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A method for modeling and approximating rough surfaces is introduced. A fractal
model based on projected IFS attractors allows the definition of free form fractal
shapes controled with a set of points. This flexible model has good fitting prop-
erties for recovering surfaces. The approximation is formulated as a non-linear
fitting problem and resolved using a modified LEVENBERG-MARQUARDT minimisa-
tion method. The main applications are surface modeling, shape description and
geometric surface compression.

1 Introduction

Basically, the problem of approximating the surface of 3D objects consists in finding
a model that represents a set of data points:

(xivyiazi) €R3, V’LZO, ,n

A wide variety of representation methods have been proposed for modeling these
surfaces!. Unfortunately, these models do not recover rough surfaces, i.e. surfaces
defined by continuous functions that are nowhere differentiable. Models that are
able to produce rough surfaces are mostly based on random processes. This is the
reason why these models are not suitable for approximation. In order to propose an
efficient solution to the problem of rough surface approximation, the current study
proposes a parametric model based on a deterministic fractal approach.

In 2 and 3, we have proposed a model for fractal curves and surfaces. This model
combines two classical models: a fractal model (IFS attractors) and a CAGD model
(free form shapes). This model is called projected IFS attractors. A set of control
points allows an easy and flexible control of the fractal shape generated by the IFS
model and provide a high quality fitting, even for surfaces with sharp transitions.
In 4 and ®, we have proposed an approximation method for curves based on this
model. In ¢, we give the extension of this method to surfaces. In this paper, we
present a general formulation of surface modeling and some approximation results.

2 Model

2.1 IFS

Introduced by BARNSLEY” in 1988, the IFS (Iterated Function Systems) model
generates a geometrical shape or an image 8 with an iterative process. An IFS-
based modeling system is defined by a triple (X, d,S) where:

e (X,d) is a complete metric space, X is called iteration space;
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e S is a semigroup acting on points of X such that: A € X +— T € X where T
is a contractive operator, S is called iteration semigroup.

An TFS T (Iterative Function System) is a finite subset of S : T = {Tp,...,Tn—_1}
with operators T; € S. We note H(X) the set of non-empty compacts of X. The
associated HUTCHINSON operator is:

KeH(X)—TK =ToKU..UTny 1K .

This operator is contractive in the new complete metric space H(X) and admits a
fixed point, called attractor :

A(T) = lim T"K with K € H(X).

n—oo

2.2  Parameterisation of attractors

By introducing a finite set 3, the IFS can be indexed T = (T;);ex and the attractor
A(T) has an address function T defined on ¥, the set of infinite words of X:

c€X— ¢(o) = lim T,,..T, € X with A € X. (1)

When operators match joining condition 239 this function defines parameterised
curves or surfaces. For curves, a single indexing 3 = {0, ..., N — 1} is sufficient 10:

o

. 1
O(s) = ¢(o) with s = Z Ni0i
i=1
where 0 = 01...0, ... corresponds to the development of the scalar s in base N.
For surfaces, it is more convenient to use a double indexing ¥ = {0,... ;N — 1} x

{0,...,N —1}
D(s,t) = ¢(p) with p = (o1,71) ... (Op, ) ... € B

where 0 = 0y...0,... and 7 = 71 ...7, ... are respectively the development of s
and t in base N.

2.3 Projected attractors

The main idea of our model is drawn from the formula of free form surfaces used
in CAGD:

F(s,t) = Z D;(s,t)p;
jeJ
where p; constitutes a grid of control points (see Fig. 1), and ®; are blending
functions. These blending functions have the following property:

V(s,1) € [0,1]* Y ®j(s,t) =1
jeJ
The way to obtain the same property for IFS attractors is to use a barycentric
metric space.
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Figure 1. Deformation of a free form surface using the control grid.

In classical fractal interpolation 712 or fractal compression 8, the complete met-

ric space X used is R? or R3, and the iteration semigroup is constituted of con-
tractive affine operators. Our work consists in enlarging iteration spaces 3. This
model uses a barycentric space X = B7:

B ={(\)jes| D A =1},

jeJ
For curves, this barycentric space is used with J = {0,...,m}, for surfaces with
J = {0,...,m} x {0,... ,m}. Then, the iteration semigroup is constituted of

matrices with barycentric columns:

S;=A{T|> T;;=1Vie J}.
jeJ
This choice leads to the generalization of IF'S attractors named projected IFS at-
tractors:

PA(T) = {PX| ) € A(T)}

where P is a grid of control points P = (p;)jes and PA =3, ; A;p;. In this way,

2,3,9

we can construct a fractal function using the projection:

F(s,t) = P®(s,t) = Z (s, t)p;
jeT
where ®(s,t) is a vector of functions ®(s,t) = (®;(s,t))jes and J is the double

index set J = {0,... ,m} x {0,...,m}.  Fig. 1 shows the action of the control
grid on the free form surface defined by the function.

2.4 Tabulation of parametric surfaces

With a tabulation process®®, considering only the values of s and ¢ multiple of w5

leads to a simplification in the computing without any loss of information. The
surface tabulation is a grid defined by:

Iy opa(e Iy with (i p_ »_
Flsz +5) = PO(5: 25) with (i) € {0, . N* =1} x {0,... . N" =1}
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Step 0 Step 1 Step 2 Step 3

Figure 2. Three first iterations of the construction process beginning with the initial 4 X 4 control
grid (Step 0).

In this special case, developments of ﬁ are ended by a infinite sequences of 0:

c=01...0,00...
T=T71...7500...

Then, F(7, ) simplifies in:

F(s,55) = P ((01,71) - - (09, 7) .-~ (0,0) ... (0,0) ...
= PTyr . Ty 6((0,0)...(0,0)...) = PTy 7, ... Ty - ®(0,0)

By choosing simplifications (but no restrictions) such as ®(0,0) = ey, the sur-
face tabulation can be generated computing only p iterations without any loss of
information:
i
(m7 m
Fig. 2 shows the three first iterations of the construction process.

) = PTgl'rl e Tgprpeoo

3 Surface representation

Any couple (P, T) does not describe a parametric surface F(s,t). A joining condi-
tion must apply to the IFS to be sure the generated object is a surface. Clas-
sically, this joining condition is obtained by tensor products of curves. This
method, very used in CAGD, can be extended to surfaces defined by IFS. There-
fore, it can be applied to the modeling of fractal surfaces 231112, The function
D(s,t) = O¥(s) @ PU(t) is defined by the IFS T} ; = T* ® TJ?’.

However, the fractal familly of surfaces defined by IFS is much larger. This
section explains in details how it is possible to provide a joining condition such
that the function (s,t) € [0,1]? — ®(s,t) is well defined °.

3.1 Joining condition

The joining condition of the quadrangular patch is drawn from the structure of
[0,1])% (see fig. 3).
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Figure 3. Quadrangular subdivision scheme: boundaries, joinings and grid.

Boundary curves ®,(s) = ®(s,0), Pz(s) = P(s,1), P,(s) = ®(0,s), Pz(s) =

®(1,s) are defined by TFS T7 with indices in ¥ = {0,..., N — 1} extracted from
patch IFS (see Fig. 3):
T) = Ter with &' = (i,0), €F = (i, N — 1), & = (0,4), & = (N — 1,i)

for ¢ = 0,...,N — 1. These boundary curves are drawn from the corresponding
address functions:

D, (s) =¢"(0) = p(€7(0)) With €7 1 0 € X% 1 €] ..£] .. € X¥

A necessary and sufficient condition for the function ® : (s,t) — ¢(p) to be
defined and to be continuous is that the composants T; ;¢ of the address function
¢ join along their borders T; ;¢7 (see proof in 9). This condition is an equation
system:

T;,;0%(0) = T;, j419%(0) for i=0,..,N—1land j=0,..,N —2
T;;0"(0) = Tit1,j¢%(0) for i =0,..,N—2andj=0,...N—1

This equation system can be expressed as linear constraints on the T} ; matrices.

3.2  Constraints

Now, consider that each patch boundary is the embedding of a curve defined on a
grid J = {0,...,m} in the corresponding boundary of the patch control grid (see
Fig. 4):

m

$(0) =1,0"(0) =11, Y Gl (0)er = D dp(0) 1L, & (2)
k=0

k=0

The embeddings associated with the grid boundaries are defined by:
Huér = ek0, Har = €xm, ek = ek, Lsér =emyp for k=0,..,m

Let us denote T7 = (Tlfy)i:o,___,N,l the IFS that defines ¢~>7, T;,; matrices must
satisfy the following embedding constraints *

¢" =11,¢" & ToIl, =I,1) pour i=0,.,N —1
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Figure 4. Quadrangular patch and the corresponding boundary curves.

Then~7 the joining equations can be expressed as constraints on 7; ; and on boundary
IFS TV 9:
T; ;0" = Tit1,;0" & T;; 15 bp = Tit1,5 1L, ¢
& Tl =T 1, et TV =T°.
The argument is also valid with T% = T* (see Fig. 4).

3.3  Description

An IFS defined by N matrices T; ; that satisfy the previous constraints is equivalent
to a subdivision scheme characterised by a grid of points (see Fig. 3).

In this way, the classical process of point interpolation to build a fractal curve
in R?2 7 has been extended to fractal surfaces in R3 12:13,14,

The proposed grid is composed of (mN + 1) x (mN + 1) points of B’ corre-
sponding to the matrices columns of T; ;:

T ikt = Mmitk,mj+l
The joining equations are satisfied:
T'i,jHrp = i+1,ij & V= 0, . m T,i,j I; e, = EJrl,j I, &
& VIi=0,...m T;jen = Tit1, €0,

< VI=0,..,m Apitmmji+l = Am(i+1),mj+1
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However, embedding equations are expressed as restrictions on grid boundaries:
Teo 11, = M1} < Vi=0,..,m Tey 1M, & = I, 77¢,
& V= 0, e, m Toyjeol = HvTJpél

& VI=0,.om Aogmjer = Mol

where (5\};);6:0,__7,”5 is a set of points of B/ that characterise the curve ®v.

The points Ap,i,m; are transformed patch corners T; jeoo = Mnimg, Tij€mo =
>\m'£+m,mja Tiyjemm = >\mi+m,mj+ma Ti,jeom = )\mi,mj+m- If one takes N = m, a
pretty good choice would be Ap,;m; = €;5. Changing of system coordinates R with
Rey; = ry; allows to consider the general case.

The choice of the description grids (mN +1) x (mN +1) is not any. Practically,
the points are taken in the subspaces corresponding to parts of the control grid ©.

Considering the coefficients of the operators T; and the coordinates of the control
grid P as elements of a parameter vector a allows us to construct a family of
functions Fy defined by couples (Pa, Ta).

4 Approximation

Given a sampled surface (s;,t;,Q;;) € R?, the challenge is to determine the pro-
jected IFS model which provides a good quality approximation of this surface. The
approach proposed in the current study is similar to the one we introduced in 4°
for curves. It is based on a non-linear fitting formalism. Then, we show how the
approximation problem can be seen as a standard non-linear fitting problem.

4.1 Non linear fitting

Let Qij(i:o,... NP j=0,... \N¥?) be a given surface to approximate. Let F, be the func-
tion associated with the parameter vector a. The approximation problem consists
in determining the parameter vector a that minimizes the distance between the
sampled surface Q = {(57, 7%, Qi;j)} and the function Fj:

agp: = argmin d(Q, Fy)
a

where:
i 2

Q. Fa) = Y 11Qij — Fal5 7

ij
4.2 Solving the non-linear fitting problem
Our resolution method is based on the LEVENBERG-MARQUARDT algorithm 1°.

This algorithm is a numerical resolution of the following fitting problem:
M

aopt = argmin Z(vl - f(aa u?))z

a2 =0

where vectors v and u are the fitting data and f is the fitting model.

‘fmctal?OOQ ‘equerin: submitted to World Scientific on September 27, 2001 7




In order to resolve our approximation problem using this algorithm, we have to
consider the following data:

v = (vgy...,op) =(0,...,0); u=(ug,y...,un)=1(0,...,M)
where M = (N? + 1)2. Then, the fitting model is:
ik Jk
7@ k) = [1Quus — Falys: 25|
where i, = k mod N? and ji = k/NP Vk=0,...,(NP +1)%

The LEVENBERG-MARQUARDT method combines two types of approximation
for minimizing the square distance. The first consists in a quadratic approximation.
When this fails, the method tries a simple linear approximation. These approxi-
mations are computed with the provided partial derivatives of the fitting model.
In our case, these partial derivatives are numerically computed by a perturbation
vector 2

(5ai = (O, ,O,E,O,... ,0)
——

i
Then, the computation of partial derivatives is approximated by:

of fla+dai,u) — f(a, u)

Ba, (a,u) ~ .

4.3 Results

We show three examples of approximation. The model used is composed of a
3 x 3 patch IFS and a 4 x 4 control grid. A total of 232 parameters is needed to
code the entire model (subdivision schema and control grid). Fig. 5 shows the
original elliptic paraboloid shape and the approximated surface reconstructed with
our method. The equation of this shape is:

(CE—SL’O)Q_(Z/—Z/O)Q

Z=Zz2Z0 —
Oz oy

Note that the original and the approximated shapes are very similar. Our model
allows to reconstruct smooth surfaces®3, and not only rough surfaces. Fig. 6 shows
our first experiments on a natural surface. The original surface has been extracted
from a geological database (found at the United States Geological Survey Home
page http://www.usgs.org). The general aspects of the approximated surfaces
are similar to the original ones.

A grey-level image can be seen as a surface. Fig. 7 shows the approximation
of a grey-level image with both image and surface point of view. This image is
an astronomy picture (a white dwarf). Fig. 8 shows the comparison between our
approximation method and JPEG algorithm. Table 1 gives numerical results related
to this comparison in terms of error (PSNR) and compression ratio. To obtain the
same error, the JPEG algorithm provide a compression ratio that is lower than the
one obtained with our method. We can also see that the performance is not very
altered when each model parameter is quantified to 8 bits.
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Original Approximation

Figure 5. Smooth surface.

L & 4

Original Approximation

Figure 6. Geological surface.

5 Conclusion

We presented a new approach for modeling and approximating both rough or
smooth objects. This method is based on a fractal model named projected IFS
attractors. This model is a parametric description which has the advantage of com-
pactly describing the surface shape making it useful for geometric modeling and
image synthesis. First results show that our approximation method is an interest-
ing approach for rough object reconstruction and grey-level image description.
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Figure 7. Grey-level image.

Figure 8. Compression of the original image (a) with our model (b) and (c), and with JPEG
algorithm (d) and (e).

Compression type PSNR Code Compression

(dB) length ratios

Projected IFS model (b) | 26.6 | 464 bytes 14.5
16 bits / scalar

Projected IFS model (c) | 26.4 | 232 bytes 29

8 bits / scalar

JPEG (d) 23.6 | 545 bytes 12.3

JPEG (o) 26.5 | 592 bytes 114

Table 1. PSNR and compression ratios
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