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Definition and classics

Finding a fractal code (model) that generates data (image,
curve, surface, etc.)

Based on the collage theorem [Barnsley, 1988]

Fractal image compression [Jacquin, 1992]
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A classification attempt

Direct methods

Model characteristics are found directly
Wavelet methods [Berkner, 1997, Struzik et al., 1995]
Complex moment [Abiko et al., 1997]
Inverse problem is performed on synthetic data

Indirect methods

Model characteristics are not found directly (optimization
algorithm)
Mixed IFS and genetic algorithm [Lutton et al., 1995]
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The beginning

Differential methods

Derivative property of affine IFS [Vrscay and Saupe, 1999]
We have developed an approximation method for curves,
surfaces [Guérin et al., 2000, Guérin et al., 2001], and images
[Guérin et al., 2003, Guérin, 2002].
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What is an address function ?

Barnsley introduced a function that maps from infinite words
Σω to a modelisation space X = Rm:

φ : Σω → X
ρ 7→ φ(ρ)

Fractal context: IFS describe address functions

Consider an indexed IFS T = (Ti )i∈Σ, we have the following
address function:

ρ ∈ Σω 7→ φ(ρ) = lim
n→∞

Tρ1 · · ·Tρnλ ∈ X with λ ∈ X . (1)
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Fractal approximation

Fractal objects can be constructed with address functions

We need a theoretical background to perform approximation
on such functions

Idea: build an Hilbert Space

The bonus: in the case of affine IFS defined address functions,
analitycity with respect to IFS affine parameters is proved

It allows the use of non-linear fitting algorithms (gradient
method, Levenberg-Marquardt,. . . )
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Approximation formulation

Approximation formulation is an optimization problem:

Topt = argmin
T

||ϕ− ψ(T)||2

with:
||ϕ||2 =< ϕ,ϕ >

and

< φ, φ′ >= lim
n→∞

1

Nn

∑
α∈Σn

1

M

∑
k∈Ω

< φ(αkω), φ′(αkω) >

with M = |Ω| and N = |Σ|.
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X = R and IFS are affine

Transformations operate on R:

Ti : R → R
x 7→ aix + bi

Approximation of a discrete numerical function build with
pairs: (xi , yi )i=1,...,p

Let α(i) = α
(i)
1 . . . α

(i)
n be the N-adic expansion of x̄i with

xi = x̄i + εi and εi <
1

Nn+1

Approximation formulation:

Topt = argmin
T∈SΣ

1

p

∑
i=1...p

(
ψ

α
(i)
1 ...α

(i)
n 0ω(T)− yi

)2
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Approximation of a cubic function (1000 points)
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Approximation of a random function (100 points)
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Projected IFS model

Iteration space X is barycentric:

X = BJ = {(λj)j∈J |
∑
j∈J

λj = 1}

Iteration semigroup is constituted of matrices with barycentric
columns:

SJ = {T |
∑
j∈J

Tij = 1, ∀i ∈ J}

Attractor is projected through control points:

PA(T) = {Pλ |λ ∈ A(T)}

where P is a control polygon or grid.
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Construction algorithm

Control grid
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Address function

Easy to provide with a Péano mapping:
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Extension : Projected IFS tree model

Each leaf γ of the quadtree contains a complete projected IFS
model pair (Tγ ,Pγ)

Allows the combination of local smooth/rough behavior
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Surface approximation

Each leaf of the quadtree is subdivided until an error threshold
is reached

Example: the threshold is fixed at PSNR > 40dB
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Image compression

A recursive and exhaustive coding process is performed with
several model type and several quantification levels

A final optimization step is performed with a bit-rate goal
(bisection algorithm)

Example: Image compressed at 0.12bpp, PSNR=28.3dB
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Conclusion

Address functions constitute a general framework for
approximation

Affine IFS coefficients map to attractors with analytical
functions

Standard non-linear optimization algorithms can be employed

IFS extensions allow easy curve, surface and image modeling

Projected IFS
Projected IFS trees

Approximation results have been obtained

Curves
Surfaces
Image (compression)
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Ongoing work

Combine non-linear optimization and wavelet approach for
better surface representation and compression

Propose a common formalism for subdivision surfaces (from
CAGD) and IFS

Extend the possibility to treat surfaces with complex topology

. . .
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