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Abstract

This paper deals with the approximation of rough curves using a fractal model. The approxima-
tion criterion is based on a curve parametrization and the fractal model is a projected iterated
function system (IF8) model. This model unifies the IFS model and a classical model used in
computer graphics (free form representation with control points). To formulate the approxima-
tion problem, we introduce a family of curves based on our model. Then, the approximation
problem has a nonlinear fitting formulation. We have tested this fractal approximation method
on both smooth and rough synthetic curves. A shape extracted from a natural scene has also
been approximated. The obtained results are very satisfying from both quantitative and visual

point of view,

1. INTRODUCTION

The approximation of natural complex shapes
constitutes an important research area for recon-
struction and representation problems in several
application domains, such as medical imaging,
multimedia data representation and CAGD (com-
puted assisted geometric design).

In fractal theory, the determination of a model
for approximating natural data, is called “the
inverse problem.” The model has to be simple,
compact and easy to manipulate in terms of compu-
tation and visualization. The paper addresses the
problem of approximation of natural rough curves
with such a model. Few works have been reported
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on this subject. Most of them use the frac-
tal interpolation function (FIF) model introduced
by Barnsley.? This model is an iteration function
system (IFS) composed of shearings. Its stabil-
ity has been studied by Feng and Xie.* Among
the studies proposed to solve the inverse problem
for this FIF model, Berkner? uses a method based
on the wavelet transform, in order to obtain the
exact reconstruction for curves. Cochran et al.® pro-
pose another study with a more general model and
a method based on the fractal image compression.®
The model obtained is composed of a great num-
ber of transformations and depends on the way of
partitioning the original curve.
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In this paper, we propose a new approxima-
tion method based on a model that generalizes IFS
model and free form curves used in computer graph-
ics. This model has the convenience to be simple
to code and to represent a large variety of curves.
The resolution is based on the minimization of a
distance with a nonlinear fitting algorithm.

2. CURVE APPROXIMATION
PROBLEM

The quality of the approximation between two com-
parable objects is given by an evaluation criterion.
Traditionally, the criterion used is a given distance.
To compute this distance, one needs a unified rep-
resentation of the objects to compare. At first, let
us present the three representations for curves used
in this study:

(i) Parametric curve: A continuous function tak-
ing values in R?

t €[0,1] — F(t) € R%.
(ii) Set curve: A compact set of points in R?
F([o,1]) = {F(t)|t € [0,1]}.

(iii) Sampled curve: A list of points in R?

(Qi )t':l'l,.,.,m .
These points can be generated from a paramet-
ric curve:

Qi=F(t:).

Several distances can be handled as functions of
these representations. In fractal modeling, the
Hausdorff distance is often used. It is a distance
between sets. Let A and A’ be two compact sets
of a metric space (X, d), the Hausdorff distance be-
tween A and A’ is given by:

di(A,A)

— max {:Igleaj_c(;ggl, d(p,q)), gg?s(ggg d(p, ?))}

This distance, used for the IFS theory,? is indeed
rarely considered due to its computational com-

plexity. In the case of sampled (discrete) curves,
the simplest way to compute a distance between
Q = (Qi)i=0,...,m and Q' = (Q})i=0,...,m is:

DQQ) =3 d(@: Q).

=0

This distance presents also some drawbacks. Its
computation is possible only if the two curves are
defined using the same sampling function leading to
the same number of points. In order to generalize
the measure of similarity between curves without
any of the constraints described above, we propose
a new distance based on the parametrization of the
curves to compare.

To obtain a uniform parametrization, we use the
arc length s;(Q) of the ith sample of Q:

1—1
for i = L...,m: Si(Q) = r]é_)“zd(cgj:@}+l)
j=0

and

$0(Q) = 0.

[(Q) is the length of the sampled curve Q defined
as:

m—1
= d(Q;,Qj+1).
=0

Consequently, we can introduce a parametrization
function Gq associated with the sampled curve Q.
Gq is a piecewise affine function. For all i =
0,...,m—1and Vte€ [s(Q),s+1(Q)):

[ t-si(Q)
a0~ [ @ =) O
t—5(Q) ‘
- Si(Q)} %-

We can now measure a distance x? between func-
tions Gq and Gq’ rather than a distance between
sampled curves Q and Q’. Note that this approach
allows us to compare Q and Q' which can be ob-
tained by different sampling functions. In Eq. (2),
x? is computed following a uniform sampling of the
two functions:

x* =D(Gq,5q)

Sl so ()] o

This new criterion will be used to approximate nat-
ural rough curves using a fractal model. This model
is based on free form curves and IFS: fractal free
form curves that will be detailed in the following
section.



3. FRACTAL MODEL

First, we summarize some important definitions
about IFS. Then, the fractal free form curve model
is presented. Finally, the three representations as-
sociated to the model are described.

3.1 Iterated Function System

Introduced by Barnsley? in 1988, the IFS model
generates a geometrical shape with an iterative pro-
cess. An IFS‘based modeling system is defined by
a triple (X, d,S) where:

(i) (X,d) is a complete metric space, A is called
iteration space; and

(ii) S is a semigroup acting on the points of A such
that: p — T'p where T is a contractive operator
and & is called iteration semigroup.

An IFS T (iterative function system) is a finite
subset of S : T = {Tp,...,Ty—_1} with operators
T. € S. We note H(X), the set of non-empty com-
pacts of X. The associated Hutchinson operator is:

KeHX)—»IK=TKU---UTy1K.

This operator is contractive in the new complete
metric space (H(X),dy) and admits a fixed point,
called attractor, defined by?:

A() = lim T"K with K € H(X).

TI—300

Each IFS T defines a unique compact A(Z) called
IF'S attractor. A(ZT) is a self-similar compact set:

A(T) = TA(T).

3.2 Projected IFS Attractors

In fractal compression or fractal interpolation,®®

X = R? and S is the semigroup of contractive affine
operators. In our approach, we take another space,
the barycentric space A = B™ defined by:

=0

The iteration semigroup is constituted by matrices
with barycentric columns:

-l

ZTiJ‘II H}:O,}n}
i=0
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This choice leads to the generalization of IFS at-
tractors named projected IFS attractors:

PA(I) = {PXX € A(T)} (3)
where P is a sequence of control points:

P - (pl):-*- Jpﬂ-)

and PA = 37y A;p;. The interest of this model is
to unify the IFS model and the classical free form
representation used in computer aided geometric
design.”®

3.3 Representations Associated with
the Model

In Sec. 2, we defined three representations for
curves. In this section, we show that all these repre-
sentations can be generated from our fractal model.
In order to simplify the expressions, we consider the
mode] based on two transformations Ty and 77, and
a set of four control points P.

3.3.1 Parametric representation

With good hypotheses on IFS? the attractor is a
curve: A(Z) = {¢(t)|t € [0,1]} where ¢ is a contin-
uous function: [0,1] — X.

To each real value t, a binary development «(t)
can be associated:

Then, the value of ¢(t) is computed iteratively®:

P(t) = leHgoTal(t) cee Tak(t}}‘a YielX.

In this way, we can construct a parametric fractal
curve characterized by a set of control points P78
using the projection:

F(t) = Po(t) = 3 ¢:(t)p:

where ¢(t) is a vector of functions:

é(t) = (do(t),- .., en(E)T.



98 E. Guérin, E. Tosan & A. Baskurt

3.3.2 Set representation

This representation corresponds to the projected
IFS attractor of Eq. (3):

PA(T)= P lim {Ty, T\ }*K .
k—roo

For all compact K, the result will be the same.

3.3.3 Sampled representation

With a tabulation process, considering only the val-
ues of ¢ which are integral multiples of 2%, leads to a

simplification in the computing. The sampled curve
(Q:)i=0,... 2¢ is then defined by:

i
% =F(3)
=P lim T

k—oo 01(5%) o

i) YAEX.

We know the binary development of J:

fori=0,...,2P -1

a(%) = (%)...ap(%)oo.._

a(§)=a(1):111---.

We use the following invariance properties of Ty and
T]I

To eg = ep T e3 = e3

where ey = (1,0,0,0)7 and e3 = (0,0,0,1)T. For all

A € X, applying the fixed point theorem, we have:
lim Tak/\ = €y lim T]k)\ = €3 .
k—oo k—oo

Finally, the sampled curve can be generated com-
puting p iterations without any loss of information:

fori=0,...,22—1:

r — 3 : - & @ K] k
Q=P lim T Tapia T2
=PI (%) Ty ()0 (4)

fori=2P:

Q; =P lim TY*A =P e,.
k—o0

/—/ P(aith
| (@)

\Q

A B

Fig. 1 Extraction of ajyi:.

P
PT, PT,
PT,T, PT,T, PT,T, PT,T

1 Y

Fig. 2 Construction tree in the two-transformation case.

3.4 Construction

The construction process is directly drawn from the
projection Eq. (3):

PA(I) =P lim K; = lim (P K)  (5)
k—eo k—oo

with Kk = Ik K.

Practically, we choose a polygon for the com-
pact K (Fig. 3, step 0) in order to have an easy
projection. The following notation permits to in-
troduce an addressing (indexing) of the successive
substitutions of the curve: & = @ - - - v, is a binary
word and |a| = n is the length of this word, i.e.
a = 1001010 with |a| = 7. The number of points
is doubled at each iteration.

To visually explain the construction of a curve,
let us consider the following example where a given
curve (Fig. 3) has been modeled by four control
points and two transformations Ty et T3:



Control polygon - Step ¢ Step 1

Step 4

Fig. 3 Example of the construction of a fractal curve.

(i) IFS model defined by 2 contractive operators:

e

T =

(ii) Set of control points:

Step 8

/1 0.15 0.02 0.25
0 0.80 0.50 0.25
0 0.05 0.46 0.25
0 0.00 0.02 0.25
0.25 0.02 0.00 0
0.25 0.46 0.05 0
0.25 0.50 0.80 0

0.25 0.02 0.15 1

(1,2)T,(1,0)T).

1 ay
0 as
0 az
0

ar

as
g

o (am a1 azo Gg2

17 419 421 423

P = ((_1: 0)T1 (_1! Z)T:
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The compact K used for visualization is a polygon.
The vertices of polygon K are: ep,e;,es,es3 with
eo = (1,0,0,0)T, 3 = (0,1,0,0)7, e; = (0,0,1,0)7
and ez = (0,0,0,1)7.

The expression P K} in the projection Eq. (5)
can be developed as:

PK,=PI*K
= P{Tp,1}* K

=P | ToyToy- T, K.
|ex|=k

This contruction is clearly similar to a binary tree
(Fig. 2). Figure 3 represents the evolution of P K,
beginning with the control polygon and converging
to the fractal curve in a small number of iterations.

4. FRACTAL APPROXIMATION

This section details the construction of a family
of curves based on our fractal model. Then, the
approximation with the Levenberg-Marquardt
nonlinear fitting method is presented. Finally, the
implementation process is developed.

4.1 Parametrization of a Family
of Curves

We consider a family of curves for which the
parameters are the coefficients of matrices Ty and
T, and components of control points P. Let us con-
sider a fractal curve modeled with two transforma-
tion matrices and four control points. This leads to
the following familly of triplets (To(a), T1(a), P(a))

parametrized by a vector a = (a;,...,a23):
Qayq a7
as as
ag Qag

1-(a1+az+a3z) 1-(as+as+as) 1—(ay+as+ ag)

ap a13 0

ai ai4 0
(6)

a1z as 0

1

1- (GT + as + C!.g) 1- (a-lu +an +a12) 1-— ((113 + aiq +ﬂ,15)
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4.2 Approximation Principle

The family of triplets in (6) allows us to construct
a sampled curve. Given a construction depth p, let
us call Q(a) = Q(To(a), T1(a), P(a)) the sampled
curve composed of 27 + 1 points.

In order to measure the similarity between the
original sampled curve Q and the sampled curve
Q(a) generated with the parameter vector a, we use
the corresponding parametrizations Gq and GQ(a)
the functions defined in Eq. (1). Consequently, the
approximation problem consists in searching the op-
timal parameter vector agpy that minimizes the fol-

lowing function x?(a):
aopt = arg min x%(a)

= arg n'Lin D(gQ, QQ(R))

_ argmgng [4(9a (7) 92w (37))]

with M arbitrary.
Now, let us denote:

f(a,t) = d(Gq(?), Gowm)(t)) -

This formulation is close to a nonlinear fitting
problem which can be resolved using the Levenberg-
Marquardt algorithm.

4.3 Levenberg-Marquardt

Levenberg-Marquardt!® algorithm is a numerical
resolution of the following fitting problem:

M

8opt = arg main Z(Z:' -
=0

f(a,t))?

where vectors z and t are the fitting data and f is
the fitting model.

In order to resolve our approximation problem
using this algorithm, we have to consider the fol-
lowing fitting data:

M-1
t=(t0,,..,tM)=({}, L 2 —,1):

MMM
the uniform arc length points between [0,1]
z = (20,...,2m) = (0,...,0).

f(a,t) is a distance between Gq and Gg() for a
given value of t. This distance should be close to

zero in order to fit these two curves perfectly. That
is the reason why we choose a null vector for z.

A necessary condition for applying the
Levenberg-Marquardt algorithm is that the func-
tion a — f(a,t) belongs to the class Cl. We
prove this by using another result from Vrscay and
Saupe.!!

Proposition. The function a — d(Gq(t),Go)
(t))¥ t € [0,1] belongs to the class C!.

Proof. Let us decompose this function into ele-
mentary functions:

O (1,71, P) S P 9a) Y g

L d(Gq(t), Gow (1))

Each of these functions belongs to the class C1:

Function (1): This is a linear function that only
makes a mapping between a parameter vector a and
the set (Tp, 11, P).

Function (2): Vrscay and Saupe prove that the
function (Tp,T1) — @ is C'. The projection opera-
tor P is also a linear operator.

Function (3): This is a uniform sampling func-
tion belonging to the class C1.

Function (4): This is a linear interpolation func-
tion that consists in picking a set of uniformly
spaced points on Q(a). It belongs to the class C1.

Function (5): This is a function associated to a
distance and belonging to the class C?.

Consequently, the composition of these five func-
tions belongs to the class C!. O

In order to apply this algorithm, one needs:

(i) An initial estimation aj,;; for the parameter
vector a. '

(ii)) The fitting model that gives the values of
f(a,t) and its partial derivatives gé(a,t) for
a given parameter vector a and a value of {.

First, we show how the initial parameter vector
ajnit 1s estimated. Then, details on the computation
of the partial derivatives are presented.

4.4 Initialization of the Method

With the Levenberg-Marquardt method,'® the qual-
ity of the initial guess of the vector a may have a



great impact on the final result. We estimate the
initial parameter vector a;,;x by using geometrical
properties of the original curve Q.}2 We build a B-
spline curve tangent to the curve Q at its extremi-
ties A and B and fitting Q to the maximum value C'.
Figure 1 shows an example of a curve Q with the
associated B-spline Qfay,;;) and the control poly-
gon P(a,;;). In this case, Ty and T are reduced to
B-spline transformations:

(1

1
5 00
¢ 0 l 3 1
To(aini) = 2 4 2
1 1
0 0 - -
4 2
\0 0 0 0
and
0 0 0 0O
1 1
-~ ~ 0 0
2 4
Ti(ainit) =11 3 1 0
2 4 2
1
0 0 = 1
2

4.5 Computing of Partial Derivatives

To compute the partial derivatives, we use a small
vector da; that is used to disturb the parameter vec-

tor a:
da; = (0,...,0,¢,0,...,0).
| R

Then, the computation of partial derivatives is ap-
proximated by:

of _ flatday,t) — f(at)
Oa; (a’ t) - g )
5. RESULTS

Two categories of results are proposed. First, re-
sults on synthetic curves are shown. Then, results
on a curve extracted from a natural picture are
presented.

5.1 Synthetic Curves

Table 1 presents the results concerning the ap-
proximation process for the four curves given in
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Table 1 Numeric results on synthetic curves.

Figure  Final x* No. of Computing Time (s)
Iterations (Pentium III 450,
64 Mo RAM)
4(a) 0.0025 67 18
4(b) 0.0116 268 59
5(a) 0.0006 66 14
5(b) 0.8468 225 50

. w—— initial B—splines
3

Fig. 4 Visual results on synthetic curves (1).

Figs. 4 and 5. The initial curve Q and the recon-
structed curve Q(ay,;) are represented with plain
line and small dots, respectively. The B-spline
model Q(ajnit) used to initialize the fitting process
is also represented. The final distance x? is close to
zero, except for Fig. 5(b) where we have a complex
fractal curve. The visual quality of the approxima-
tions obtained by our fractal model is quite good.
We also note that logically the algorithm takes more
iterations to converge for complex shapes [Figs. 4(b)
and 5(b)].

5.2 “Natural® Curve

The shape of a mountain has been manually
extracted from a natural scene. This shape is
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(b}

Fig. 5 Visual results on synthetic curves (2).

approximated with the fractal model (Fig. 6).
Numerically, 67 iterations and 18 seconds have been
necessary to converge; final value of x? is 0.0145.

©lebbs

This result is validated by the visual aspect of
the approximation. Note that only two elemen-
tary transformations and four control points were
required to approximate this natural shape initially
defined by 210 points.

6. CONCLUSION

In order to handle rough natural shapes, we have
proposed an approximation method based on a pro-
jected IFS model. We have built a fractal curve
family based on this model. The approximation eri-
terion based on a parametrization of sampled curves
has been defined. Consequently, the approximation
problem has been solved using a nonlinear fitting
method. We have tested the whole fractal approx-
imation method on both smooth and rough syn-
thetic curves. A shape extracted from a natural

scene has been also modeled. The results obtained
for the evaluation criteria (both numerical (x? dis-
tance) and visual) are very satisfying. Furthermore,
the method can be easily applied to more general
models, with more transformations and more con-
trol points.

[nitial B-Spline
Reconstructed curve

Original extracted curve

Fig. 6 Approximation of a natural curve with the fractal model.
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