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1 Introduction

1.1 Fractal Inverse Problem

The fractal inverse problem is an important research area with a great number
of potential application fields. It consists in finding a fractal model or code that
generates a given object. This concept has been introduced by Barnsley with
the well known collage theorem [2]. When the considered object is an image,
we often speak about fractal image compression. A method has been proposed
by Jacquin to solve this kind of inverse problem [13].

This problem has been studied by much authors. Generally speaking, in-
verse methods can be classified in two types:

• Direct methods: model characteristics are found directly. In the fractal
case, very few direct methods have been proposed. In general, we have to
deal with synthetic data entries. Some authors use wavelet decomposition
to find frequency structures and extract IFS coefficients [3, 16]. A method
using complex moment has been experienced to work for fractal images [1].

• Indirect methods: model characteristics are found indirectly. In general an
optimization algorithm is used. These methods allows to deal with more
complex models and less synthetic data entries. Inverse problem for mixed
IFS has been performed with genetic methods [14].

Optimization methods used in indirect methods are generally stochastic, be-
cause it’s not possible to calculate any derivative with respect to the model
parameters.

1.2 Fractal approximation

In [17], Vrscay and Saupe introduced a derivative property in the numerical
functions involved in fractal image coding with respect to their affine IFS
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parameters. This allows the use of a gradient descent method to solve the
inverse problem and gives better results than the standard collage theorem.

In [8, 9], we developed a method based on this property for fractal ap-
proximation of curves and surfaces. In [10, 11], we have extended this method
to surfaces. In [12, 6], we introduced a projected IFS tree model to obtain a
better approximation of natural surfaces and greyscale images.

In this paper we develop a differential approach of the fractal approxima-
tion problem based on formal multiresolution.

1.3 Formal multiresolution

In [7], we present an analytical approach of the approximation problem based
on address functions. Barnsley introduces these functions to define a formal
parameterization of attractors [2]. Address functions are functions that takes
address arguments rather than numerical ones. They map from infinite words
Σω to a modelisation space X = Rm:

φ : Σω → X
ρ 7→ φ(ρ)

Address functions give a natural multiresolution formulation [7]: by selecting
infinite words of Σ that have the form αkω, we define a finite family of points
that can be viewed as the tabulation of φ at a given level n:

(φ(αkω))α∈Σn,k∈Ω

where Ω is a subset of Σ such that φ(kω) represents the ”boundaries” of the
figure.

The modelisation space X = Rm is Hilbertian, we define a new Hilbert
space of address functions based on the following dot product[7]:

< φ, φ′ >= lim
n→∞

1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

< φ(αkω), φ′(αkω) >

with M = |Ω| and N = |Σ|. This constitutes a general frame of geometric
fractal modeling and approximation.

2 IFS approximation

One convenient way to provide address functions is the use of IFS (Iterated
Function Systems). Furthermore, we will see that these functions verify a
decreasing condition and then belong to L2(Σω,X ).
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2.1 IFS model

Introduced by Barnsley[2] in 1988, the IFS (Iterated Function Systems)
model generates a geometrical shape or an image [13] with an iterative process.
An IFS-based modeling system is defined by a triple (X , d,S) where [18, 19]:

• (X , d) is a complete metric space, X is called iteration space;
• S is a semigroup acting on points of X such that: λ ∈ X 7→ Tλ ∈ X where

T is a contractive operator, S is called iteration semigroup.

An IFS T (Iterative Function System) is a finite subset of S: T = {T0, ..., TN−1}
with operators Ti ∈ S. We note H(X ) the set of non-empty compacts of X .
H(X ) is a complete metric space with the Hausdorff distance. The associ-
ated Hutchinson operator is:

K ∈ H(X ) 7→ TK = T0K ∪ ... ∪ TN−1K .

This operator is contractive in the complete metric space H(X ) and admits a
fixed point, called attractor [2]:

A(T) = lim
n→∞

TnK with K ∈ H(X ) .

By introducing a finite set Σ, the IFS can be indexed T = (Ti)i∈Σ and the
attractor A(T) has an address function [2, 4] defined on Σω, the set of infinite
words of Σ:

ρ ∈ Σω 7→ φ(ρ) = lim
n→∞

Tρ1 ...Tρn
λ ∈ X with λ ∈ X . (1)

2.2 Approximation formulation

Corollary 1. Every address function associated with an IFS is in L2(Σω,X ).

Proof. See [7].

In the Hilbert space of address functions, optimization problem can be
expressed with the following formulation. Let ϕ be an address function, find
T that minimizes the error function:

T ∈ SΣ → g(T) = ‖Ψ(T)− ϕ‖22 ∈ R+

with Ψ(T) the address function associated with T.
To apply standard non-linear fitting methods, the function g needs to have

good properties. This function is a quadratic form of Ψ . In the following, we
will expose these properties.
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2.3 Affine IFS

We now deal with affine IFS, that means IFS defined with affine contractions
in X = Rm. In this case, the contractive semigroup can be characterized. An
affine operator is defined by a couple (u, L) with u ∈ Rm and L a m × m
matrix:

Tp = u+ Lp

The set of affine operators acting on Rm is a complete metric space with the
following distance:

d(T, T ′) = ‖u− u′‖+ ‖L− L′‖
where

‖L‖ = max
‖u‖=1

‖Lu‖ .

Proposition 1. The affine contractive semigroup is an open set S = Rm×B1

where B1 = {L/‖L‖ < 1}.

Proof. One can easily verify that T ∈ S implies its contraction:

∃r ∈ [0, 1[, ∀p, q ∈ Rm, d(Tp, Tq) ≤ rd(p, q)
⇔ ∃r ∈ [0, 1[, ∀u ∈ Rm, ‖Lu‖ ≤ r‖u‖
⇔ ∃r ∈ [0, 1[, ∀u ∈ Rm, ‖u‖ = 1, ‖Lu‖ ≤ r
⇔ max

‖u‖=1
‖Lu‖ < 1

2.4 Analyticity

In this section, we precise property of the function:

ψ : T ∈ SΣ → ψ(T) ∈ C0(Σω,X )

Definition 1. Let SΣ be the set of indexed IFS T = (Ti)i∈Σ. Let ψρ be the
following function, where ρ ∈ Σω is fixed:

ψρ : SΣ → X
T 7→ ψρ(T) = limn→∞ Tρ1 . . . Tρnp

As Ti is affine, we may decompose it in a translation vector ui and a linear
part Li:

Tip = ui + Lip

In this case, the product TiTj gives ui + Liuj as translation vector and
LiLj as linear part. Then, we expand the matrix product:

Tρ1 . . . Tρn
p = uρ1

+Lρ1uρ2

+Lρ1Lρ2uρ3

+ . . .
+Lρ1 . . . Lρn−1uρn

+Lρ1 . . . Lρnp

(2)
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When n tends to infinity, p has no influence on this formula:

lim
n→∞

(Lρ1 . . . Lρnp) = 0

because Li are linear contractions. Then ψρ(T) can be written as a summation:

ψρ(T) = lim
n→∞

n∑
k=1

Lρ1 . . . Lρk−1uρk

Proposition 2. For every ρ in Σω, the function ψρ is analytical on SΣ.

Proof. See [7].

Proposition 3. The function:

ψ : SΣ → L2(Σω,X )

is analytical.

Proof. The function ψ is a family of functions:

ψ(T) = (ψρ(T))ρ∈Σω .

The proof of analyticity of ψρ based on differentials is valid with ψ when
introducing ψ as a function of both T and ρ:

dkψ(T)(ρ) = dkψρ(T).

2.5 Error Estimation

In practical, this error function is approximated on samples, that means on a
finite number of values:

g(T) ≈ gn(T) =
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

‖ψαkω (T)− ϕ(αkω)‖2

We toggle from a functional distance to a tabulation distance.
To perform finite exact computations, we take advantage of the fact that

each transformation has a fixed point:

Tkck = ck

We evaluate the function at a deep n, with |α| = n. Then, the function has
the form:

ψαkω (T) = Tα1 . . . Tαnφ(kω),
= Tα1 . . . Tαnck.

In this case, only polynomial computations have to be performed, gn is a
polynomial function:

gn(T) =
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

‖Tα1 . . . Tαn
ck − ϕ(αkω)‖2
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2.6 Resolution

We proved the analyticity of affine IFS functions with respect to their matrix
coefficients. We can now use a differential method to solve our problem. The
literal derivative is more complex to evaluate than a numerical approxima-
tion with a perturbation. The optimization algorithm used is Levenberg-
Marquardt, an improved gradient method [15].

3 Function Approximation

This section will show a very simple example of numerical optimization using
affine IFS defined in R.

3.1 Model overview

Let Σ = {0, . . . , N − 1}. Transformations operate on R:

Ti : R → R
x 7→ aix+ bi

Each transformation is defined by two scalars. In this case, the address func-
tion is:

φ(ρ) = bρ1 + aρ1bρ2 + aρ1aρ2bρ3 + . . .

A simple series converge to this value:

φ(ρ) = lim
n→∞

Bn

where {
B1 = bρ1

Bi+1 = Bi +Aibρi+1 for i ≥ 1

and {
A1 = aρ1

Ai+1 = Aiaρi+1 for i ≥ 1

Remark 1. This kind of IFS is not Fractal Interpolation Functions since they
are defined in R (FIF are defined in R2).

3.2 Approximation formulation

When dealing with approximation, a common data type is an ordered list
of points (xi, yi)i=1,...,p. The value of xi will be used to extract an address
associated to the sample, whereas the value of yi will be the target value of
the address function. Let α(i) = α

(i)
1 . . . α

(i)
n be the N -adic expansion of x̄i

with xi = x̄i + εi and εi < 1
Nn+1 :
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x̄i =
n∑

j=1

1
N j

α
(i)
j

Then, the approximation problem with affine IFS in R can be formulated.
Given data entries (xi, yi)i=1,...,p where xi+1 > xi, and a number of transfor-
mations N , find the IFS that minimizes the error:

Topt = argmin
T∈SΣ

gn(T)

= argmin
T∈SΣ

1
p

∑
i=1...p

(
ψ

α
(i)
1 ...α

(i)
n 0ω (T)− yi

)2

3.3 Results

We have tested our approximation method on several data sets, ranging from
smooth curves to random data. As expected, the approximation quality de-
pends on the number of transformations N taken.

Figure 1 shows the approximation of a cubic curve y = 6(x− 1
2 )3 with the

method described previously. In these graphs, x-coordinates represents the ad-
dress values and y-coordinates the values of the address function. The original
curve contains 1000 points. When approximating with only 2 transformations,
the fitting is not good. When the number of transformations becomes larger,
the quality of approximation is better.

Figure 2 shows the approximation of a random function that contains 100
points. With only 5 transformations, the result is not so bad. Increasing the
number of transformations leads to a better approximation. The upper limit
of N is when we reach the number of data points: N = p. In this case, the
exact reconstruction is possible. The method used to solve the approximation
problem is not global. It means that the result can be a local minimum.

4 Modelisation of rough shapes

In order to propose an efficient solution to the problem of rough surface ap-
proximation, we have used a parametric model based on a fractal model. In
[18, 20], we have proposed a projected IFS model for fractal curve and sur-
faces. This model combines a fractal classical approach – Iterative Function
Systems – and CAGD classical approach – free form based on control points.
These points allow an easy and flexible control of the fractal shape generated
by the IFS model and provide a high quality fitting.

4.1 Projected IFS model

To allow more flexible modeling, we introduced and used a projected IFS
model [18, 19]. The way to obtain projected IFS attractors is to use a barycen-
tric metric space X = BJ :
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Fig. 1. Approximation of a cubic polynomial curve (1000 points)
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(b) With N = 40

Fig. 2. Approximation of a random function (100 points)

BJ = {(λj)j∈J |
∑
j∈J

λj = 1}

Then, the iteration semigroup is constituted of matrices with barycentric
columns:

SJ = {T |
∑
j∈J

Tij = 1, ∀i ∈ J}

This choice leads to the generalization of IFS attractors named projected IFS
attractors:

PA(T) = {Pλ |λ ∈ A(T)}
where P is a polygon or grid of control points P = (pj)j∈J and Pλ =

∑
j∈J λjpj .

The associated address function is:
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ϕ(ρ) = Pφ(ρ) =
∑
i∈J

piφi(ρ)

As shown in figure 3, a two-dimensional addressing can be easily calculated
by a Péano code mapping.
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Fig. 3. Péano code with Σ = {0, 1, 2, 3}

In figure 4, an example of bivariate function generated by projected IFS
is shown. This function defines a surface, projected through a 4 × 4 control
points grid. Here, control points are scalars pi = zi ∈ R:

ϕ : Σω → R
ρ 7→ ϕ(ρ) =

∑
i∈J ziφi(ρ)

The construction of the projected attractor is determinist: it only requires
recursive subdivisions as shown in figure 4.

4.2 Projected IFS tree model

Natural objects are composed of heterogeneous parts. To cope with this prob-
lem, we introduced another generalization: projected IFS trees model [12, 6].

Let Γ be a cut of the tree (Σ∞,≤), that means a finite part of Σ∗ such
that each word ρ ∈ Σω admits a unique decomposition on Γ ×Σω:

ρ = γτ with γ ∈ Γ and τ ∈ Σω.

If we denote m = maxγ∈Γ |γ|, then we have the following decomposition:

∀n ≥ m Σn =
⋃

γ∈Γ

γΣn−|γ| and Σω =
⋃

γ∈Γ

γΣω

Drawn from the families:

• of address functions φγ ∈ C0(Σω,Xγ),
• of affine functions P γ : Xγ → X ,

we use the following address function to modelize surfaces:

φ(γτ) = P γφγ(τ)

and:
∀γ ∈ Γ, ∀i ∈ Σ, φγ(iτ) = T γ

i φ
γ(τ) .
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(a) Control grid (b) Step 1

(c) Step 2 (d) Step 4

Fig. 4. Example of a projected IFS surface construction

Proposition 4. Every address function φγ built on address functions associ-
ated with IFS Tγ is in L2(Σω,X ) and φ ∈ L2(Σω,X ).

Proof. The functions φγ are associated with IFS, that means that they verify
the decreasing condition, and φ too (see [7]).

An example of heterogeneous surface is given in figure 5. Each patch of the
surface can have different properties. In this example, we have mixed rough
and smooth modeling together.
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(a) Modeling quadtree (b) Associated surface

Fig. 5. Surface modeling with projected IFS quadtree

4.3 Approximation formulation

We want to approximate data entries arranged in grids (zi,j)i,j∈0...2n with a
projected IFS tree (P,T) = (P γ ,Tγ)γ∈Γ . Given a tree cut Γ , the model is
described by two families of parameters: (P γ)γ∈Γ and (Tγ)γ∈Γ . The address
is split into two parts: the leaf γ ∈ Γ , address of the projected IFS model,
and τ ∈ Σω address of the point in the projected IFS model:

ψΓ
γτ (P,T) = P γψτ (Tγ)

ψΓ is analytical with respect to T = (Tγ)γ∈Γ and affine with respect to
P = (P γ)γ∈Γ .

The approximation algorithm has to perform simultaneously two tasks:
find the tree cut Γ and the associated projected IFS models (P γ ,Tγ). To sat-
isfy this constraint, we have constructed another norm combining a maximum
through the tree cut with a quadratic norm:

‖ψΓ (P,T)− ϕ‖ = max
γ∈Γ

‖P γψ(Tγ)− ϕγ‖

with ϕγ(τ) = ϕ(γτ).
The algorithm is then implemented using a threshold ε that indicates the

maximum value allowed in a leaf. If this constraint is not satisfied, the leaf is
split into four, recursively (see figure 6). Then, the whole norm is smaller or
equal to the threshold:

‖ψΓ (P,T)− ϕ‖ ≤ ε ⇔ ∀γ ∈ Γ, ‖P γψ(Tγ)− ϕγ‖ ≤ ε
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(P γ ,Tγ)

(a) Before refinement

(P γ0,Tγ0)

(P γ1,Tγ1)

(P γ2,Tγ2)

(P γ3,Tγ3)

(b) After refinement

Fig. 6. Refinement of a projected IFS tree

The algorithm is recursive and uses only locally the analyticity property
of the error function. The goal is to find the minimal cut that satisfies the
constraint:

Γε = min
{
Γ/‖ψΓ (P,T)− ϕ‖ ≤ ε

}
We construct an address function tabulation associated to the data entries:

ϕ(αkω) = ϕ((α′k′ω) • (α′′k′′ω)),
= zj′,j′′ .

with
j′ =

∑
l=1...n 2n−lα′l

j′′ =
∑

l=1...n 2n−lα′′l

and α′, α′′ verifies α′ • α′′ = α′1 • α′′1 . . . α′n • α′′n, with α′i • α′′i = 2α′i + α′′i and
k = k′ • k′′.

Error estimation for a given leaf γ ∈ Γ is:

gn(P γ ,Tγ) =
1

4n−|γ|

∑
α∈Σn−|γ|

1
M

∑
k∈Ω

(P γψαkω (Tγ)− ϕ(γαkω))2

4.4 Surface reconstruction

Figure 7 represents the result of a surface approximation. The data is an el-
evation grid of size 257 × 257 extracted from Digital Terrain Elevation Data
(DTED) Level 0 3. In this example, the approximation method has been ap-
plied with an error threshold based on a minimum local PSNR value. PSNR

3Data available at http://data.geocomm.com/catalog/FR/group121.html
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is directly related to the definition of gn(P γ ,Tγ):

PSNR(P γ ,Tγ) = 10 log10(
max

gn(P γ ,Tγ)
)

where max is the range of input data.

(a) Original surface (b) Approximated surface

Fig. 7. Approximation of the French “Massif central” mountain

In this example, the threshold ε is such that for all γ in Γ the value of
PSNR(P γ ,Tγ) is greater than 40dB.

4.5 Image Compression

By using the same model, we are able to perform image compression. The
input data is a greyscale grid of size 257 × 257. The difference is in the ap-
proximation method, that optimizes the rate/distortion ratio. Figure 8 shows
an example of image compression. For a bit rate of 0.12bpp, the corresponding
error is PSNR=28.3dB, with the following classical definition of PSNR:

PSNR(P,T) = 10 log10(
255

gn(P,T)
)

where gn(P,T) =
∑

γ∈Γ gn(P γ ,Tγ) corresponds to the estimation of quadratic
distance:

gn(P,T) ≈ ‖ψΓ (P,T)− ϕ‖22
Detailed method is available in [12, 6].
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(a) Original image: portion of
peppers

(b) Image compressed at
0.12bpp, PSNR=28.3dB

Fig. 8. Image compression example

5 Conclusion

We showed that analytical approach and methods using derivation properties
can be used to perform the fractal inverse problem. This problem can be
formulated as an optimization problem in an Hilbert space. For a useful family
of fractal model based on affine IFS, the error function is analytical. Hence, the
optimization problem has a non-linear classical formulation. Methods based on
non-linear optimization algorithms can be applied with interesting numerical
results in surface reconstruction and image compression.
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6. Eric Guérin. Approximation fractale de courbes et de surfaces. Thèse de doc-
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