decomposition are
selected. Removing di from D yields a restricted error accounting
for the error made by decomposing the selected signals on the mod-
ified dictionary. The substitute atom is then obtained by a Singular
Value Decomposition of this restricted error. This update ensures
that a good substitute atom is selected while maintaining the target
sparsity (see [AEB06] for more details).

In our approach, we propose a slightly different setting where we
force the atoms of the dictionary to be elements of the set of terrain
primitives. Therefore, the constrained dictionary learning problem
rewrites as:

min
D∈RK,N,X∈RN,n

‖F−D ·X‖2
F

such that ∀i ∈ {1, . . . ,n},‖Xi‖0 ≤ s

∀ j ∈ {1, . . . ,N},∃l ∈ {1, . . . ,n},d j = fl

(2)

To solve this modified problem, we use a similar two-step algo-
rithm: the first step remains unchanged whereas the search for a
replacement atom in the second step differs. Instead of deriving the
atom using singular value decomposition, we exhaustively look for
a substitute atom in the set of available primitives. This process is
more computationally demanding than Problem 1: instead of per-
forming a singular value decomposition to look for the replacement
atom, we must test each available atom. Moreover this approach
does not benefit from linear algebra closed form computations and
is more computationally demanding. However this strategy is the
best way to ensure the one-to-one mapping which is crucial in some
applications such as realistic data-based amplification since the re-
sulting dictionary can be constituted of real terrain parts. Therefore
both KSVD dictionary learning and constrained dictionary learning
are used in our framework depending on the target application.

5. Applications

Our Sparse Construction Tree can be used in several applications.
In this section, we present four applications: terrain compact rep-
resentation, inverse procedural modeling, terrain synthesis and am-
plification and finally an efficient framework for terrain authoring.

5.1. Compact terrain representation

One of the key features of our model is its ability to produce a
compact representation of any given input terrain T . We can use
the dictionary learning optimization (Section 4.4) to represent T

efficiently by learning the dictionary and the set of sparse coeffi-
cients. Thus, instead of storing a complete height map, we store the
set of patch centers ci, the sparse coefficients X and the small dic-
tionary D. In our implementation, the patches centers ci are located
on a regular grid which enables us to avoid to store their positions
explicitly. Moreover, since the coefficient matrix is sparse, it can
be encoded efficiently by keeping track of the nonzero coefficients
positions, thus storing only a few couples ( j,x j

i ).

Let w× h the size of the elevation data map T . Assuming the
grid step is half the patch radius, i.e. the patches overlap, the total
number of values to store the map completely can be defined as
t0 = w×h = nK/4 where n denote of the number of patches and K
the size of each patch.

The representation of the same terrain using a dictionary D of
size N with a sparsity s can be optimized by storing the dictionary
D and the coefficients X. The dictionary is represented by a N×K
dense matrix, thus requiring a storage of N ×K values. The co-
efficient matrix X is a n×N sparse matrix, thus by encoding it in
compressed row storage format, we only need to store n(2s+1)+1
values. In the general case, the coordinates of the patches centers
should be stored. Since we rely on a distribution over a regular grid,
only the height zi should be stored to reconstruct the terrain. Thus,
the total number of values is:

t(s,N) = KN +n(2s+2)+1

Recall that the sparsity s (which is the number of nonzero coeffi-
cients x j

i ) is much smaller than the number of dictionary atoms N
and the patch size K, which are in turn far smaller than the number
of terrain patches n. Therefore we have s� N� n, and N = O(K)
which leads to a compact representation:

t(s,N) = KN +n(2s+2)+1� nK/4

In the remainder of this paper ρ= t(s,N)/t0 will refer to the storage
ratio between our sparse model and the original input terrain.

Terrain Size t0 Sparsity s Ratio ρ PSNR

Alpes
(512×512)

0.26M
1 14.9 % 23.7
2 20.0% 26.4
8 50.9% 31.1

Italy
(3600×3600)

12.96M
1 4.9% 31.7
2 9.7% 34.2
8 38.0% 39.2

Table 1: Initial storage size t0, sparsity s, storage reduction ratio ρ

and PSNR (in dB) of two terrains for different sparsity values. The
computations were made with a dictionary of 128 atoms.

Control parameters. In this application, we focus on the quality
of the reconstructed terrain and want to minimize the error. This
can be achieved by using relatively small values for the patch size
K ∼ 102.

Table 1 reports the storage ratio ρ and the rate-distortion results
for terrains encoded on dictionaries with various sizes and spar-
sity. Our method can represent large terrains at a small memory
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cost with good PSNR even for very small sparsity values. Results
demonstrate that large terrains of hundreds of thousands square
kilometers at a resolution of a few meters can be represented effi-
ciently by our Sparse Construction Tree in a few megabytes instead
of gigabytes needed for the entire elevation map. The Italy terrain
compressed with JPEG2000 using a compression ratio ρ similar to
the one obtained with a sparsity of 1 gives a PSNR of 20dB. Our
approach compares favorably with a PSNR of 31.7dB.

5.2. Inverse procedural modeling

Our method proposes a solution to the inverse procedural mod-
eling of terrain problem. Given an input terrain represented by a
discrete elevation map T , we want to build a corresponding pro-
cedural generative model approximating it. We propose to use our
Sparse Construction Tree construction algorithm operating with a
function-based dictionary.
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Figure 7: Pipeline for the inverse procedural modeling of terrains:
given an input elevation map and an analytic dictionary D̃ we cre-
ate a discrete representation of the dictionary D, before performing
the OMP over D and applying reconstruction process using D̃.

Let us consider a terrain represented by its matrix of discrete
patches F as input and a set of functions given by sums of ridged
noise functions as presented in Section 4. Sampling this set of func-
tions leads to a (potentially large) analytical dictionary D̃. Through
the discretization of dictionary D̃, we can define a discrete dictio-
nary D. Both dictionaries are by construction in one-to-one corre-
spondence (Figure. 7), a property that we want to exploit here.

Perlin Noise Ridged 

Figure 8: Reconstruction of a terrain with a sparsity of 1 from
an analytical dictionary D̃ extracted from a Perlin noise (left) and
a ridged multi-fractal noise (right). The ridged noise better pre-
serves the pikes and sharp ridges and has a smaller error (PSNR is
20.0 dB for the Perlin noise, 24.9 dB for the Ridged noise).

The input heightfield is then decomposed over the discrete dic-
tionary D using Orthogonal Matching Pursuit which gives a sparse
matrix of coefficients X. Finally using the correspondence between
the discrete atoms and the analytical atoms we can reconstruct an
analytical terrain F̃ by computing:

F̃ = D̃ ·X

A limitation of this process is that D̃ (and thus D) can be huge.
To overcome this limitation we can use the constrained dictionary
learning problem 2 to learn a dictionary while ensuring that the
atoms are exact atoms of the noise. Hence we are able to revert any
atom index to a procedural noise function.

Functions-based primitives. We compared the effectiveness of
our inverse procedural algorithm by using different types of func-
tions that are often used for generating synthetic terrains: Perlin
noise, Ridged and Ridged multi-fractal noise. Experiments demon-
strate that mountainous terrains are better approximated by ridged
noise than by standard noise and gives better PSNR values (Fig-
ure 8). This result is coherent as ridged noise allows the generation
of crests and ridges that appear in natural terrains.

Control parameters Our goal is to preserve the shape of the input
terrain approximation, therefore we used small patch sizes K≈ 102.
Since we rely on function-based atoms, we can sample them at any
resolution. Depending on the type of the functions and the terrain
to approximate, the user can adapt the value of the patch radius R
so that it should capture the details of the input terrain. We do not
constrain the number of atoms N because only the parameters of
the functions-based atoms need to be stored.

5.3. Terrain synthesis and amplification

Given an input coarse terrain T and a high resolution exemplar E ,
terrain synthesis and amplification aim at producing a new detailed
high resolution terrain that preserves the global aspect of the coarse
map. The resolution of the initial terrain will be increased by adding
details from the exemplar.
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Figure 9: Overview of the amplification/synthesis process: start-
ing from an input low resolution terrain or user-painted sketch, we
use the multi-resolution dictionary in the OMP and reconstruction
process to generate a new high resolution terrain.

If T is a coarse user-painted sketch, we will call this process
Terrain Synthesis whereas if the input is a low-resolution digital el-
evation map obtained from real-world data, we will call this process
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Terrain Type of dictionary Initial size Final size Ratio ρ N Learning time Synthesis time

Synthesis
Complete

64×128 4096×8192
9.6 % 60000 0.0 25.5

Learned 0.48 % 64 5.2 10.2

Amplification
Complete

32×32 8192×8192
19 % 120000 0.0 84.0

Learned 0.23 % 256 30.0 27.0

Table 2: Statistics for both synthesis and amplification on parts of the terrains shown in Figure 12 and Figure 16. Storage size and timings
(in seconds) are reported for different sizes of atoms. Sparsity was always set so as to 1 to provide a good reconstruction. Comparisons are
made between two cases: using a complete dictionary or a dictionary learned from real terrain elevation maps.

Terrain Amplification. In that case, the exemplar E and the terrain
T should be consistent, i.e. the data should represent similar ter-
rains. In general terrain synthesis targets authoring from a coarse
sketch (Figure 1). In contrast, terrain amplification is useful for vi-
sualizing real terrains at a higher level of detail than the original
sampling.
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Figure 10: Multi-resolution dictionary construction.

The algorithm (Figure 9) can be decomposed in three steps:

1. A multi-resolution dictionary (H,L) is built from the high reso-
lution exemplar E .

2. The input terrain T is decomposed over the low-resolution dic-
tionary L yielding the sparse matrix X.

3. A high resolution Sparse Construction Tree S is generated by
combining the same matrix of coefficients X and the high reso-
lution dictionary H.

The first step builds a high resolution dictionary from the ex-
emplar. Then, every atom in this dictionary is down-sampled to
create a low-resolution dictionary such that Hi matches Li for all
i ∈ 1, . . . ,n (Figure 10). The down-sampling process is crucial to
guarantee that the atoms of L are smooth, i.e. contain less features
and therefore form an appropriate basis for decomposing the low-
resolution terrain T over L, which is performed as the second step
of the algorithm. Finally, we substitute the low-resolution atoms
by the corresponding high-resolution atoms in the reconstruction
yielding the final high resolution Sparse Construction Tree. Results
(Figure 1) show that our method can be used to automatically trans-
fer the details of the exemplar to the synthesized terrain.

Table 2 reports the memory cost ratio for storing a detailed height
map compared to storing a low-resolution terrain and a high resolu-
tion exemplar. We also give the computation time for synthesizing
or amplifying the terrain using either a complete dictionary (i.e. all
the patches of the exemplar) or a dictionary learned using the opti-
mization problem 2. Timings show that the synthesized terrain can

be computed quite efficiently since the sparsity is s = 1, and even
faster with a learned dictionary. Instead of storing the complete dic-
tionary, it is more efficient to store only the exemplar which by
definition contains all possible patches, which results in a reduced
memory footprint, even in the case of a complete dictionary.

Exemplar Radius R=8 

Radius R=32 Radius R=16 

Figure 11: Influence of radius R of the weighting function αi over
the synthesized terrain. As the radius increases, the influence of
the low resolution input terrain decreases while the impact of the
exemplar increases.

Control parameters In terrain synthesis and amplification appli-
cations, it is less crucial to capture the details of the input terrain or
sketch exactly. Thus, we use large values for the patch size K∼ 103.
The number of atoms in the dictionary can be set to large values
N ∼ 104 to increase amplification and synthesis possibilities.

5.4. Authoring and Control

The Sparse Construction Tree provides an efficient, consistent and
unified framework for authoring complex and large terrains with a
high level of detail. Its hierarchical architecture combining land-
form primitives with different operators allows to define entire
regions in space as different sparse construction sub-tree models
which can be combined together or with other procedurally defined
primitives such as rivers, mountains or roads. Consistency comes
from the fact that Sparse Primitives define a continuous elevation
function f (p) over their domain and can be evaluated naturally
when recursively traversing the tree structure.
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1 2 3 

Exemplar 

Sketch 

Figure 12: The canyon was created by using a coarse user-painted map and incrementally synthesizing details 3 times. The river at the
bottom of the canyon was added by sketching its trajectory and adding procedural river primitives in the construction tree.

The radius of the atoms R provides the user with another intu-
itive means to control the shape of terrain produced by the Sparse
Construction Tree. For small values of R, the shape of input terrain
T is almost preserved. As the radius increases, the influence of T
decreases while the impact of the exemplar increases (Figure 11).
The size of the patch K represents the number of values and is de-
fined as K = d(4R/δ)2e where δ denotes the discretization of the
patch. δ is provided for data-based terrains and chosen by the user
for continuous function-based terrains.

Carve 

Sparse Tree 
River banks Riverbed 

Blend 

Figure 13: Example of terrain authoring: the terrain was created
using procedural primitives to smooth the riverbed and then carve
the river at the bottom of the canyon.

Finally, scene editing can be performed efficiently by adding new
nodes in the tree. Figure 13 shows how a river was created at the
bottom of a canyon by simply combining the initial terrain with a
carving operator and river primitives. The Sparse Construction Tree
represents a sub-tree with 3 levels and modifications are performed
by performing operations on top of this sub-tree. Authoring is sim-
ple and provides a direct local control that comes in addition to the
global control offered by synthesis and amplification techniques.

6. Results and discussion

We implemented our framework in C++ and MatLab. Experiments
were performed on a desktop computer equipped with R© Intel Core
i7, clocked at 3 GHz with 16GB of RAM. The output of our sys-
tem was directly streamed into E-on Vue xStream R© to produce the
images shown throughout the paper (Figures 1, 12 and 16).

Evaluation. The Sparse Construction Tree model can generate
and store large terrains with a high level of detail that would oth-
erwise be impossible to store in memory. A key feature of our ap-
proach is its versatility: our model can be used to represent any kind

of terrain in an extremely compact form. Moreover, it allows to re-
produce different geomorphological styles and landform features
in a unified and consistent framework.

Noise N 

T1 + T2 

T1  

T2 

Data T1 Data T2 Sketch 

N + T2 

Figure 14: Atoms from multiple sources can be combined to gener-
ate terrains composed of different land-form features and patterns.

Control. A major contribution of our approach is its simplicity.
More importantly, the multi-resolution structure embedded in our
Sparse Construction Tree provides the user with a control over syn-
thesized terrain at different scales. It allows him to select styles
among a set of multi-resolution dictionaries either derived from ex-
isting real terrain data or computed from procedurally defined prim-
itives. This control is further augmented by the ability to add some
landform features such as rivers (Figure 12) by simply adding new
primitives and nodes in the tree. Building a dictionary from several
terrains or by mixing analytical functions with real terrain data is
also possible. Figure 14 shows different examples combining atoms
from different sources. The algorithm automatically chooses which
data-based or analytical atoms best fit the input terrain.

Performance. Our method generates a vector-based representa-
tion of large terrains (tens of thousands of square kilometers) at
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a very high resolution (one meter) in a few seconds. A crucial
aspect of our Sparse Construction Tree model is its native multi-
resolution support. We can visualize the terrain at multiple scales,
and we can use view-dependent clipping algorithms or resource-
dependent strategies. The dictionary-based description of the gen-
erated terrain is extremely compact and allows the storage of large
terrains as shown in Table 1. Most of the operations performed in
our algorithms rely on linear algebra and can benefit from standard
parallelization techniques.

Amplification Fractal noise 

Figure 15: Standard terrain synthesis techniques such as procedu-
ral noise applied to amplification (left) give unstructured results,
whereas our sparse amplification method (right) generates coher-
ent land-form features and patterns that conform to real terrain.

Comparison to other techniques. Procedural amplification tech-
niques often consists in adding a multi-fractal noise whose ampli-
tude depends on the altitude and the slope at every point of the input
terrain. Figure 15 shows an input terrain (left) that has been ampli-
fied using such a method (center) and our sparse amplification tech-
nique (right). Our method compares favorably to noise-based pro-
cedural functions as it generates land-form features learned from
real-data and produces details such as ridges that are coherent with
the global shape of the terrain.

Our method extends the construction tree presented in [GGP∗15]
where landscapes were created by hand by carefully setting and
tuning the parameters of less than one hundred primitives. In con-
trast, our inverse procedural approach automatically generates large
terrains with tens of thousands of primitives by learning from ex-
emplars. Our approach is complementary to the river generation
technique presented in [GGG∗13] where landform primitives are
defined as the result of a procedural growth process. It can be used
as a post processing step after the large scale river network gener-
ation. Our approach has the advantage that the selection of prim-
itives is automatically performed by learning the dictionary from
real examples. Our approach compares favorably in terms of mem-
ory footprint: we can build complex terrains as a combination of
a few elements taken in small dictionary, whereas the procedural
river generation technique relies on the definition of tens of thou-
sands primitive with many specific parameters.

Limitations. The main limitation of our approach is that it cannot
guarantee that the generated terrains will be geomorphologically
consistent. However, it is possible to partially overcome this prob-
lem by using hydrology consistent coarse elevation input terrains.
While the amplification and the terrain synthesis processes do not
guarantee that coherence will be preserved at smaller scales, we
observed that the produced terrains were consistent as long as the

radius R of the weighting function αi was small enough with re-
spect to the size of the landform features of the input terrain.

7. Conclusion

We have introduced a general framework for representing and gen-
erating terrains. Our model combines a hierarchical primitive-based
tree structure with the sparse representation theory into a coherent
and unified framework. It can represent large terrains at a very high
resolution in an compact fashion. The final geometric model is a
hierarchical sparse combination of atoms in a dictionary and can
be augmented with a variety of primitives for representing different
specific landform features at different scales including hills, moun-
tains, valleys, and water-courses with highly detailed geometry at
varying scales. Moreover, it can serve as a basis for inverse proce-
dural modeling, terrain synthesis and amplification.

There are many possible extensions of this work. At the heart of
our method lies a dictionary-based sparse representation: we could
provide the user with enhanced control by allowing to specify and
blend different terrain styles in the synthesis and amplification pro-
cesses. Improving the speed of the method allows interactive edit-
ing: embedding our terrain representation in an interactive and intu-
itive editor to increase controlability would be worth investigating.
Another possible extension would be to include the generation of
vegetation in the same process. We could learn from exemplars and
describe the distribution of trees and vegetation on the terrain by
using a similar dictionary-based sparse model. Finally, our method
is currently limited to elevation functions and cannot handle ter-
rains with cliffs or overhangs. Generalizing our approach to model
volumetric terrains with different materials is a promising avenue
of research we are currently investigating.
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